MATEMÁTICAS FINANCIERAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS FINANCIERAS"

Transcripción

1 MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d Inrés Simpl y Tasa d Inrés Compuso Coninuo 5. Rsumn d Fórmulas Rlaivas al Inrés Compuso Coninuo AUTOR: Tulio A. Mao Duval Sano Domingo, D. N. Rp. Dom.

2 Tulio A. Mao Duval Inrés Compuso Coninuo MATEMÁTICAS FINANCIERAS INTERÉS COMPUESTO CONTINUO Ya s sabido qu para una asa d inrés nominal consan, si la frcuncia d capialización aumna, concomianmn l mono compuso rsulan ambién aumna. Cuando la frcuncia con la qu l inrés s capializa crc indfinidamn, s habla d qu los inrss gnran inrss n forma coninua, llamándosl inrés compuso coninuo al qu s calcula d s modo. Al rabaar con sa modalidad d inrés, l mono compuso no ind a sr infiniamn grand como a vcs s pinsa, sino qu ind a acrcars a un valor lími. Dducción d la Fórmula dl Mono Compuso a Capialización Coninua Considrmos como puno d parida la fórmula dl mono compuso: n S P ( i ) (A) Dond S s l mono compuso o valor fuuro d un capial inicial P, i s la asa d inrés por priodo d capialización y n s l númro oal d priodos d capialización. forma: Tomando n cuna las fórmulas i y n m., s pud xprsar la cuación (A) d la siguin m m S P ( m ) (B) Dond " " s la asa d inrés compuso anual, " m " la frcuncia d capialización y " " l impo o plazo (n años). Si hacmos m v, d dond: m v y susiuimos n (B), s obin: La cuación (C ) s pud xprsar ambién como: v S P ( v ) (C ) S P [( v ) ] La capialización coninua s da cuando la frcuncia d capialización "m" aumna n forma indfinida; s dcir, cuando " m " ind a infinio ( m ). Si " m " ind a infinio, noncs "v" ambién ind a infinio y, n s scnario, l mono vndría dado por: v v v v v li m S lim P [ ( v) ] P lim [ ( v) ] v D dond: S P [ lim ( v) ] v v Capialización coninua significa qu l inrés s capializa a cada insan.

3 Tulio A. Mao Duval Inrés Compuso Coninuo Como s dmusra usando l cálculo difrncial qu naurals, noncs s concluy n qu: lim ( v) v, dond s la bas d los logarimos v. S P. c FÓRMULA MONTO COMPUESTO CONTINUO [] Esa fórmula [] prmi obnr l mono compuso d un capial " P " a una asa compusa anual " " qu s capializa coninuamn 2 duran " " años. El inrés compuso gnrado a capialización coninua s obin mdian la fórmula: I S P INTERÉS COMPUESTO CONTINUO [2] O bin dircamn, con la fórmula qu rsula al susiuir a "S " d la fórmula [] n la fórmula [2]:. IP. c P I P. c INTERÉS COMPUESTO CONTINUO [3] La drminación dl capial (o valor acual), dl impo y d una asa nominal capializada coninuamn s. fcúa parindo d la fórmula []: c S P. Dspando s in: ) Valor Acual 2) Timpo S. P S. [4]. Ln S P [5] 3) Tasa Anual d Inrés Capializabl Coninuamn Ln S P c [6] 2 Como la capialización s coninua, noncs l capial crc d manra xponncial. 2

