Física de los Procesos Biológicos Curso 2005/6

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física de los Procesos Biológicos Curso 2005/6"

Transcripción

1 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido a la acción de una fuerza, y como podemos estimar cuál va a ser esa deformación. Si somos capaces de entender como al aplicar una fuerza se deforma un material, y lo aplicamos a materiales biológicos podremos saber cual es la fuerza que podrán soportar músculos o huesos y podremos predecir cuando se producirá una fractura. Vamos primero a intentar entender la deformación en un sistema lo mas sencillo posible, un muelle. Imaginad que estiramos un muelle hasta una posición x 1, y después intentamos desplazarlo mas hasta una posición x 2, tal y como se muestra en la figura 1. Para poder desplazarlo hasta este segundo punto vamos a tener que aplicar una fuerza mayor, nos costara más, que para desplazarlo hasta el primer punto. Tema

2 x = 0 x = 0 1 x = 0 igura 1. Muelle estiramos. es la fuerza que realiza el muelle. Y si lo hacemos al revés?, primero comprimimos el muelle hasta una posición x 1, y luego intentamos comprimirlo más hasta una posición x 2, tal como muestra la figura 2. Este último movimiento también nos costará más. 2 x = 0 1 x = 0 2 x = 0 igura 2. Muelle comprimimos o que está sucediendo es que al desplazar el muelle, este ejerce una fuerza que depende del desplazamiento y que se opone a este desplazamiento. Esa fuerza la podemos escribir como: = -Kx Esto es lo que conocemos como la ey de Hooke, por ser la persona que descubrió esta dependencia entre la fuerza y el desplazamiento. K es una constante que Tema

3 denominamos constante elástica del muelle. El valor de esta constante va a depender del tipo de muelle que utilicemos, es decir, de su geometría y del material del que está hecho el muelle. Si el valor de K es mayor querrá decir que la fuerza ejercida por el muelle para el mismo desplazamiento es mayor. Si en el laboratorio medimos el valor de la fuerza para distintos desplazamientos y representamos estos valores gráficamente lo que obtendremos es una linea recta, cuya pendiente es el valor de esta constante elástica del muelle. Si repetimos este experimento con dos muelles distintos tendremos dos lineas rectas con pendientes distintas y cada una de las pendientes serán los valores de la constante elástica de cada uno de los muelles, tal y como se muestra en la figura 3. K' K igura 3: ey de Hooke para dos muelles con constantes elásticas distintas K y K'. Al estirar estamos cambiando la longitud total del muelle, pero no estamos cambiando su forma. Es decir, si soltamos el muelle este queda con la misma forma que tenía al principio. Pero esto no pasa siempre. Si estiráramos mucho el muelle cambiaríamos la forma del muelle. Estaríamos pasando de un régimen elástico, a un régimen plástico, en el que cuando dejamos de aplicar la fuerza el muelle no recobra su forma original. Esfuerzo y Deformación Vamos a aplicar lo que hemos aprendido sobre el comportamiento de un muelle a materiales mas complejos. Por ejemplo, vamos a suponer un cilindro que estiramos aplicando la misma fuerza por los dos lados del cilindro. Decimos que estamos aplicando una fuerza de TENSIÓN sobre ese material. Al aplicar esa fuerza el cilindro cambiara su longitud, si al principio tenia una longitud al aplicar la fuerza tendrá una longitud '. El aumento de longitud de este cilindro será la diferencia entre la longitud final y la longitud inicial, que escribimos como: = ' - Tema

4 Si la fuerza aplicada no es muy alta este cilindro se comporta como el muelle del caso anterior. Podemos pensar que el cilindro esta formado por átomos todos ellos ligados unos con otros a través de muelles. Cuando estiramos el cilindro lo que esta pasando es que estamos estirando esos muelles que enlazan unos átomos con otros, tal y como nos muestra la figura 4. igura 4. Deformación de un cilindro por tensión. Recordad que la ley de Hooke nos decía que la fuerza del muelle es proporcional al desplazamiento. En este caso podemos suponer que sucede lo mismo, la fuerza será proporcional al cambio de longitud del cilindro: α. En la mayoría de ocasiones nos interesa conocer la respuesta del material independientemente de la forma que tenga el trozo de material sobre el que hacemos nuestros experimentos, es decir, obtener propiedades del material que sean independientes de la longitud del material o de su geometría o volumen, para poder definir una propiedad general para todos los materiales que tengan la misma composición. Por esta razón se define lo que conocemos como DEORMACIÓN, que es el cociente entre el cambio de longitud del material y el valor de la longitud inicial. De esta forma la deformación será independiente de la longitud inicial del material que estamos utilizando para nuestros cálculos. Definimos por tanto la DEORMACION, ε, como: Observad que la DEORMACIÓN no tiene unidades, ya que es el cociente entre dos Tema

