CUESTIONARIO PERFIL DEL INVERSIONISTA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CUESTIONARIO PERFIL DEL INVERSIONISTA"

Transcripción

1 I Expliión: BCR Soiedd Administrdor de Fondos de Inversión S.A., en delnte BCR SAFI y BCR Vlores S.A., hn diseñdo un uestionrio que le yudrá identifir su Perfil del Inversionist", en funión de su perepión on el nivel de riesgo, ojetivos tules y futuros, horizonte de inversión, disponiilidd, experieni, todos reliondos on l inversión de dineros, entre otrs. El fin es que on se en su Perfil, Usted elij entre ls opiones de Inversión que se justen sus gustos y preferenis, stisfiendo ellos sus neesiddes de uerdo sus rsgos omo Inversionist y su tolerni l riesgo. Pr que este ejeriio le se útil, ls respuests que Usted proporione se deen pegr su mner rel de reionr nte determinds situiones y expettivs, y que por nturlez tendemos ontestr de uerdo un situión "idel o desed", que no siempre onuerd on l relidd de nuestro omportmiento. Es importnte que teng presente que su Perfil de Inversión se puede ver modifido, nte mios en sus ondiiones personles y en ls ondiiones del merdo finniero - ursátil, por lo tnto, es su responsilidd que tulie periódimente su Perfil, y de onformidd on l normtiv vigente, BCR SAFI y BCR Vlores S.A., le plirán l menos vez d ños, un tulizión. Por todo lo expuesto, BCR SAFI S.A. y BCR Vlores S.A., sus Entiddes Comerilizdors, Asesores de Fondos de Inversión y Corredores de Bols reditdos pr l vent de instrumentos finnieros y de fondos de Inversión, no son responsles por ls deisiones que Usted elij on se los dtos otenidos trvés de este Perfil pr olor sus dineros, ni grntizn gnnis o rendimiento esperdo, solmente pretende proveerle de un herrmient que le filite l tom de deisiones. *************************************************************************************** II Pregunts de seleión úni, mrque on un X:. En qué rngo de edd se enuentr usted? ) Entre 8 ños y 0 ños ) Entre ños y 60 ños ) Más de 6 ños 2. Cuándo usted reliz un inversión, uál es su propósito? ) Que el dinero no pierd vlor en el tiempo, es deir, que el rendimiento gndo ur l menos l inflión nul. ) Inrementr l inversión iniil, reinvirtiendo los rendimientos gndos. ) Prourr gnnis de pitl, entendiéndose est, omo el inremento de su inversión iniil por umento en los preios de merdo finniero - ursátil.. Usted depende de los ingresos periódios de sus inversiones pr urir sus gstos otidinos? ) SI ) NO ) Eventulmente Págin de 6

2 4. L myorí de los inversionists perien el riesgo omo un posiilidd de perder dinero en un inversión. En relidd, myor riesgo, myor el potenil de gnnis. Usndo est definiión, uál es el ojetivo de inversión que más le gust usted? ) Estoy dispuesto eptr jos rendimientos en mí inversión, en tnto exist un menor riesgo de perder mi dinero. ) Estoy dispuesto eptr un riesgo moderdo y on ello vriiones en los rendimientos, en tnto rei en el medino plzo un rendimiento que justifique el riesgo sumido. ) Estoy interesdo en el reimiento de mi inversión lrgo plzo, eptndo un riesgo myor en l flutuión de los rendimientos, e inluso, sumir pérdids temporles siempre y undo ls posiiliddes de gnnis sen myor en el lrgo plzo.. Cundo usted piens en l plr riesgo en un ontexto de inversión-finnier, En uál de ls siguientes plrs piens primero? ) Inertidumre ) Oportunidd ) Peligro 6. Si usted tiene que elegir entre un trjo ien seguro on poo sueldo y un trjo menos seguro o informl on myor sueldo, Cuál esogerí? ) Definitivmente menos seguridd y myor sueldo ) Un poo menos de seguridd on un myor sueldo ) Definitivmente más seguridd y menor sueldo 7. Si el vlor de su inversión disminuye, qué hrí usted? ) Venderí inmeditmente ) Venderí un prte ) No venderí, esperndo reuperrme en el medino plzo. 8. Diversifirí Usted su ptrimonio invirtiendo en instrumentos finnieros o fondos de inversión que esté resplddo on grntí de goiernos de píses extrnjeros o empress privds trsnionles de reonoimiento mundil. ) Si ) No ) Un prte 9. El dinero que usted dese invertir o mntiene invertido, serí retirdo nte un gsto importnte e inesperdo o uent Usted on otros reursos pr frontr tl eventulidd? ) No lo retirrí ) Si lo retirrí ) Eventulmente o de form pril Págin 2 de 6