4 Tulio A. Mao Duval Inrés Compuso Coninuo Emplo Si Oscar Balbuna dposió $32, al 9% anual capializabl coninuamn, drmin l mono y l inrés oal ganado al cabo d 2½ años. P = $32, c = 9% = 2.5 años S =? I =? Susiuyndo los valors conocidos n la fórmula [], s obin: S 32, $40, La drminación dl inrés oal ganado s fcúa susiuyndo los valors conocidos d "S " y " P " n la fórmula [2]: I 40, ,000 $8, Emplo 2 Marcos Algría l prsa a un amigo $70, por 9 mss, cobrándol un 5% anual convribl bimsral. Al finalizar s plazo, dposia l mono obnido n una cuna d ahorros qu abona l 4.5% compuso coninuamn. Drmin qué mono acumulará l Sr. Algría al cabo d 24 mss. r. Tramo P = $70, = 5% m = 6 i = 5/6= 2.5% bimsral = 0.75 años n bimsrs S =? Susiuyndo los valors conocidos n la fórmula dl mono compuso S P ( i ) n, s obin: S 70,000 ( ) 4.5 $78, do. Tramo P = $78, c = 4.5% = 24 9= 5 mss =.25 años S =? Susiuyndo los valors conocidos n la fórmula [], s obin: S 78, $93,77.60 Emplo 3 Qué canidad habría qu invrir ahora a una asa dl 26.5% compuso coninuamn, para disponr d $65, dnro d 6 mss? S = $78, c = 26.5% = 6 mss = 0.5 años P =? Susiuyndo los valors conocidos n la fórmula [4], s obin: P 65, $56,

5 Tulio A. Mao Duval Inrés Compuso Coninuo Emplo 4 Csar Luzón vnd un auomóvil rcibindo un pago inicial y un pagaré por $230, con inrss al 24% anual convribl rimsral y vncimino n 8 mss. A los rs mss d ralizar la ransacción, l Sr. Luzón dscuna l pagaré n su banco n bas a un 25% compuso coninuamn. Obnga l valor líquido dl pagaré. = 8 m. =.5 años P= $230, = 24% m = 4 i = 6% = 25% S 8 mss Pd =? = 5 m. =.25 años P = $230, = 24% m = 4 i = 24 / 4 = 6% rimsral = 8 m. =.5 años n =.5 4 = 6 rimsrs S =? Susiuyndo los valors conocidos n la fórmula dl mono compuso vncimino dl pagaré: S 230,000 ( 0.06 ) 6 $326, S P ( i ) n, s obin l valor al Para la opración dl dscuno, nmos: S = $326, c = 25% = 8 3 = 5 mss =.25 años Pd =? Lugo, mdian la fórmula [4] s obin l valor líquido dl pagaré: P d 326, $238, Emplo 5 En cuáno impo (mss) s saldó un présamo d $90, con inrss al 27.5% compuso coninuamn, si s liquidó con un único pago d $05,660.00? P = $90, S = $05, c = 27.5% anual = / 2 mss =? Susiuyndo los valors conocidos n la fórmula [3], s obin: ln (05,660 90,000 ) 7 mss ( mss) 4

6 Tulio A. Mao Duval Inrés Compuso Coninuo Emplo 6 Qué asa anual capializada coninuamn abonaba una cuna d ahorros, si un dpósio d $58, s capializó hasa alcanzar la suma d $7, n un plazo d 3 mss? P = $58, S = $7, = 3 mss = 3 / 2 años c =? Susiuyndo los valors conocidos n la fórmula [6], s obin: ln(7, ,000 ) 0.96 c 9.6% anual (3 2) años año Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 3 S dic qu dos asas anuals d inrés compuso, una capializada m vcs por año y la ora capializada coninuamn, son quivalns si, al invrir dos capials iguals, s alcanzan monos compusos iguals al cabo dl mismo plazo. Si s invir un capial " P " a un impo d " " años y a una asa anual d inrés compuso discro " " capializabl "m" vcs por año, l mono compuso rsulan "S" srá: S ) m P ( m (A) D igual forma, si s invir l mismo capial " P " a un impo d " " años y a una asa anual d inrés compuso coninuo " c ", l mono compuso rsulan " S c " s obin mdian la fórmula []: Sc P (B) Para asas quivalns rsularán iguals (A) y (B) : P ) m ( m = P c (C ) Si ambos mimbros s dividn nr P y s lvan a /, s in: m ( m ) = c (D ) Dspando a " c " s obin la fórmula qu prmi hallar una asa anual d inrés compuso coninuo, quivaln a una asa anual d inrés compuso discro " " capializabl "m" vcs por año: m [ Ln ( m ) ] [7] 3 Tasa d inrés discra s aqulla qu s aplica cuando l priodo d capialización s una variabl discra, s dcir, cuando l priodo s mid n inrvalos fios d impo, als como años, smsrs, mss, días, c. Cuando l priodo d capialización s infiniamn pquño s habla d una asa d inrés coninuo. 5