5 valores con las mismas unidades. a deformación en muchos casos la veremos escrita en porcentaje (%), y lo que nos indica es cuanto se habrá estirado el material con respecto a su longitud original. Para el caso de la fuerza, definimos el ESUERZO como la fuerza por unidad de superficie. Es decir, la presión que realiza la fuerza sobre la superficie, en el caso de nuestro ejemplo sobre la superficie del cilindro. Definimos por tanto el ESUERZO, σ, como: A donde A es el área. Observa que en este caso el esfuerzo sí tiene unidades. as unidades en el sistema internacional serán Newtons por metro cuadrado (N/m 2 ). A esta unidad también se le conoce con el nombre de Pascales, Pa. Al igual que la ley de Hooke nos decía que la relación entre la fuerza ejercida por un muelle y el desplazamiento eran proporcionales y la constante de proporcionalidad era la constante elástica del muelle, podemos también obtener una relación entre deformación y esfuerzo, y también será una relación lineal, con una constante de proporcionalidad que en este caso es independiente de la geometría del material y que conocemos con el nombre del MÓDUO DE YOUNG, E. El modulo de Young relaciona el esfuerzo aplicado sobre un material con la deformación que se produciría sobre ese material. a relación seria: A E es decir, la relación entre esfuerzo y deformación es: E Si representamos gráficamente el esfuerzo frente a la deformación de un material obtendremos una linea recta, cuya pendiente nos dará el valor del modulo de Young. Esta constante nos da información sobre lo fácil o difícil que resulta cambiar de forma un material cuando lo sometemos a una fuerza de tensión (o de compresión, como veremos en un momento). Podemos ver esto en una gráfica como la que se presenta en la figura 5. Tema

6 σ σ 1 E' E ε ε ε igura 5: Curva esfuerzo-deformación para dos materiales con distintos valores del modulo de Young, E y E'. Si nos fijamos en un mismo valor del esfuerzo σ 1 la deformación que se produce en cada uno de los materiales es muy diferente. Si el modulo de Young es mayor (la pendiente es mayor, curva azul) la deformación será menor que si el modulo de Young es mas pequeño (pendiente menor, curva roja). Cuáles serán las unidades en el sistema internacional del modulo de Young?. Sabemos que el esfuerzo tiene unidades de N/m 2, y que la deformación no tiene unidades, por tanto el modulo de Young tiene que tener las mismas unidades que la deformación para que la ecuación a un lado y al otro tenga las mismas unidades. Hemos estado hablando hasta ahora de deformar el material aplicándole una fuerza de tensión. También podríamos aplicar una fuerza de compresión y el análisis seria el mismo que hemos visto aquí para la tensión. En la mayoría de sistemas simples, la curva de esfuerzo-deformación para el caso en el que se aplica una fuerza de tensión o una fuerza de compresión son exactamente iguales. Pero para sistemas más complejos estas curvas no tienen porque ser exactamente iguales, y tendríamos una curva distinta para el esfuerzo frente a la deformación con una constante diferente, es decir tendríamos un modulo de Young distinto cuando aplicamos tensión y cuando aplicamos compresión en el material. a figura 6 muestran nuestro objeto bajo fuerzas de tensión y de compresión. Tema

7 Tension /2 /2 Compr esion /2 /2 igura 6. Cilindro bajo tensión y bajo compresión a tabla I muestra algunos valores del modulo de Young para distintos materiales, tanto para materiales simples, como para materiales mas complejos, en los que existen dos módulos de Young distintos, uno para tensión y otro para compresión. Tabla I: Modulo de Young y esfuerzo de rotura para distintos materiales Material E(10 9 N/m 2 ) σ m (10 7 N/m 2 ) Acero Cobre Mármol Madera Caucho Hueso: fémur humano 16 (tensión) 9 (compresión) 12 (tensión) 17 (compresión) Vasos sanguíneos a relación lineal que existe entre el esfuerzo y la deformación no se cumple para cualquier valor del esfuerzo aplicado. Igual que en el caso del muelle, cuando aplicamos una fuerza (un esfuerzo) grande, la relación entre esfuerzo y deformación ya no es una deformación lineal. Decimos que el material ha superado su limite elástico. A esta nueva deformación le denominamos deformación plástica. Cuando la deformación es plástica, si se elimina la fuerza aplicada el material no es capaz de recuperar la forma que tenía al principio, es decir, hemos cambiado de alguna forma Tema