3 0. Si Usted requiere liquidr su inversión y no es posile herlo inmeditmente pues pr ello dee esperr que existn omprdores, estrí dispuesto invertir jo ess irunstnis? ) Si. ) No. ) Un prte de mi rter.. El riesgo que Usted dese sumir en su inversión lo puede expresr omo: ) Buso que mi inversión teng un rentilidd lrgo plzo, por lo que no me preoupn ls lzs y js en el vlor de mi inversión. ) Prefiero eptr un rentilidd menor ntes que enfrentr íds en mi inversión. ) Puedo eptr lguns suids y íds diris en el vlor de mi inversión, si esto signifi que potenilmente puedo gnr más lrgo plzo. 2. Cuál de ests opiones desrie mejor sus mets de tiempo pr logrr sus ojetivos de inversión? ) A lrgo plzo: de 2 o más ños ) A medino plzo: de 2 ños ) A orto plzo: menos de ño. Si su inversión estuvier mostrndo pérdids Cuánto es lo máximo que Usted estrí dispuesto perder? ) Hst un 0% del pitl invertido, esperndo un mejor en ls ondiiones de merdo. ) Entre un 0% y 20% del pitl invertido, esperndo un mejor en ls ondiiones de merdo. ) Más del 20% del pitl invertido esperndo un mejor en ls ondiiones de merdo. 4 Cuál opión desrie mejor su onoimiento y experieni en el merdo de vlores y los Fondos de Inversión? ) Estoy poo enterdo sore el omportmiento del merdo de vlores y los fondos de inversión, pues no he prtiipdo muho en ninguno de ellos. ) Tengo un onoimiento sufiiente sore el omportmiento del merdo de vlores y los Fondos de Inversión, pues he invertido osionlmente en estos instrumentos. ) Tengo un mplio onoimiento sore el omportmiento del merdo de vlores y los Fondos de Inversión, pues he prtiipdo o prtiipo tivmente. Págin de 6

4 . Cuál opión desrie mejor su onoimiento er de ls opiones de inversión que se pueden dquirir en los merdos internionles? ) No onozo nd ) Tengo poo onoimiento ) Tengo un mplio onoimiento 6. Si su respuest es positiv (poo o mplio) indique uáles de los siguientes instrumentos onoe usted? ) Bonos del tesoro de USA y Agenis Federles. ) Títulos orportivos y onos emergentes ( ) on grdo de inversión ( )on grdo de espeulión. ) Produtos estruturdos y Derivdos Aiones d) Aiones. Otros espeifique: e) No onozo ningún instrumento. Not: Est pregunt es de ráter informtivo por lo que no se le sign puntuión. III. INVERSIONISTA SOFISTICADO.. En l myorí de los sos y de form generl, ptrimonio se define omo: El Conjunto de ienes y derehos de un person, empres o pís en un momento determindo, y que tienen un vlor eonómio. En l empres son los fondos propios, que representn el dereho de sus propietrios sore el vlor de l empres. De uerdo on el enunido nterior, su ptrimonio es igul o myor US$ :,00 ) Sí ) No 2. Se sienten usted, en pidd pr vlorr y sumir finniermente los riesgos y resultdos de su inversión y en pidd de protegerse sí mismo, en el tnto se le proporione l informión sore los riesgos y restriiones de l inversión que soliit? ) Sí ) No IV. Resultdos de l puntuión: (Pr uso interno) Pregunt Puntuión por respuest Págin 4 de 6