7 Tulio A. Mao Duval Inrés Compuso Coninuo Igualmn si s procd con ambos mimbros d la igualdad ( D ), lvándolos a /m, rsándols la unidad y lugo muliplicándolos por "m", s obin la fórmula con la cual s calcula una asa anual d inrés compuso discro " " capializabl "m" vcs por año, quivaln a una asa anual d inrés compuso coninuo " : m m c [8] D la misma manra qu las dmás asas d inrés compuso, la asa nominal capializada coninuamn " c " ambién in su corrspondin asa fciva. S l llama asa fciva " a la asa d inrés capializada una vz por año qu produc l mismo mono compuso n un año qu la asa anual capializada coninuamn " c ". En conscuncia, para lograr una xprsión para la asa fciva " basa con hacr " m " n la fórmula [8], obniéndos: " " " c [9] Emplo 7 Qué asa nominal capializabl coninuamn s quivaln a un 9% anual convribl rimsralmn? = 9% m = 4 c =? Susiuyndo los valors conocidos n la fórmula [7], s obin: c 4 [ ln( 0.9 4) ] % Emplo 8 Qué asa capializabl mnsualmn s quivaln a un 2% anual capializabl coninuamn? c = 2% =? m = 2 Susiuyndo los valors conocidos n la fórmula [8], s obin: 2 [ ] % Emplo 9 Cuál s la asa fciva corrspondin a un 26% anual capializabl coninuamn? c = 26% =? Susiuyndo los valors conocidos n la fórmula [9], s obin: % 6

8 Tulio A. Mao Duval Inrés Compuso Coninuo Equivalncia nr Tasa d Inrés Simpl y Tasa d Inrés Compuso Coninuo S dic qu una asa d inrés simpl y una asa d inrés compuso coninuo son quivalns si al invrir dos capials iguals, uno d llos a la asa d inrés simpl y l oro a la asa d inrés compuso coninuo, alcanzan igual mono al cabo dl mismo priodo d impo. Si s invir un capial " P " a una asa d inrés simpl anual i " y por un impo d " " años, l mono rsulan " S s " s obin mdian la fórmula dl mono simpl: " s S s P( i ) (A) s Asimismo, si s invir l mismo capial " P " a un impo d " " años y a una asa anual d inrés compuso coninuo ", l mono compuso coninuo S " alcanzado s obin mdian la fórmula dl mono compuso coninuo: " c " c Sc P (B) Igualando (A) y (B), s in: P ( is ) P (C ) Dividindo ambos mimbros nr " P " y dspando a " i s ", s obin la fórmula qu prmi hallar una asa d inrés simpl anual, quivaln a una asa d inrés compuso coninuo conocida: i s. [0] Igualmn si n la igualdad (C ) s dividn ambos mimbros nr " P " y s dspa a ", s obin la fórmula qu prmi hallar una asa d inrés compuso coninuo, quivaln a una asa d inrés simpl conocida: is. Ln c [] " c Emplo 0 Qué asa d inrés simpl anual s quivaln a un 28% anual capializabl coninuamn para un plazo d 2½ años? c = 28% anual = 2.5 años i s =? Susiuyndo los valors conocidos n la fórmula [0], s obin: i s ( ) % anual 7