8 ese material. Si continuamos aplicando fuerza llegara un momento en el que el material se romperá. Al esfuerzo mínimo que hay que aplicar para que esto suceda, para que el material se rompa, le llamamos ESUERZO DE ROTURA. En la tabla I se incluyen también valores para el esfuerzo de rotura de distintos materiales. a figura 7 muestra una curva de esfuerzo-deformación típica para un metal, donde se señalan la parte elástica, la parte plástica y el punto de fractura. En la curva podemos distinguir tres fases, para deformaciones pequeñas la relación es lineal y tenemos una linea recta, que cumple σ = E ε, por tanto podemos obtener el valor del modulo de Young de la pendiente de la curva en esta parte inicial. Para deformaciones mayores vemos que la curva ya no sigue una linea recta sino que se desvía. Estamos en la zona plástica. En esta parte estamos modificando el material. El punto final de la curva es el punto de fractura. σ Punto de fractura Plastica Elastica ε igura 7: curva típica de esfuerzo-deformación para un material homogéneo en la que podemos ver la parte elástica, la plástica y el punto de fractura (de Materials Science and Engineering. An Introduction. W. D. Callister, Ed. John Wiley & Sons) Por último veremos como las curvas de esfuerzo-deformación para algunos materiales continúan hasta deformaciones grandes mientras que otras acaban en deformaciones pequeñas, como muestra la figura 8. Ese ultimo valor del esfuerzo que aparece en las curvas señala el punto de fractura. Observad que para el caso de un metal cuando se llega al punto de fractura el material se ha deformado mucho, la zona plástica es muy grande. Esto lo que refleja es que los metales son materiales muy dúctiles. Por ejemplo, podemos coger un metal y deformarlo mucho antes de llegar a romperlo. Para el caso de un vidrio, sin embargo, vemos que cuando se alcanza el punto de fractura cuando la deformación ha sido muy pequeña, es decir la zona plástica es muy pequeña. En este caso decimos que el material es frágil, porque no es capaz de deformarse cuando aplicamos un esfuerzo y se fractura rápidamente. Tema

9 σ ragil Ductil ε igura 8: curvas de esfuerzo-deformación para un material frágil y para un material dúctil. En el caso de un material frágil se llega al punto de fractura (punto B) después de una parte muy corta de plasticidad, mientras que en el caso de un material dúctil la zona plástica es grande. Vamos a ver con un ejemplo la utilidad de un parámetro del material como es el modulo de Young para entender el comportamiento del material bajo tensión o bajo compresión. Ejemplo 1: Imaginad que tenemos una barra de cobre de 2.0 metros de largo y 2 mm de diámetro. Cuál será la fuerza que tendríamos que aplicar para poder extender la barra 1mm?. El modulo de Young para el cobre es de aproximadamente 120 GPa. Nos están pidiendo que calculemos una fuerza. Sabemos que el esfuerzo es una fuerza por unidad de superficie, y sabemos la relación que existe entre el esfuerzo y la deformación. Por tanto utilizando esta relación podremos obtener el valor de la fuerza, como se muestra a continuación: E A A E A.E A D x x10 6 m 2 A E 3.14 x x N188 N 2 Tema

10 Ejemplo 2: Si el área de la sección transversal mínima del fémur de un hombre adulto es 6x10-4 m 2 a qué carga de compresión se produce la fractura?. Según la tabla I anterior el esfuerzo máximo bajo compresión para los huesos es de 17x10 7 Nm -2. Si se supera esta fuerza por unidad de superficie se producirá la fractura. Como conocemos el valor de la superficie podremos calcular el valor de la fuerza simplemente como: m A A M 6 x x N1,02 x10 5 N Este es un valor muy grande de la fuerza, unas 100 veces el peso de una persona de 100kg. Tema

LABORATORIO 7: LEY DE HOOKE. Calcular la constante de elasticidad de un resorte y determinar el límite de elasticidad.