5 V Cuál es su Perfil de Inversión? Puntuión Inversionist Perfil Tipo de Inversión en BCR Vlores S.A. Merdo Lol Reomprs Inversionists on suyente púlio. Sust púli de orto plzo. CDPs on grntí púli. Bus Coerturs miris. un rentilidd orde - Conservdor un jo nivel de riesgo en sus inversiones. 2-6 Moderdo 62-7 Agresivo Est dispuesto invertir pr otener myor rentilidd de sus reursos, ún undo éstos puedn presentr flutuiones. Bus otener un elevd rentilidd onsiente de l lt Merdo Internionl Letrs del tesoro de Estdos Unidos. Bonos de Agenis Federles on Grdo de Inversión de Corto Plzo. Bonos orportivos on Grdo de Inversión de Corto Plzo. Merdo Lol Susts Púlis de medino plzo. Reomprs Inversionists on suyente privdo. Reomprs plnds Bonos de Deud Extern Costrriense. Merdo Internionl Bonos del tesoro de los Estdos Unidos. Bonos soernos on lifiión mínim de BB orto plzo. Bonos soernos on lifiión mínim de AAA lrgo plzo. Trding on títulos púlios y soernos. Bonos de emisores privdos prtir de BB. Nots estruturs on pitl grntizdo. Inversiones multimoneds. Merdo Lol Reomprs Inversionists liquidds.. Tipo de Inversión en BCR SAFI S.A. Fondo de Inversión Corto Plzo Colones Fondo liquidez Dólres Fondo Líquido Internionl Fondo Mixto Colones Fondo Trimestrl olones Fondo Trimestrl dólres Fondos Inmoilirios Págin de 6

6 proilidd de Compr de iones. flutuiones en los rendimientos de sus Merdo Internionl inversiones. Produtos derivdos y estruturdos. Compr de iones Bonos emergentes on grdo espeultivo. Fondo de Desrrollo. (Dee ser demás sofistido) PARA USO DE BCR VALORES Y BCR SAFI. Puntuión finl TIPO DE PERFIL Conforme l nálisis de l informión otorgd por el mismo liente se estlee que el perfil de riesgo del inversionist es: Conservdor Moderdo Agresivo Se tlog l liente omo inversionist sofistido? (Dee her ontestdo sí, en lgun de ls pregunts de l seión III) SI NO Firm del Inversionist: Nomre del Inversionist: Número de identifiión: Feh de pliión: / / Dí /Mes /Año Nomre del Asesor y/o Agente de Bols que pli el perfil: Firm: Págin 6 de 6

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de

Más detalles

CUESTIONARIO PERFIL DEL INVERSIONISTA

CUESTIONARIO PERFIL DEL INVERSIONISTA I Explicación: BCR Sociedad Administradora de Fondos de Inversión S.A. (BCR SAFI) y BCR Valores S.A., han diseñado un cuestionario que le ayudará a definir el Perfil del Inversionista" que identifica a

Más detalles

PLAN DIRECTOR RSE Innovación en RSE en Pymes de la provincia de huesca. Hacia una Pyme sostenible Programa RSE-PYME. Ministerio de Industria, Turismo

PLAN DIRECTOR RSE Innovación en RSE en Pymes de la provincia de huesca. Hacia una Pyme sostenible Programa RSE-PYME. Ministerio de Industria, Turismo 1 Introduión: L Responsilidd Soil Empresril o Corportiv es un estrtegi orportiv que impli el ompromiso voluntrio de ls empress, trvés de l pliión sistemáti de reursos, pr respetr y promover los derehos

Más detalles

IX Congreso de Prevención del Fraude y Seguridad de Asobancaria

IX Congreso de Prevención del Fraude y Seguridad de Asobancaria IX Congreso de Prevenión del Frude y Seguridd de Asonri Qué her y qué no her nte el frude interno? Alguns leiones pr l deud gestión de riesgos de frude KPMG en Colomi Forensi Servies Quién suele ometer

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2013/15 Confereni de los Estdos Prte en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 30 de septiemre de 2013 Espñol Originl: inglés Quinto período de sesiones Pnmá,

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

Presentación. 3 Objetivos. 3

Presentación. 3 Objetivos. 3 ÍNDICE. Presentión. 3 Ojetivos. 3 1.1. EL ENTORNO COMERCIAL. 4 1.1.1. El Mroentorno. 5 1.1.2. El Miroentorno. 6 1.1.3. Monitoreo del Entorno. 7 Autoevluión 01. El entorno. 8 1.2. EL VENDEDOR. 9 1.2.1.