9 Tulio A. Mao Duval Inrés Compuso Coninuo Emplo Qué asa d inrés compuso coninuo s quivaln a una asa d inrés simpl anual dl 7.5% para un priodo d 9 mss? i s = 7.5% = 9 mss = 0.75 años c =? Susiuyndo los valors conocidos n la fórmula [], s obin: c ln ( ) % anual 0.75 Emplo 2 Qué rsula más vnaoso para una invrsión a 3 años: colocar l capial al 22% simpl anual o al 6.75% compuso coninuamn? Para ralizar la comparación s dbn nr las 2 asas xprsadas n la misma forma. Por ano, s obndrá una asa compusa coninuamn qu sa quivaln al 22% simpl anual. i s = 22% = 3 años c =? Susiuyndo los valors conocidos n la fórmula [], s obin: c ln ( ) % 3 Como: % 6.75% RESPUESTA : Convin invrir al 22% simpl anual. 8

10 Tulio A. Mao Duval Inrés Compuso Coninuo 9

Soluciones del capítulo 11 Teoría de control

Soluciones del capítulo 11 Teoría de control Solucions dl capíulo Toría d conrol Hécor Lomlí y Bariz Rumbos d marzo d a x = y u = S raa d un máximo b x = + y u = S raa d un mínimo c x = 5 + y u = 5 S raa d un mínimo d x = 4 + y u = + S raa d un máximo

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las

Más detalles

n n ... = + : : : : : : : [ ]

n n ... = + : : : : : : : [ ] Considérs l siguin sisma d cuacions difrncials linals d rimr ordn d coficins consans, n dond las incógnias son las funcions x x ( ), x x ( ),, x ( ) n xn / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x (

Más detalles

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones Raccions Rrsibls Raccions Parallas o Compiias Raccions Conscuias Raccions n Cadna Ramificada. Explosions Mcanismos d Racción Raccions Rrsibls Para la racción A _ B dond ano la racción dirca como la inrsa

Más detalles

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 7 Las Expcaivas Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo 7: Las

Más detalles

EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.)

EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.) TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mail: imozas@l.und.s hp://lfonica.n/wb/imm EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES.- Razon y obnga qu la ingral ulriana (p) (gamma d p) para p

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido. La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09 Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Miércols 2 d abril d 2014 Todos alumnos dbn qudars una copia d la prácica nrgada Prácica a ralizar n grupos

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

Tema 9. Modelos de equilibrio de cartera

Tema 9. Modelos de equilibrio de cartera Tma 9. Modlos d quilibrio d carra Caracrísicas gnrals En la drminación dl ipo d cambio no sólo incid l mrcado monario: ambién l mrcado d bonos y l mrcado d bins No xis susiuibilidad prca nr los acivos

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Luns 26 d marzo d 2012 Prácica individual 1. A parir d los siguins daos sobr l ipo d cambio nominal d varias

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83 TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

APUNTES DE MACROECONOMÍA CAPÍTULO Nº 9 LA CONDICIÓN DE LA PARIDAD DE INTERESES AGOSTO 2008 LIMA - PERÚ

APUNTES DE MACROECONOMÍA CAPÍTULO Nº 9 LA CONDICIÓN DE LA PARIDAD DE INTERESES AGOSTO 2008 LIMA - PERÚ Capíulo Nº 9: La condición d la paridad d inrss Marco nonio Plaza Vidaurr PUNTS D MCROCONOMÍ CPÍTULO Nº 9 L CONDICIÓN D L PRIDD D INTRSS GOSTO 2008 LIM - PRÚ Capíulo Nº 9: La condición d la paridad d inrss

Más detalles

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo Tma 5. Eficincia dl mrcado d divisas: la paridad d inrss y l ipo d cambio a coro plazo Macroconomía Abira Docorado Nuva Economía Mundial Profsor: Ainhoa Hrrar Sánchz Curso 2006-2007 5.1. La paridad no