LABORATORIO 7: LEY DE HOOKE. Calcular la constante de elasticidad de un resorte y determinar el límite de elasticidad. UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICA LABORATORIO DE FISICA ASIGNATURA: FISICA TECNICA I. OBJETIVO GENERAL LABORATORIO 7: LEY DE HOOKE Calcular la constante de elasticidad de un resorte

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

Estudiar experimentalmente el comportamiento de resortes y bandas elásticas.

Estudiar experimentalmente el comportamiento de resortes y bandas elásticas. No 6 LABORATORIO DE FISICA PARA LAS CIENCIAS DE LA VIDA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Estudiar experimentalmente el comportamiento de

Más detalles

ENSAYOS MECÁNICOS II: TRACCIÓN

ENSAYOS MECÁNICOS II: TRACCIÓN 1. INTRODUCCIÓN. El ensayo a tracción es la forma básica de obtener información sobre el comportamiento mecánico de los materiales. Mediante una máquina de ensayos se deforma una muestra o probeta del

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

EXPERIMENTOS PARA ESTUDIAR PROPIEDADES MECÁNICAS DE MATERIALES. Dirigida a docentes de las áreas Ciencia y Tecnología. Dra.

EXPERIMENTOS PARA ESTUDIAR PROPIEDADES MECÁNICAS DE MATERIALES. Dirigida a docentes de las áreas Ciencia y Tecnología. Dra. EXPERIMENTOS PARA ESTUDIAR PROPIEDADES MECÁNICAS DE MATERIALES Dirigida a docentes de las áreas Ciencia y Tecnología Dra. Alicia Sarce INSTITUTO SABATO Universidad Nacional de General San Martín-Comisión

Más detalles

MANUAL DE AYUDA MODULO TALLAS Y COLORES

MANUAL DE AYUDA MODULO TALLAS Y COLORES MANUAL DE AYUDA MODULO TALLAS Y COLORES Fecha última revisión: Enero 2010 Índice TALLAS Y COLORES... 3 1. Introducción... 3 CONFIGURACIÓN PARÁMETROS TC (Tallas y Colores)... 3 2. Módulos Visibles... 3

Más detalles

KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones

KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones KIG: LA GEOMETRÍA A GOLPE DE RATÓN Asesor de Tecnologías de la Información y de las Comunicaciones GNU/LINEX Mariano Real Pérez KIG KDE Interactive geometry (Geometría interactiva de KDE) es una aplicación

Más detalles

Informe 1: Ensayos de Tracción Ciencias de los Materiales CM3201

Informe 1: Ensayos de Tracción Ciencias de los Materiales CM3201 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ciencia de los Materiales Informe 1: Ensayos de Tracción Ciencias de los Materiales CM3201 Alumno: Pablo J. Cabello H. Grupo:

Más detalles

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La Lección de Hoy es Distancia entre dos puntos El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La formula de la distancia dada a dos pares es: d= (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 De

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

T R A C C I Ó N periodo de proporcionalidad o elástico. limite elástico o aparente o superior de fluencia.

T R A C C I Ó N periodo de proporcionalidad o elástico. limite elástico o aparente o superior de fluencia. T R A C C I Ó N Un cuerpo se encuentra sometido a tracción simple cuando sobre sus secciones transversales se le aplican cargas normales uniformemente repartidas y de modo de tender a producir su alargamiento.

Más detalles

MANUAL DE AYUDA HERRAMIENTA DE APROVISIONAMIENTO

MANUAL DE AYUDA HERRAMIENTA DE APROVISIONAMIENTO MANUAL DE AYUDA HERRAMIENTA DE APROVISIONAMIENTO Fecha última revisión: Junio 2011 INDICE DE CONTENIDOS HERRAMIENTA DE APROVISIONAMIENTO... 3 1. QUÉ ES LA HERRAMIENTA DE APROVISIONAMIENTO... 3 HERRAMIENTA

Más detalles

LABORATORIO DE MECÁNICA LEY DE HOOKE

LABORATORIO DE MECÁNICA LEY DE HOOKE No 6 LABORATORIO DE MECÁNICA LEY DE HOOKE DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General: Estudiar experimentalmente el comportamiento

Más detalles

Práctica del paso de generación de Leads

Práctica del paso de generación de Leads Práctica del paso de generación de Leads La parte práctica de este módulo consiste en poner en marcha y tener en funcionamiento los mecanismos mediante los cuales vamos a generar un flujo de interesados

Más detalles

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS La física es la más fundamental de las ciencias que tratan de estudiar la naturaleza. Esta ciencia estudia aspectos tan básicos como el movimiento,