Más detalles

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD UNICIENCIA 22 UNICIENCIA 22, 2008 pp. 5-9 2008 TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD Diego Chverri y Roerto J. Moy Deprtmento de Físi, Universidd Nionl RESUMEN

Más detalles

módulode formación en comunidad educativa dosmilnueve

módulode formación en comunidad educativa dosmilnueve módulode formión en omunidd edutiv dosmilnueve Fundión Rener Módulo de formión en omunidd edutiv Fondo pr l ión mientl y l niñez Equipo de trjo Luz Sstell Crdens Diretor Zred Grzón Coordindor del proyeto

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2015/7 Confereni de los Estdos Prtes en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 3 de septiemre de 2015 Espñol Originl: inglés Sexto período de sesiones Sn Petersurgo

Más detalles

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería.

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería. CONSULTA DE LA IGAE Nº 13/1995 FORMULADA POR VARIAS CORPORACIONES LOCALES, EN RELACIÓN CON EL TRATAMIENTO CONTABLE DE LA RENTABILIZACIÓN DE EXCEDENTES TEMPORALES DE TESORERÍA. CONSULTA En virtud de ls

Más detalles

OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN

OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN Contbilidd (RR.LL.) T7 OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN 1. - Considerciones generles 2. - Proveedores 3. - Acreedores. 4. - El Impuesto sobre el Vlor Añdido.

Más detalles

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo.

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo. 1 2 En ests pregunts tienes que unir on un líne ls plrs o ls oriones on su diujo. Ejemplo: INDICACIONES Une on un líne l plr on su diujo... gllo. Une on un líne l orión on su diujo.. Julio orre... 3 AHORA

Más detalles

Serie de Trarados Europeos - n 108 CONVENIO PARA LA PROTECCION DE LAS PERSONAS CON RESPECTO AL TRATAMIENTO AUTOMATIZADO DE DATOS DE CARACTER PERSONAL

Serie de Trarados Europeos - n 108 CONVENIO PARA LA PROTECCION DE LAS PERSONAS CON RESPECTO AL TRATAMIENTO AUTOMATIZADO DE DATOS DE CARACTER PERSONAL Serie de Trrdos Europeos - n 108 CONVENIO PARA LA PROTECCION DE LAS PERSONAS CON RESPECTO AL TRATAMIENTO AUTOMATIZADO DE DATOS DE CARACTER PERSONAL Estrsurgo, 28.I.1981 STE 108 Trtmiento utomtizdo de dtos

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL MODELO INSTRUCCIONES Y CRITERIOS

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA Pedagogía de la Fe

GUÍA DOCENTE DE LA ASIGNATURA Pedagogía de la Fe GUÍA DOCENTE DE LA ASIGNATURA Pedgogí de l Fe A DATOS GENERALES DE LA ASIGNATURA 1 NOMBRE PEDAGOGÍA DE LA FE 2 TITULACIÓN A QUE CORRESPONDE Bhillerto Cienis Religioss 3 CURSO Primero 4 TIEMPO 5 CRÉDITOS

Más detalles

Optimización de gestión de inventarios (stocks)

Optimización de gestión de inventarios (stocks) Optimizión de gestión de inventrios (stoks) Andrés Rmos Universidd Pontifii Comills http://www.iit.upomills.es/rmos/ Andres.Rmos@omills.edu CONTENIDO CARACTERIZACIÓN MODELOS DETERMINISTAS ESTÁTICOS DE

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

ESCUELA UNIVERSITARIA FRANCISCO TOMAS Y VALIENTE DIPLOMATURA EN RELACIONES LABORALES 5.3 OPERACIONES DE DESARROLLO. EL BALANCE DE COMPROBACIÓN

ESCUELA UNIVERSITARIA FRANCISCO TOMAS Y VALIENTE DIPLOMATURA EN RELACIONES LABORALES 5.3 OPERACIONES DE DESARROLLO. EL BALANCE DE COMPROBACIÓN TEMA 5: EL CICLO CONTABLE 5.1 EL CICLO CONTABLE. CONCEPTO Y CONTENIDO 5.2 INICIACIÓN DE LA CONTABILIDAD 5.3 OPERACIONES DE DESARROLLO. EL BALANCE DE COMPROBACIÓN 5.4 DETERMINACIÓN DEL RESULTADO. OPERACIONES

Más detalles

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N 18-2014-DGP-DRSET/GOB.REG.TACNA

Más detalles

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización.