Más detalles

La integral Indefinida MOISES VILLENA MUÑOZ

La integral Indefinida MOISES VILLENA MUÑOZ . DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de LA SUSTITUCIÓN IMPFCTA D ACTIVOS LA SUSTITUCIÓN IMPFCTA D ACTIVOS l mrcado d divisas s ncunra n quilibrio cuando la rnabilidad d los acivos nacionals s igual qu la rnabilidad d los acivos xranjros. sa

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI Análisis d Fourir n C orma d Fourir Sri d Fourir ransformada d Fourir Fórmulas d análisis y sínsis Rspusa n f d sismas LI Modología Dominio d Frcuncia -Sñals lmnals a parir d las cuals s pud consruir por

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO IV. ANÁLISIS DE RESPUESTA TRANSITORIA

CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO IV. ANÁLISIS DE RESPUESTA TRANSITORIA ONTROL I ING. QUIRINO IMENEZ D. APITULO IV. ANÁLII DE REPUETA TRANITORIA La rspusa n l impo d un sisma d conrol s divid normalmn n dos pars: la rspusa ransioria y la rspusa n sado sabl o régimn prmann.

Más detalles

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO Prof. Jsús Olivar Rsumn d Cálculo II ING. PETRÓLEO.- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f, dirmos qu F s una primitiva suya si F

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Univrsidad d Puro Rico Rcino Univrsiario d Maagüz Dparamno d incias Mamáicas Eamn II - Ma álculo II d marzo d 9 Nombr Númro d sudian Scción Profsor Db mosrar odo su rabajo. Rsulva odos los problmas, scriba

Más detalles

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A Eámns d Mamáicas d Slcividad rsulos hp://qui-mi.com/ Eamn d Slcividad Mamáicas II - SEPTIEMBRE - ndalucía OPIÓN.- Sa la función coninua f : R R dfinida por f si si > a [' punos] alcula l valor d. b ['

Más detalles

PAQUETE DE ONDAS. Un paquete construido por N ondas de la forma (1) se puede poner como

PAQUETE DE ONDAS. Un paquete construido por N ondas de la forma (1) se puede poner como PAQUT D ONDAS - onsrucción un paqu Pomos finir un paqu onas como una suprposición onas armónicas qu viajan n la misma ircción, con ifrns valors k, ω, ampliu y fas. La n-ésima ona armónica viajano n ircción

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

I.E.S. Mediterráneo de Málaga Julio 2011 Juan Carlos Alonso Gianonatti

I.E.S. Mediterráneo de Málaga Julio 2011 Juan Carlos Alonso Gianonatti I.E.S. Mdirráno d Málaga Julio Juan Carlos lonso Gianonai POPUEST.- ( punos) Encunra un cor prpndicular al plano d cuacions paraméricas El cor dircor dl plano π s prpndicular a él por lo ano hallarmos

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

Capítulo 1: Integral indefinida. Módulos 1 al 4

Capítulo 1: Integral indefinida. Módulos 1 al 4 Módulos al En los jrcicios a 8 s dan las funcions f y F. Comprub, usando drivación, qu F( ) s la primiiva más gnral d f ( ). Qué fórmula d ingración pud dducirs n cada caso?. f ( ) = ; ( ) = ln ( ). F

Más detalles

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México Invsigación Económica ISSN: 085-667 invcon@srvidor.unam.mx Faculad d Economía México ÁNGELES CASRO, GERANDO; VENEGAS-MARÍNEZ, FRANCISCO Valuación d opcions sobr índics bursáils y drminación d la srucura

Más detalles

Ing. Mario R. Modesti

Ing. Mario R. Modesti UNIVERSIDAD ECNOLOGICA NACIONAL FACULAD REGIONAL CORDOBA DEPARAMENO ELECRONICA Carrra Asignaura : Ingniría Elcrónica : Análisis d Sñals y Sismas.P.N : Sris y ransformada d Fourir, ransformada invrsa d