Más detalles

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,

Más detalles

MICROECONOMÍA II. PRÁCTICA TEMA II: Equilibrio parcial

MICROECONOMÍA II. PRÁCTICA TEMA II: Equilibrio parcial MICROECONOMÍA II PRÁCTICA TEMA II: Equilibrio parcial EJERCICIO 1 A) En equilibrio, la cantidad demandada coincide con la cantidad ofrecida, así como el precio de oferta y demanda. Por lo tanto, para hallar

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

Capítulo 4. Elasticidad

Capítulo 4. Elasticidad Capítulo 4 Elasticidad 1 Ley de Hooke Cuando estiramos o comprimimos un muelle, la fuerza recuperadora es directamente proporcional al cambio de longitud x respecto de la posición de equilibrio: F = k

Más detalles

La Función lineal en la demostración de la ley de Hooke

La Función lineal en la demostración de la ley de Hooke La Función lineal en la demostración de la ley de Hooke María del Socorro Valero, Ma. Guadalupe Barba Sandoval, Ma. Paulina Ventura Regalado Tecnología: TI Nspire CX y TI Nspire Lab Cradle de Texas Instruments

Más detalles

Gestión de Retales WhitePaper Noviembre de 2009

Gestión de Retales WhitePaper Noviembre de 2009 Gestión de Retales WhitePaper Noviembre de 2009 Contenidos 1. Introducción 3 2. Almacén de retales 4 3. Propiedades de los materiales 6 4. Alta de retales 8 5. Utilización de retales en un lote de producción

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal. ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio

Más detalles

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012 ORIENTACIÓN.1ºESO Carreras de Orientación Una Carrera de Orientación consiste en recorrer en el menor tiempo posible una ruta situada en un terreno desconocido pasando por unos puntos obligados en un orden

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Este programa mueve cada motor de forma independiente, y cuando termina una línea pasa a la siguiente.

Este programa mueve cada motor de forma independiente, y cuando termina una línea pasa a la siguiente. 1 Programa 1 Utilizando el icono añadimos un movimiento a por cada línea de programa. Podremos usar 8 posibles líneas de programa (Base, Hombro, Codo, Muñeca, Pinza, Salida 1, Salida 2 y línea en blanco).

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Actividad: Qué es capilaridad?

Actividad: Qué es capilaridad? Qué es capilaridad? Nivel: 3º medio Subsector: Ciencias físicas Unidad temática: Ver video Capilaridad Actividad: Qué es capilaridad? Los fluidos son un conjunto de moléculas distribuidas al azar que se

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 2.- RESISTENCIA DE MATERIALES. TRACCION. 1.1.- Resistencia de materiales. Objeto. La mecánica desde el punto de vista Físico

Más detalles

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1. LF.3.A1.2-Steve Cole-Determining Domain and Ranges- La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.2 Qué es Dominio? Es

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

SISTEMAS MECÁNICOS Septiembre 2001

SISTEMAS MECÁNICOS Septiembre 2001 SISTEMAS MECÁNICOS Septiembre 2001 Dos resortes helicoidales de compresión, ambos de hilo del mismo acero y diámetro del alambre d=1,5 cm y 7 espiras cada uno, escuadradas y rectificadas, tiene la misma

Más detalles

MCBtec Mas información en

MCBtec Mas información en MCBtec Mas información en www.mcbtec.com INTRODUCCIÓN A LA SIMULACION POR ORDENADOR Indice: Objetivo de este texto. Simulación por ordenador. Dinámica y simulación. Ejemplo disparo de un proyectil. Ejemplo

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

GESTINLIB GESTIÓN PARA LIBRERÍAS, PAPELERÍAS Y KIOSCOS DESCRIPCIÓN DEL MÓDULO DE KIOSCOS

GESTINLIB GESTIÓN PARA LIBRERÍAS, PAPELERÍAS Y KIOSCOS DESCRIPCIÓN DEL MÓDULO DE KIOSCOS GESTINLIB GESTIÓN PARA LIBRERÍAS, PAPELERÍAS Y KIOSCOS DESCRIPCIÓN DEL MÓDULO DE KIOSCOS 1.- PLANTILLA DE PUBLICACIONES En este maestro crearemos la publicación base sobre la cual el programa generará

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Recursos Para Pymes. Prohibida su reproducción por cualquier medio http://www.recursosparapymes.com Cómo empezar con CMM Marketing en 2 Minutos