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización. FECHA EMISION 8 1 1992 ORGANO EMISOR INTERVENCIÓN GENERAL DE LA ADMINISTRACIÓN DEL ESTADO PUBLICACION BOLETÍN INFORMATIVO DE LA IGAE nº 5, ño 1992. TITULO CONSULTA Nº 8/1992, formuld por l Intervención

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

TEMA 10 FINANCIACIÓN

TEMA 10 FINANCIACIÓN TEMA 10 FINANCIACIÓN 1.-Considerciones generles. 2.-Ptrimonio neto. 2.1.-Fondos propios. 2.2.-Subvenciones, donciones y legdos. 3.-Psivo. 3.1.-Provisiones contingentes. 3.2.-Deuds. 1.-CONSIDERACIONES GENERALES.

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

TEMA 9 - INMOVILIZADO

TEMA 9 - INMOVILIZADO TEMA 9 - INMOVILIZADO 1. Considerciones generles. 1.1. Descripción. 1.2. Clsificción. 1.3. Registro y reconocimiento. 1.4. Forms de dquisición. 1.5. Vlorción. 1.6. Bjs de inmovilizdo 2. Inmovilizdo mteril.

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

Los ERP s y la contabilidad 1. PROCESO DE SELECCIÓN E IMPLANTACIÓN DE UN ERP

Los ERP s y la contabilidad 1. PROCESO DE SELECCIÓN E IMPLANTACIÓN DE UN ERP Inluye uestiornrio de evluión 0101110100010110010010 1010010100110001001100 1001010101001011010101 01011101000101100100101010010 10011000100110010010101010010 11010101001001010001001001001 00101010100101100001001010011

Más detalles

FRANCISCO JAVIER QUESADA SANCHEZ GASTOS E INGRESOS IMPUTADOS A PATRIMONIO NETO 2009 F. JAVIER QUESADA SANCHEZ 1

FRANCISCO JAVIER QUESADA SANCHEZ GASTOS E INGRESOS IMPUTADOS A PATRIMONIO NETO 2009 F. JAVIER QUESADA SANCHEZ 1 FRANCISCO JAVIER QUESADA SANCHEZ CATEDRATICO DE ECONOMIA FINANCIERA Y CONTABILIDAD. ACTUARIO DE SEGUROS. AUDITOR DE CUENTAS Y ARQUITECTO TÉCNICO 1 TEMA 15.- GASTOS E INGRESOS IMPUTADOS AL PATRIMONIO NETO

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

SISTEMA REGIONAL DE EVALUACIÓN DE LOS APRENDIZAJES - 2012

SISTEMA REGIONAL DE EVALUACIÓN DE LOS APRENDIZAJES - 2012 ORIENTACIONES PARA LA CALIFICACION DE LA PRUEBA DE SALIDA COMUNICACIÓN - TERCER GRADO DE PRIMARIA L prue de comunicción pr el tercer grdo, const de 12 Pregunts L durción de l prue es proximdmente 90 minutos

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC:

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC: CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci. Ls combinciones de negocios se reguln en dos norms

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 I.3 Discusión de resultdos I.3.1.3 Hidroformilción ifásic de 1-octeno con sistems de Rh/fosfin perfluord P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 Como y se h comentdo en l introducción l ctálisis ifásic en sistems

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

adaptadores para bugaboo car seat developed by TAKATA

adaptadores para bugaboo car seat developed by TAKATA pñol 25 Copyright 2007 Z63007 rv00 Bugoo Interntionl BV. Los dtos contenidos en el prente documento pueden ser modificdos sin previ notificción. Bugoo Interntionl BV no será rponsle de ls omision ni defectos

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

4.1. Condicionamiento clásico y aprendizaje causal Condicionamiento clásico y aprendizaje causal

4.1. Condicionamiento clásico y aprendizaje causal Condicionamiento clásico y aprendizaje causal Mtriz de ontingeni Resultdo No Resultdo Clve L lve y el resultdo se presentn juntos No Clve Mtriz de ontingeni Resultdo No Resultdo Clve L lve se present y el resultdo no se present No Clve Mtriz de ontingeni

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en SIMPLIFICAR EXPRESIONES (OPERAR) Y DESPEJAR O RESOLVER ECUACIONES. Por qué el título enion tres oss que se estudin por seprdo o que ni siquier se estudin?. Pues no lo sé, pero tnto pr operr oo pr despejr