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción Economría II Tma 8: Rardos n l comporamino conómico y dinamicidad d los modlos. Dinámica y prdicción 1. Moivos d dinamicidad n las rlacions 2. El mcanismo d corrcción dl rror y l quilibrio a largo plazo

Más detalles

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA ROBLEMAS DEL TEOREMA UNDAMENTAL DE LAS INTEGRALES DE LÍNEA. Indpndncia dl camino n una ingal d lína. alcula l abajo llvado a cabo po l campo d ua al llva un objo dsd A hasa B siguindo a un camino compuso

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Y K AN AN AN MODELO SOLOW MODELO

Y K AN AN AN MODELO SOLOW MODELO MODELO SOLOW MODELO Rendimienos consanes a escala decrecienes en uso de facores. Tasa de ahorro exógena, s. Crecimieno exógeno, a asa g, de eficiencia del rabajo. Equilibrio mercado de bienes de facores.

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

Sistemas Suavemente Variantes

Sistemas Suavemente Variantes Sismas Suavmn Varians Adriana Lópz, Alfrdo Rsrpo Laboraorio d Sñals, Dparamno d Elécrica y Elcrónica, Univrsidad d Los Ands, adriana_lopz5@homail.com, arsrp@uniands.du.co, Bogoa. Rsumn Normalmn, los sismas

Más detalles

Trabajo Práctico N 1: NUMEROS INDICES Estructura Económica Argentina // Macroeconomía y Estructura Económica Argentina

Trabajo Práctico N 1: NUMEROS INDICES Estructura Económica Argentina // Macroeconomía y Estructura Económica Argentina Trabajo Prácico N 1: Indices y Variables VARIABLE ECONÓMICA Una variable económica es la represenación de un concepo económico que puede medirse o omar diversos valores numéricos VARIABLE DE FLUJO Variable

Más detalles

1. Calcular la integral definida de: x e xdx. sin 5

1. Calcular la integral definida de: x e xdx. sin 5 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS INSTRUCCIONES. Lln todos los datos n ltra

Más detalles

Departamento de Ingeniería Eléctrica. Área Electrotecnia

Departamento de Ingeniería Eléctrica. Área Electrotecnia Dparamno d Ingniría Elécrica nivrsidad Nacional d Mar dl Plaa Ára Elcrocnia Elcrocnia Gnral (para la arrra Ingniría Indusrial Esudio d los circuios lécricos n égimn Transiorio Profsor Adjuno: Ingniro Elcricisa

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH

Más detalles

CARLOS FORNER RODRÍGUEZ Departamento de Economía Financiera y Contabilidad, UNIVERSIDAD DE ALICANTE

CARLOS FORNER RODRÍGUEZ Departamento de Economía Financiera y Contabilidad, UNIVERSIDAD DE ALICANTE TEMA 7: Opciones V: Modelos de CARLOS FORNER RODRÍGUEZ Deparameno de Economía Financiera y Conabilidad, UNIVERSIDAD DE ALICANTE En emas aneriores hemos esudiado qué variables afecan a la prima que el comprador

Más detalles

Mecanismos de Reacción

Mecanismos de Reacción . Raccions Rvrsibls. Raccions Parallas o Compiivas. Raccions Conscuivas 4. Méodos Aproximados para obnr Ecuacions d Vlocidad 5. Raccions n Cadna 6. Efco d la Tmpraura sobr la consan d vlocidad . Raccions

Más detalles

Curvas de excreción urinaria. Tema 13

Curvas de excreción urinaria. Tema 13 Cuvas d xcción uinaia Tma 13 Índic d connidos 2 Excción nal Cuvas d xcción uinaia Facos qu afcan a la xcción nal d fámacos Aclaamino nal Excción nal 3 Dosis sang oina n : consan d xcción nal n : consan

Más detalles

Desintegración radiactiva

Desintegración radiactiva Daramno Física Fac. Cincias Exacas - UNLP Dsingración raiaciva El núclo y sus raiacions Página 1 (DF Facor caimino DF DF = x (- = x {(- ln2/t 1/2 } Una amolla connino 99m Tc (T 1/2 = 6h sá roulaa 75 kbq/ml

Más detalles

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas Ecacions difrncials Ejrcicios d Ecacions Difrncials Homogénas Rdcibls a Homogénas. arsolvr: ' r b Drminar para q valors d r in solcions d la forma la cación ''' '' ' 0 Solción a Hacmos l cambio: ' ' Rmplaando

Más detalles

MEDIDAS DE RIESGO EN LA GESTIÓN DE CARTERAS DE VIDA DEL MERCADO ESPAÑOL. Manuela Bosch, Pierre Devolder e Inmaculada Domínguez *

MEDIDAS DE RIESGO EN LA GESTIÓN DE CARTERAS DE VIDA DEL MERCADO ESPAÑOL. Manuela Bosch, Pierre Devolder e Inmaculada Domínguez * MEDIDAS DE RIESGO EN LA GESTIÓN DE CARTERAS DE VIDA DEL MERCADO ESPAÑOL Manula Bosch, Pirr Dvoldr Inmaculada Domínguz * WP-EC 2003-24 Corrspondncia a: Inmaculada Domínguz Fabián, Dpo. d Economía Financira

Más detalles

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina Nmbr: Curs: 1º Bachillra B Eamn XII Fcha: 11 d juni d 018 Trcra Evaluación Anción: La n plicación clara y cncisa d cada jrcici implica una pnalización dl 5% d la na 1.- ( puns) Calcula la función plinómica,

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS NOMBRE DE LA ASIGNATURA: TÍTULO: DURACIÓN: BIBLIOGRAFÍA SUGERIDA: ECUACIONES DIFERENCIALES. AÑO 007 TALLERES HORAS DE DURACION

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

UNA PRUEBA DE LA TEORÍA DE LA PARIDAD DE LAS TASAS DE INTERÉS PARA EL CASO DE ARGENTINA

UNA PRUEBA DE LA TEORÍA DE LA PARIDAD DE LAS TASAS DE INTERÉS PARA EL CASO DE ARGENTINA UNA PUEBA DE LA TEOÍA DE LA PAIDAD DE LAS TASAS DE INTEÉS PAA EL CASO DE AGENTINA Jorg Luis Mauro * Dicimbr d 2005 * Tsis d Licnciaura n Economía, Univrsidad Caólica Argnina (UCA). Dircor: Adrián Broz.

Más detalles

Se pide: 2.- Considere el problema macroeconómico de conducir el estado x ( t) de la economía sobre el curso del periodo de planificación [ 0, T]

Se pide: 2.- Considere el problema macroeconómico de conducir el estado x ( t) de la economía sobre el curso del periodo de planificación [ 0, T] UNIVERSIDD DE PIUR PROGRM CDÉMICO DE ECONOMI MÉODOS MEMÁICOS (5) ESUDIO DIRIGIDO 4/ 7 / 6 HOR 7: p.m..- Una mprsa ha ribido un pdido d unidads d su produo, qu dbn nrgars al abo d un impo, fijado. La mprsa

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005 Univrsidad Nacional d La Plaa Décimas Jornadas d Economía Monaria Inrnacional La Plaa, y 3 d mayo d 5 Una Rconsidración Mamáica dl Modlo d "Ovrshooing" dl Tipo d Cambio Aljo Macaya (Univrsidad d Bunos

Más detalles

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO CARACTERÍTICA GENERALE DE UN GENERADOR DE BARRIDO La forma ípica d una nión d barrido la morada n la figura 0 qu v n lla la nión parindo d un valor inicial, aumnando linalmn con l impo haa un valor máximo

Más detalles

Taller 4 cálculo Un rectángulo se inscribe en un semicírculo de radio 4 Cuál es el área máxima que puede tener y cuáles son sus dimensiones?

Taller 4 cálculo Un rectángulo se inscribe en un semicírculo de radio 4 Cuál es el área máxima que puede tener y cuáles son sus dimensiones? Tallr cálculo 1 Profsor Jaim Andrés Jaramillo Gonzálz. jaimaj@concpocompuadors.com. www.jaimaj.concpocompuadors.com UdA 017-1 Problmas d Opimización Rfrncia sudiar jrcicios scción.8 dl o d Zill 1. A un

Más detalles

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas

Más detalles

Factor. Módulo III. Valor Actual. Valor actual. Valor Actual y Costos de Oportunidad del Capital

Factor. Módulo III. Valor Actual. Valor actual. Valor Actual y Costos de Oportunidad del Capital Módulo III Valor Acual y osos de Oporunidad del apial Valor Acual El calculo del valor acual se basa en los principios básicos que rigen las decisiones financieras. Si un dólar de hoy vale mas que un dólar

Más detalles

FUNCIONES EULERIANAS

FUNCIONES EULERIANAS NOTAS PARA LOS ALUMNOS DEL CURSO DE ANALISIS MATEMATICO III FUNCIONES EULERIANAS Ing. Juan Sacrdoi Dparamno d Ingniría Univrsidad d Bunos Airs V. INDICE.- FUNCIÓN GAMMA: EULERIANA DE SEGUNDA ESPECIE..-

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta

Más detalles

El modelo Demanda Agregada-Oferta Agregada Suponga que podemos definir el equilibrio de una economía a través de las siguientes ecuaciones:

El modelo Demanda Agregada-Oferta Agregada Suponga que podemos definir el equilibrio de una economía a través de las siguientes ecuaciones: El modlo Dmanda Agrgada-Ofra Agrgada Suponga qu podmos dfinir l quilibrio d una conomía a ravés d las siguins cuacions: El lado d la ofra. Función d Producción: Y n BL 2. Ecuación d drminación d prcios

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN PROPAGACÓN EN LÍNEAS DE TRANSMSÓN Connido 1.- nroducción a las línas. 2.- Campos E y H n una lína. 3.- Modlo circuial d una lína. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Onda sacionaria. 7.-

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

Temas y 18.- Curvas de de Excreción Urinaria

Temas y 18.- Curvas de de Excreción Urinaria Tmas 7 7 y 8. Crvas d d Excrción Urinaria T7 Inrodcción. Rlación nr concnracions plasmáicas y vlocidads d xcrción n orina. Crvas disribivas. Cálclo d las consans cinéicas n los modlos monocomparimnal y

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico qu dispon d una sñal d ntrada, gnralmnt dnominada disparo, al activars sta ntrada n la salida dl circuito (Q s obtin un pulso

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida ntgral indfinida achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(),

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico capaz d gnrar un pulso lógico n alto o n bajo a través d su salida (Q. El timpo d duración dl pulso w, stá dtrminado por

Más detalles

MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González

MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz MATERIA: Matmáticas VI, AREA III y IV CICLO ESCOLAR 014-015 PROFESOR Víctor Manul Armndáriz Gonzálz Progrsions Rsulv los siguints

Más detalles

7.6 SEÑOREAJE E HIPERINFLACIÓN

7.6 SEÑOREAJE E HIPERINFLACIÓN Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I. variación de x 0 variación de correspondiente a x. razón ó velocidad de cambio. es llamado la

CÁLCULO DIFERENCIAL E INTEGRAL I. variación de x 0 variación de correspondiente a x. razón ó velocidad de cambio. es llamado la Dada una unción al qu, + h Dom dirmos qu: h s llamado + - s llamado s llamado la d la unción rspco d la variabl n [, + ] Si is ' s llamado la d la unción n. Usualmn s l valor absoluo d la vlocidad. Sabmos:

Más detalles