Recursos Para Pymes. Prohibida su reproducción por cualquier medio http://www.recursosparapymes.com Cómo empezar con CMM Marketing en 2 Minutos Cómo empezar con CMM Marketing en 2 Minutos Aquí aprenderá cómo empezar a manejar y aprovechar CMM Marketing en apenas un par de minutos, mostrándole las pautas básicas de su funcionamiento y uso. 1 1.-

Más detalles

Movimiento a través de una. José San Martín

Movimiento a través de una. José San Martín Movimiento a través de una curva José San Martín 1. Introducción Una vez definida la curva sobre la cual queremos movernos, el siguiente paso es definir ese movimiento. Este movimiento se realiza mediante

Más detalles

Año: 2008 Página 1 de 31

Año: 2008 Página 1 de 31 Lección 4. Tesorería 4.1. Bancos y caja 4.2. Cobros y pagos con un vencimiento asociado 4.3. Cobros y pagos sin un vencimiento asociado 4.4. Cobro o pago del que desconocemos el origen 4.5. Pago o cobro

Más detalles

Qcad. Es un programa de diseña asistido por ordenador en 2 dimensiones.

Qcad. Es un programa de diseña asistido por ordenador en 2 dimensiones. Qcad Es un programa de diseña asistido por ordenador en 2 dimensiones. 1. La ventana del Qcad Barra de títulos Barra de menús Barra de herramientas Área de dibujo Barra de herramientas de dibujo Barra

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

CURSILLO DE ORIENTACIÓN

CURSILLO DE ORIENTACIÓN CURSILLO DE ORIENTACIÓN MAPAS Un mapa es una proyección de una superficie sobre un plano, y reducido a través de una ESCALA. Esta escala nos da el grado de reducción y precisión de la realidad y se representa

Más detalles

Profr. Efraín Soto Apolinar. Límites

Profr. Efraín Soto Apolinar. Límites Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial

Más detalles

MANUAL DE USUARIO DE LA APLICACIÓN DE ACREDITACION DE ACTIVIDADES DE FORMACION CONTINUADA. Perfil Entidad Proveedora

MANUAL DE USUARIO DE LA APLICACIÓN DE ACREDITACION DE ACTIVIDADES DE FORMACION CONTINUADA. Perfil Entidad Proveedora MANUAL DE USUARIO DE LA APLICACIÓN DE ACREDITACION DE ACTIVIDADES DE FORMACION CONTINUADA Perfil Entidad Proveedora El objetivo del módulo de Gestión de Solicitudes vía Internet es facilitar el trabajo

Más detalles

Capítulo 0. Introducción.

Capítulo 0. Introducción. Capítulo 0. Introducción. Bueno, por fin está aquí el esperado (espero!!) Capítulo Cero del Tutorial de Assembler. En él estableceremos algunos conceptos que nos serán de utilidad a lo largo del Tutorial.

Más detalles

Mantenimiento Limpieza

Mantenimiento Limpieza Mantenimiento Limpieza El programa nos permite decidir qué tipo de limpieza queremos hacer. Si queremos una limpieza diaria, tipo Hotel, en el que se realizan todos los servicios en la habitación cada

Más detalles

Estudio estático y dinámico de un muelle

Estudio estático y dinámico de un muelle PRÁCTICA Nº 2 Estudio estático y dinámico de un muelle Objetivo general.- Determinar la constante elástica de un muelle. A.- Estudio Estático A.1.- Objetivo.- Calcular la constante K de un muelle mediante

Más detalles

Combinar correspondencia

Combinar correspondencia Combinar correspondencia Mediante la opción Combinar correspondencia Word2010 nos permite incluir en un documento, datos almacenados en otro sitio. De esta forma podremos obtener copias de un mismo documento

Más detalles

HERRAMIENTAS Y MATERIAL NECESARIO:

HERRAMIENTAS Y MATERIAL NECESARIO: HERRAMIENTAS Y MATERIAL NECESARIO: Para hacer la perforación necesitamos el equipo de perforación, y materiales que aquí detallamos; a) Equipo de perforación: 1. Según el terreno, una de estas: Barreno

Más detalles

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales By Luis Mederos Como todos sabemos, alrededor del 21 de Diciembre se produce el solsticio de invierno (en el hemisferio norte).

Más detalles

1. MEDIDAS DE TENDENCIA CENTRAL

1. MEDIDAS DE TENDENCIA CENTRAL 1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Consideremos un mercado normal con una oferta y una demanda normales (Gráfico 1).