Más detalles

B GENT01 - UNIVERSITEIT GENT

B GENT01 - UNIVERSITEIT GENT PAP - ERASMUS+ TABLA DE EQUIVALENCIAS Universidd de Destino: B GENT01 - UNIVERSITEIT GENT MUY IMPORTANTE: Los reonoimientos de feh nterior l urso tul pueden orresponder on signturs que y no estén ofertds

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

DESCRIPCIÓN DEL EXAMEN

DESCRIPCIÓN DEL EXAMEN EXAMEN FINAL Nº DESCRIPCIÓN DEL EXAMEN El exmen es tipo test, de contenido teórico-práctico; const de doce pregunts con cutro lterntivs de respuest, donde sólo un es l correct. Criterios de corrección:

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

TEMA 5. Existencias. Procedimiento de Cuenta Única Administrativa: Existencias e Inmovilizado

TEMA 5. Existencias. Procedimiento de Cuenta Única Administrativa: Existencias e Inmovilizado TEMA 5 1 Procedimiento de Cuent Únic Administrtiv: e Inmovilizdo 2 - El procedimiento Administrtivo es el empledo pr el registro de l myor prte de los ctivos. INMOVILIZADO/EXISTENCIAS ENTRADAS VALORADAS

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c.

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL INSTRUCCIONES GENERALES Y CALIFICACIÓN

Más detalles

no te puedes conectar? resuélvelo tú mismo en solo 5 pasos

no te puedes conectar? resuélvelo tú mismo en solo 5 pasos no te puedes onetr? resuélvelo tú mismo en solo 5 psos ontinuión enontrrás los 5 psos ásios que dees seguir en so que presentes lgún prolem on tu onexión. us l versión imprimile l finl del instrutivo y

Más detalles

Guía de referencia de flujos de datos y arquitectura

Guía de referencia de flujos de datos y arquitectura Guí de refereni de flujos de dtos y rquitetur BES12 Versión 12.4 Pulido: 2016-02-29 SWD-20160229164157323 Contenido Aer de est guí... 5 Arquitetur: soluión de EMM de BES12... 6 Componentes de BES12...

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

1. Disposiciones generales

1. Disposiciones generales Págin núm. 4 BOJA núm. 177 Sevill, 9 de septiemre 2010 1. Disposiiones generles CONSEJERÍA DE EDUCACIÓN ORDEN de 26 de gosto de 2010, por l que se reguln ls prues pr l otenión del título de Bhiller pr

Más detalles

Contabilidad (RR.LL.) T6 TEMA 6 EXISTENCIAS. 1. Consideraciones generales. 2. Valoración de las Existencias. 3. Registro de las Existencias.

Contabilidad (RR.LL.) T6 TEMA 6 EXISTENCIAS. 1. Consideraciones generales. 2. Valoración de las Existencias. 3. Registro de las Existencias. Contbilidd (RR.LL.) T6 TEMA 6 EXISTENCIAS 1. Considerciones generles. 2. Vlorción de ls Existencis. 3. Registro de ls Existencis. Contbilidd (RR.LL.) T6 1.-CONSIDERACIONES GENERALES. Contbilidd (RR.LL.)

Más detalles

Medición de Logro de Capacidades en Comprensión Lectora y Resolución de Problemas en estudiantes de Segundo Grado de Educación Primaria

Medición de Logro de Capacidades en Comprensión Lectora y Resolución de Problemas en estudiantes de Segundo Grado de Educación Primaria D IR CCIÓN R ION A L CTOR IA L TAC N A Mediión de Logro de Cpiddes en Comprensión Letor y Resoluión de Prolems en estudintes de Segundo Grdo de Eduión Primri Diretiv Nº 010-2012-DGP-DRSET/GOB.REG.TACNA

Más detalles

Internacional. Inicio

Internacional. Inicio IMPULSO COMPETITIVO Minut Mes Interncionl Minut N 5 Fech ctul: 06 12 2011 Inicio 11:30 Finl 13:00 Fech próxim reunión: Inicio Finl Presidee Coordindor de mes Aníbl Ariztí, Director Ncionl del SAG Miguel

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX.

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX. MERCA Ejercicios Contbilidd Tem 9 Empres dedicd l compr-vent de ordendores y servicios de progrmción. Período contble: 1 er trimestre de 20XX. ACTIVO ACTIVO NO CORRIENTE INMOVILIZADO MATERIAL PATRIMONIO

Más detalles

PARTE III: OPERACIONES DEL CICLO DE EXPLOTACIÓN. Tema 8: ACREEDORES Y DEUDORES POR OPERACIONES COMERCIALES

PARTE III: OPERACIONES DEL CICLO DE EXPLOTACIÓN. Tema 8: ACREEDORES Y DEUDORES POR OPERACIONES COMERCIALES Introducción l Contbilidd Curso 2010-2011 PARTE III: OPERACIONES DEL CICLO DE EXPLOTACIÓN Tem 8: ACREEDORES Y DEUDORES POR OPERACIONES COMERCIALES PARTE I. TEORÍA GENERAL DE LA CONTABILIDAD Tem 1: L contbilidd

Más detalles

Terminos y condiciones Mister Barcelo Online Store

Terminos y condiciones Mister Barcelo Online Store Terminos y condiciones Mister Brcelo Online Store Le este documento detenidmente ddo que contiene los términos y condiciones de vent cuyo cumplimiento se olig cundo utilice l tiend online Mister Brcelo

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

Sistema de Monitoreo Externo de los Programas de Ayuda al Desarrollo de la CE LOT 4 América Latina 2004/097-402. Programa AL-INVEST

Sistema de Monitoreo Externo de los Programas de Ayuda al Desarrollo de la CE LOT 4 América Latina 2004/097-402. Programa AL-INVEST Sistem de Monitoreo Externo de los Progrms de Ayud l Desrrollo de l CE LOT 4 Améri Ltin 2004/097-402 Progrm AL-INVEST Misión de Monitoreo Externo Septiemre 2006 Consorio EPTISA, Agrionsulting, LASO 1 El

Más detalles

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden:

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden: Demostrndo lo que prendimos Terer Trimestre LECTURA 2. grdo de primri Mi nomre: Mi numero de orden: Seión: LECTURA 3 Cómo responder ls pregunts? Primero, lee el texto on muh tenión. Luego, lee ls pregunts

Más detalles

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA EMPRESA CRECESA Ejercicios Contbilidd Tem 4 CRECESA es un empres dedicd l comercilizción de plnts de interior. Se h constituido principios de 20XX y su Blnce finles de ese ño (expresdo en uniddes monetris)

Más detalles

E-CONTABILIDAD FINANCIERA: NIVEL II

E-CONTABILIDAD FINANCIERA: NIVEL II E-CONTABILIDAD FINANCIERA: NIVEL II MÓDULO 5: LA FINANCIACIÓN AJENA EN LA EMPRESA OBJETIVOS DEL MÓDULO: Conocer ls distints modliddes que tiene l empres pr finncirse con recursos jenos. Estudir otrs operciones

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y PROBLEMAS DE DE MÁUINAS ÉRMICAS, REFRIGERADORES y BOMBAS BOMBAS DE DE CALOR CALOR Equipo docente Antonio J. Brero / Alfonso Cler / Mrino Hernández Dpto. Físic Aplicd. E..S. Agrónomos (Alcete) Plo Muñiz

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

(II)La contabilización del Impuesto sobre Sociedades

(II)La contabilización del Impuesto sobre Sociedades Cierre Contble y Fiscl I. SOCIEDADES (II)L contbilizción del Impuesto sobre Socieddes Luis Alfonso Rojí Chndro (Febrero 2012) L.A. Rojí Asesores Tributrios, S.L. - Inscrit en el Registro Mercntil de Mdrid,

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Los números racionales

Los números racionales UNIDAD Los números rionles Contenidos Conepto Ls friones y los números rionles Representión de friones Friones equivlentes Simplifiión de friones Ordenión de friones Sum y rest de friones Multipliión y

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

TRANSFORMACIONES LINEALES

TRANSFORMACIONES LINEALES . 7 Cpítulo 5 RANSFORMACIONES LINEALES Mrtínez Hétor Jiro Snri An Mrí Semestre,.7 5.. Introduión Reordemos que un funión : A B es un regl de soiión entre los elementos de A y los elementos de B, tl que

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

Elementos Esenciales del Currículo de Artes del Lenguaje en Español. Tercer Grado

Elementos Esenciales del Currículo de Artes del Lenguaje en Español. Tercer Grado Elementos Eseniles del Curríulo de Artes del Lenguje en Espñol Terer Grdo Informión sore Artes del Lenguje del Distrito Esolr del Vlle de Boulder Propósito El Consejo de Eduión del Distrito Esolr del Vlle

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO 6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento

Más detalles