Consideremos un mercado normal con una oferta y una demanda normales (Gráfico 1). NOTA SOBRE INCIDENCIA (nota técnica apta para economistas y gente que quiera aprender teoría económica): Cuando hice la propuesta de reducir el IVA en Chile, algunos de los miembros de este foro recordaron

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA EXPERIMENTO FÍSICA Y QUÍMICA, APLICACIÓN MÉTODO CIENTÍFICO ETAPA EDUCACIÓN

Más detalles

Equivalencia financiera

Equivalencia financiera Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común

Más detalles

Adaptación al NPGC. Introducción. NPGC.doc. Qué cambios hay en el NPGC? Telf.: 93.410.92.92 Fax.: 93.419.86.49 e-mail:atcliente@websie.

Adaptación al NPGC. Introducción. NPGC.doc. Qué cambios hay en el NPGC? Telf.: 93.410.92.92 Fax.: 93.419.86.49 e-mail:atcliente@websie. Adaptación al NPGC Introducción Nexus 620, ya recoge el Nuevo Plan General Contable, que entrará en vigor el 1 de Enero de 2008. Este documento mostrará que debemos hacer a partir de esa fecha, según nuestra

Más detalles

El control de la tesorería consiste en gestionar desde la aplicación los cobros y pagos generados a partir de las facturas de venta y de compra.

El control de la tesorería consiste en gestionar desde la aplicación los cobros y pagos generados a partir de las facturas de venta y de compra. Gestión de la tesorería y del riesgo El control de la tesorería consiste en gestionar desde la aplicación los cobros y pagos generados a partir de las facturas de venta y de compra. En este manual nos

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE. Objetivos. Teoría

Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE. Objetivos. Teoría Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE Objetivos 1. Verificar la ley de Hooke, 2. Medir la constante k de un resorte, y 3. Medir el período de oscilación de un sistema masa-resorte y compararlo

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

Múltiplos y divisores

Múltiplos y divisores 2 Múltiplos y divisores Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO

COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO Sonia Aguilera Piqueras y Pablo Flores Martínez Departamento de Didáctica de la Matemática Universidad de Granada 1. Introducción

Más detalles

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS AJUSTE POR MÍNIMOS CUADRADOS Existen numerosas leyes físicas en las que se sabe de antemano que dos magnitudes x e y se relacionan a través de una ecuación lineal y = ax + b donde las constantes b (ordenada

Más detalles

Porcentajes. Cajón de Ciencias. Qué es un porcentaje?

Porcentajes. Cajón de Ciencias. Qué es un porcentaje? Porcentajes Qué es un porcentaje? Para empezar, qué me están preguntando cuando me piden que calcule el tanto por ciento de un número? "Porcentaje" quiere decir "de cada 100, cojo tanto". Por ejemplo,

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

Universidad de Zaragoza Manual de Usuario EXPEDIENTES-Sigm@

Universidad de Zaragoza Manual de Usuario EXPEDIENTES-Sigm@ Universidad de Zaragoza Manual de Usuario EXPEDIENTES-Sigm@ Unidad Sigma/Vicegerencia Académica MANUAL DE USUARIO EXPEDIENTES SIGM@... 1 1. ÍNDICE... 2 2. ENTRADA EN LA APLICACIÓN... 3 3. CONSULTA DE EXPEDIENTES...4

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

8.1.- ANÁLISIS DE LA FINANCIACIÓN DE COBROS Y PAGOS EN DIVISAS.

8.1.- ANÁLISIS DE LA FINANCIACIÓN DE COBROS Y PAGOS EN DIVISAS. Tema 8: Financiación en divisas 8.1.- ANÁLISIS DE LA FINANCIACIÓN DE COBROS Y PAGOS EN DIVISAS. En todo este análisis vamos a obviar la posibilidad del exportador o importador de mantener posiciones en

Más detalles

CAPÍTULO 1 PRIMEROS PASOS

CAPÍTULO 1 PRIMEROS PASOS PRIMEROS PASOS INTRODUCCIÓN Seguro que alguna vez te has preguntado por qué los colores y la gama tonal de la imagen que estás viendo en el monitor no salen igual en las copias que te entrega el laboratorio.

Más detalles

CONCEPTOS DE LA FUERZA

CONCEPTOS DE LA FUERZA CONCEPTOS DE LA FUERZA PAPEL DE LA FUERZA EN EL RENDIMIENTO DEPORTIVO La mejora de la fuerza es un factor importante en todas las actividades deportivas, y en algunos casos determinantes (en el arbitraje

Más detalles

Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria.

Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria. Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria. Las propiedades mecánicas describen como se comporta un material cuando se le aplican fuerzas externas. Para propósitos de análisis, las

Más detalles

Analítica para tu web

Analítica para tu web Analítica para tu web Mide, analiza y actúa para mejorar tus resultados Índice 1. Qué es la analítica web 2. Configura webmaker para utilizar tu herramienta de analítica web favorita 3. Métricas más habituales

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

Orbitales híbridos. Cajón de Ciencias

Orbitales híbridos. Cajón de Ciencias Orbitales híbridos Cajón de Ciencias Los orbitales híbridos son aquellos que se forman por la fusión de otros orbitales. Estudiarlos es un paso básico para entender la geometría y la estructura de las

Más detalles

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE Índice de contenidos: 1. Ley Financiera de capitalización a interés vencido. 1.1. Equivalencia de capitales. 1.2. Tipos de interés equivalentes.

Más detalles

Fallo estructural del concreto en diagramas de dominio

Fallo estructural del concreto en diagramas de dominio Fallo estructural del concreto en diagramas de dominio (Parte II) Eduardo de J. Vidaud Quintana Ingeniero Civil/Maestría en Ingeniería. Su correo electrónico es: evidaud@mail.imcyc.com Ingrid N. Vidaud

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles

MANUAL COPIAS DE SEGURIDAD

MANUAL COPIAS DE SEGURIDAD MANUAL COPIAS DE SEGURIDAD Índice de contenido Ventajas del nuevo sistema de copia de seguridad...2 Actualización de la configuración...2 Pantalla de configuración...3 Configuración de las rutas...4 Carpeta

Más detalles

Carrito de Compras. Esta opción dentro de Jazz la podremos utilizar como cualquier otro carrito de compras de una página de Internet.

Carrito de Compras. Esta opción dentro de Jazz la podremos utilizar como cualquier otro carrito de compras de una página de Internet. Carrito de Compras Esta opción dentro de Jazz la podremos utilizar como cualquier otro carrito de compras de una página de Internet. La forma de utilizar el Carrito de Compras es desde los comprobantes

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Programa diseñado y creado por 2014 - Art-Tronic Promotora Audiovisual, S.L.

Programa diseñado y creado por 2014 - Art-Tronic Promotora Audiovisual, S.L. Manual de Usuario Programa diseñado y creado por Contenido 1. Acceso al programa... 3 2. Opciones del programa... 3 3. Inicio... 4 4. Empresa... 4 4.2. Impuestos... 5 4.3. Series de facturación... 5 4.4.

Más detalles

EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN.

EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. Cubicar básicamente consiste en cuantificar las cantidades de obra que incluye un presupuesto o conjunto de partidas. El proceso ordenado de cubicar

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

A VUELTAS CON EL MOL

A VUELTAS CON EL MOL A VUELTAS CON EL MOL El concepto de mol es algo íntimamente ligado a la teoría atómico-molecular de la materia y al Número de Avogadro. Es necesario, por tanto, tener una idea clara de lo que es un átomo

Más detalles

UTILIZACIÓN DE LAS NUEVAS TECNOLOGÍAS PARA EL APRENDIZAJE DE LA ÓPTICA GEOMÉTRICA

UTILIZACIÓN DE LAS NUEVAS TECNOLOGÍAS PARA EL APRENDIZAJE DE LA ÓPTICA GEOMÉTRICA UTILIZACIÓN DE LAS NUEVAS TECNOLOGÍAS PARA EL APRENDIZAJE DE LA ÓPTICA GEOMÉTRICA Fernández, E. 1, García, C. 1, Fuentes, R. 1 y Pascual, I. 1 1 Dep. Óptica, Farmacología y Anatomía, Universidad de Alicante,

Más detalles

LAS SUBCONSULTAS SQL SERVER 2005. Manual de Referencia para usuarios. Salomón Ccance CCANCE WEBSITE

LAS SUBCONSULTAS SQL SERVER 2005. Manual de Referencia para usuarios. Salomón Ccance CCANCE WEBSITE LAS SUBCONSULTAS SQL SERVER 2005 Manual de Referencia para usuarios Salomón Ccance CCANCE WEBSITE LAS SUBCONSULTAS Una subconsulta es una consulta que aparece dentro de otra consulta o subconsultas, en

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles