CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell"

Transcripción

1 CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.- En una egión del espacio ocue que: J =, E E =, = e + e' t, = E B = b + b' t, B B = =, donde e ' b ' son constantes conocidas. Calcula ρ v, e, b J. ρ = e = b' b = ε µ ' J J = v e = P.- B = En una egión del espacio no ha ni cagas ni coientes. El campo magnético es ( a bt) uˆ. El campo E tiene la diección del eje OY. (a) (b) (a) Calcula E. (b) Calcula la fem a lo lago de un cuadado de lado L, con dos de sus lados situados espectivamente sobe los semiejes OX OY positivos. a E = b t + k uˆ ε µ fem = bl

2 P.- En las egiones cilíndicas de la figua ha un campo magnético que tiene la foma B = cos( t) uˆ paa R, B = 8 t uˆ paa R R B = paa > R. Calcula: (a) El campo eléctico E en las onas,. (b) Los instantes de tiempo en los que dicho campo se anula en la egión, en el caso paticula de que R = m R = m. R R (a) Zona : E = 5 sin( t) (b) 5R, Zona : E = ( ) ( ) sin t R 5R, Zona : E = ( ) ( ) sin t R R t =, s;, 9 s; P5.- En la figua se muesta un cilindo hueco metálico mu lago de adio inteio R eteio R, po el que cicula una densidad de coiente J = C uˆ. Además eiste un campo eléctico de la foma: E = E sin( t) uˆ ω paa R E = paa > R. Calcula: (a) El campo magnético B en las tes egiones. (b) Dibuja cualitativamente la gáfica de la amplitud del campo B( ) B =. J R R

3 (a) Zona : B = ε µ E ω cos( ωt) ( ωt) µ C ε µ EωR cos µ CR Zona : B = + ( ) cos( t) µ C R R + ε µ EωR Zona : B = 6 ω P6.- Se considea un solenoide ideal mu lago de adio R en el vacío con n vueltas po unidad de longitud. Si cicula po el solenoide una intensidad de coiente I constante, se pide: (a) A pati de las ecuaciones de Mawell demosta cuál es el valo del vecto B en todos los puntos, tanto inteioes como eteioes. (b) Detemina el potencia vecto ( A ) en dichos puntos (a) Dento: B l = µ ni Fuea: B = l (b) Dento: Fuea: µ A t = ni µ nir A t = P7.- Los campos eléctico magnético en el inteio de un tubo metálico de sección cuadada que se etiende ente L < < L L < < L e indefinidamente a lo lago del eje vienen dados po las epesiones: E = A ( L ) uˆ B = At uˆ E, B veifica todas las ecuaciones condiciones de contono Demosta que este campo ( ) necesaias paa se un campo electomagnético.

4 P8.- Se tiene un condensado plano fomado po dos discos. El campo eléctico en su inteio viene dado po: E ρ (, t) = E sin( t) uˆ ω paa < ρ donde ρ es el adio de los discos. Enconta el campo magnético ente las placas del condensado. B = µ ε ωe cos ωt uˆ ρ ( ) φ P9.- Enconta el vecto de Poting sobe la supeficie de un alambe conducto ecto, mu lago (de adio b conductividad σ ) po el que cicula una coiente continua I. Veifica el Teoema de Poting. I = σπ b S ( ˆ ) u P.- En una egión del vacío libe de cagas de coientes, el campo eléctico tiene la siguiente epesión: E = E cos t cos k A pati de este campo, calcule: ω ( ) ( ) (a) El campo magnético poveniente del campo E. (b) Relación ente ω k paa que este campo sea debido eclusivamente a D. (c) La densidad de enegía eléctica. (d) La densidad de enegía magnética. (e) La densidad de enegía total. (f) El pomedio tempoal de las cantidades anteioes. (g) El vecto de Poting su pomedio. A qué coesponde este campo eléctico? û

5 B, t E k = sin ωt sin k uˆ ω (a) ( ) ( ) ( ) (b) ω = c k (c) U e = ε E cos ( ωt) ( k) cos (d) U m = ε E sin ( ωt) ( k) sin (e) U TOT = ε E [ + cos( ωt ) sin( k) ] (f) < U e >= ε E ( k) < U m >= ε E ( k) ~ (f) < S >= cos < U >= ε E sin P.- Dado HH (,, tt) = cos(5ππππ) ssssss(6ππ 9 tt ββββ)aa ( AA mm) en el aie, detemina el valo de E(,,t) β. P.- En un cable coaial con aie como dieléctico que tiene un conducto inteio de adio a conducto eteno de adio inteio b eiste una onda electomagnética de 6 MH. Suponiendo que los conductoes son pefectos que la foma fasoial de la intensidad de campo eléctico es: EE = EE ee jjjjjj aa VV mm aa < < bb a) Calcula k b) Detemina H c) Calcula las densidades supeficiales de coiente en los conductoes inteio eteio. P.- Dada una egión del espacio con las siguientes caacteísticas: µ = -5 H/m, ε =. - F/m σ = en cualquie oto luga, en la que H = cos( 5

6 t - β)a A/m, utilia las ecuaciones de Mawell paa obtene epesiones paa B, D, E β. BB = 6 5 cos( tt ββ) aa TT DD = ββ cos( tt ββ) aa CC/mm EE = DD εε ββ = ±6 aaaa/mm P.- Un coche cicula a km/h. Suponiendo que el campo magnético teeste es de. X -5 Wb/m, enconta el voltaje que se geneaá debido a la inducción EM en el paachoques del coche cua longitud es de.6m. Asumi que el ángulo ente el campo magnético la nomal al coche es de 65 Sol. V=.97mV P5.- Compoba cuáles de los siguientes campos, son ealmente campos electomagnéticos. Supone que los campos se encuentan en onas libes de cagas. (a) A= sen (ωt+) a (b) B=/ρ cos(ωt-ρ) aϕ (c) C= (ρ cot ϕ aρ + (cosϕ)/ρ aϕ) senωt (d) D= (/) senθ sen (ωt-5) aθ Sol. Sí. Sol. Sí No No P6.- Obtene los fasoes de los siguientes campos amónicos dependientes del tiempo: Sol. (a) EE = ee jj(+º) aa 5ee jj( 7º) aa 6

7 (b)hh = ssssssθθ ee jj5 aa θθ (c)jj = jj6ee (+jj) aa + ee (+5jj) aa P7.- Enconta el coespondiente campo eléctico E en función de β paa una antena que adia en espacio libe el siguiente campo: EE = ssssssθθ ωωεε ββssssss(ωωtt ββ) aa φφ ωω = ππ 8 7

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I IS Menéndez Tolosa Física y uímica - º Bach negía potencial y potencial eléctico I Calcula el potencial de un punto de un campo eléctico situado a una distancia de una caga y a una distancia 4 de una caga.

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Ecuaciones generales Modelo de Maxwell

Ecuaciones generales Modelo de Maxwell Electomagnetismo 212/213 Ecuaciones geneales Modelo de Maxwell Intoducción Fuentes de campo: aga eléctica. oiente eléctica. Ecuación de continuidad. Definición del campo electomagnético. Ecuaciones de

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

r r r r r µ Momento dipolar magnético

r r r r r µ Momento dipolar magnético A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

D = 4 cm. Comb. d = 2 mm

D = 4 cm. Comb. d = 2 mm UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM CAPÍTULO 1 Campo eléctico I: distibuciones discetas de caga Índice del capítulo 1 1.1 Caga eléctica. 1.2 Conductoes y aislantes.

Más detalles

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es...

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es... Semana Ángulos: Gados 7 adianes Razones tigonométicas Semana 6 Empecemos! Continuamos en el estudio de la tigonometía. Esta semana nos dedicaemos a conoce halla las azones tigonométicas: seno, coseno tangente,

Más detalles

Hidrostática y Fluidos Ideales.

Hidrostática y Fluidos Ideales. Hidostática y Fluidos Ideales. Intoducción a la Física Ambiental. Tema 5. Tema IFA5. (Pof. M. RAMOS Tema 5.- Hidostática y Fluidos Ideales. Hidostática: Pesión. Distibución de pesiones con la pofundidad:

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

El método de las imágenes

El método de las imágenes El método de las imágenes Antonio González Fenández Dpto. de Física Aplicada III Univesidad de Sevilla Sinopsis de la pesentación El teoema de unicidad pemite enconta soluciones po analogías con poblemas

Más detalles

PROBLEMA 1.- Una onda viajera que se propaga por un medio elástico está descrita por la ecuación

PROBLEMA 1.- Una onda viajera que se propaga por un medio elástico está descrita por la ecuación OPCIÓN A FÍSICA PAEG UCLM- JUNIO 06 PROBLEMA.- Una onda viajea que se popaga po un medio elástico está descita po la ecuación y x, t = 0 sin 5πx 4000πt + π/6 Las unidades de x son metos, las de t son segundos

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

OPCIÓN A FÍSICA. 30/11/2010. E r

OPCIÓN A FÍSICA. 30/11/2010. E r OPCIÓN A FÍSICA. 0//00 PROBLEMA EXPERIMENTAL (.5 p). En el laboatoio de física se ealiza un expeimento paa medi la densidad de un sólido y de una disolución. Paa ello se utiliza un dinamómeto, se pesa

Más detalles

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio.

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio. Depataento de ísica y Quíica 1 PAU ísica, septiebe 2010. ase específica. OPCIÓN A Cuestión 1. - Un coeta se ueve en una óbita elíptica alededo del Sol. Explique en qué punto de su óbita, afelio (punto

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X PROBLEMAS APÍULO 5.- En el cicuito de la figua, la esistencia consume 300 W, los dos condensadoes 300 VAR cada uno y la bobina.000 VAR. Se pide, calcula: a) El valo de R,, y L. b) La potencia disipada

Más detalles

Guía 1: Campo Eléctrico y Diferencia de potencial

Guía 1: Campo Eléctrico y Diferencia de potencial Guía 1: ampo Eléctico y Difeencia de potencial Ley de oulomb 1. Dos pequeñas esfeas de igual masa m = 0.5 g y de igual caga eléctica están suspendidas del mismo punto po sendos hilos de 15 cm de longitud.

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Univesidad de Cantabia Tesis Doctoal FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fenández Canales Capítulo 1 LA TURBULENCIA ATMOSFÉRICA La atmósfea no se compota como un medio homogéneo paa la popagación

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36 http://www.educa.aagob.es/iesfgcza/depat/depfiqui.htm I.E.S. Fancisco Gande Covián Campo Eléctico mailto:lotizdeo@hotmail.com 26 de septiembe de 29 Física 2ªBachille Campo Eléctico 1.- Nuesta expeiencia

Más detalles

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos Hotel Buj Al Aab Dubai Emiato Áabe Unido Pedo ami Bofill-Gaet Poyecto de paametiación Ampliación de Matemática Intoducción Paa ete poyecto e ha ecogido como upeficie el lujoo hotel Buj al Aab de Dubai.

Más detalles

2A0101 FÍSICA 2ºA bach C. Vectorial y Cinemática

2A0101 FÍSICA 2ºA bach C. Vectorial y Cinemática A0101 FÍSICA ºA bach 9.09.04 C. Vectoial y Cinemática 1.- Qué tabajo ealiza una fueza F = (, 0, -3) aplicada a un cuepo al que desplaza desde el oigen de coodenadas hasta el punto P(1, 4, )? Debes ecoda

Más detalles

v r m P M G M M RP JUNIO 2012 Opción A PROBLEMA 1

v r m P M G M M RP JUNIO 2012 Opción A PROBLEMA 1 OBLA JUNIO 0 Opción A Un planeta extasola gia en tono a una estella cuya masa es igual al 30% de la masa del Sol. La masa del planeta es 3.4 veces mayo que la de la iea, y tada 877 oas en descibi una óbita

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo 9/ Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Agrupación de dipolos inclinados

Agrupación de dipolos inclinados ANTENAS 1 Agupación de dipolos inclinados Se petende analia una antena de micoondas cuo modelo simplificado es una agupación de 8 dipolos elementales de longitud l, espaciados λ/. Los dipolos se alimentan

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

CARACTERÍSTICAS DE LOS GENERADORES DE CORRIENTE CONTINUA (C.C.)

CARACTERÍSTICAS DE LOS GENERADORES DE CORRIENTE CONTINUA (C.C.) CARACERÍSCAS DE LOS GENERADORES DE CORRENE CONNUA (C.C.) Fueza electomotiz (f.e.m.) Es la causa que mantiene una tensión en bones del geneado. La fueza electomotiz (f.e.m.) es la tensión eléctica oiginada

Más detalles

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ C E C T No WILFRIDO MASSIEU PÉREZ Altua A Recta paalela a BC C Distancia (0, 0) Bisectiz B Ing J Ventua Ángel Felícitos Academia de Matemáticas C E C T No WILFRIDO MASSIEU PÉREZ La unidad de Apendizaje

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en Fundamentos y Teoías Físicas ET quitectua 4. ELETRIIDD Y MGNETIMO Desde muy antiguo se conoce que algunos mateiales, al se fotados con lana, adquieen la popiedad de atae cuepos ligeos. Tanscuió mucho tiempo

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

PROBLEMAS DE MECÁNICA

PROBLEMAS DE MECÁNICA PROBLEMAS DE MECÁNICA 1. La enegía potencial de inteacción ente dos átomos neutos puede expesase mediante un potencial de Lennad- Jones U() = 4ε[(a/) 12 - (a/) 6 ] siendo la distancia ente ellos. - Halla

Más detalles

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa? EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500

Más detalles

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS Física Geneal III Ley de Gauss Optaciano Vásquez Gacía CAPITULO III LY D GAUSS 9 Física Geneal III Ley de Gauss Optaciano Vásquez Gacía 3.1 INTRODUCCIÓN n el capitulo anteio apendimos el significado del

Más detalles

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad.

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad. Geomeía del espacio Ángulos, disancias Obseación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Seleciidad.. Calcúlese la disancia del oigen al plano que pasa po A(,,

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida).

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida). Colegio Diocesano Asunción de Nuesta Señoa Ávila Tema 6 El cálculo de distancias se fundamenta en la semejanza de tiángulos ectángulos. Desde hace siglos los astónomos, sobe todo los hindús, tataon de

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A Opción A Ejecicio A [ 5 puntos] Se sabe que la función f: R R definida po f ( - +b+ si ) =, es deiable. a -5+a si > Detemina los aloes de a y b Paa se deiable debe de se, pimeamente, función continua,

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

PARTE 1: Campo eléctrico. Magnitudes que lo caracterizan: intensidad de campo y potencial eléctrico.

PARTE 1: Campo eléctrico. Magnitudes que lo caracterizan: intensidad de campo y potencial eléctrico. TEM 4: INTERCCIÓN ELECTROMGNÉTIC PRTE 1: Campo eléctico. Magnitudes que lo caacteizan: intensidad de campo y potencial eléctico. Fueza ente cagas en eposo; ley de Coulomb. Caacteísticas de la inteacción

Más detalles

Teoría Electromagnética

Teoría Electromagnética José Moón Fundamentos de Teoía Electomagnética I. Campos Estáticos 3 Índice Geneal CAPÍTULO Intoducción al Análisis Vectoial. Intoducción. Escalaes Vectoes.3 Multiplicación Vectoial 5.4 Vectoes Base Componentes

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA COMPLEJO ACADÉMICO EL SABINO CAMPO ELÉCTRICO

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA COMPLEJO ACADÉMICO EL SABINO CAMPO ELÉCTRICO UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA COMPLEJO ACADÉMICO EL SABINO CAMPO ELÉCTRICO PROFESOR: LCDO. FIDIAS GONZÁLEZ Infomación geneal OBJETIVO DE LA UNIDAD CURRICULAR

Más detalles

ÁNGULOS Y LONGITUDES DE ARCO

ÁNGULOS Y LONGITUDES DE ARCO I.E LEÓN XIII EL PEÑOL MATEMÁTICA GRADO: 0 TALLER Nº: EMETRE I ÁNGULO Y LONGITUDE DE ARCO REEÑA HITÓRICA Un Poblema de Ángulos en la Antigüedad. El matemático giego Eatostenes (apox 76 9 a.c.) midió la

Más detalles

Ejemplos resueltos de FMC.

Ejemplos resueltos de FMC. Ejemplos esueltos de FMC. 18 de septiembe de 28 Licenci All tet is vilble unde the tems of the GNU Fee Documenttion License Copyight c 28 Snt, FeR, Onizuk (QueGnde.og) Pemission is gnted to copy, distibute

Más detalles

ELECTRICIDAD MODULO 2

ELECTRICIDAD MODULO 2 .Paniagua Física 20 ELECTRICIDD MODULO 2 Enegía Potencial Eléctica nalicemos la siguiente situación física: una patícula q 0 cagada elécticamente se mueve desde el punto al punto B. Estos puntos están

Más detalles

Solución a los ejercicios de vectores:

Solución a los ejercicios de vectores: Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que

Más detalles

6.1. SUPERFICIE PRISMÁTICA Y PRISMA

6.1. SUPERFICIE PRISMÁTICA Y PRISMA 6 6.1. SUPERFICIE PRISMÁTICA Y PRISMA 6.. SUPERFICIE PIRAMIDAL Y PIRÁMIDE 6.. CUERPOS REDONDOS. 6.4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemina áeas de supeficies. Detemina volúmenes de sólidos. 14 Inicialmente

Más detalles

TEMAS DE MATEMATICAS (Oposiciones de Secundaria)

TEMAS DE MATEMATICAS (Oposiciones de Secundaria) TEMAS DE MATEMATICAS (Oposiciones de Secundaia) TEMA 47 GENERACIÓN DE CURVAS COMO ENVOLVENTES.. Intoducción.. Envolvente... Definición de Envolvente... Existencia de Envolvente en el Plano..3. Deteminación

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

a) El campo gravitatorio es siempre atractivo, por lo que puede ser nulo en un punto del segmento que une a las dos masas.

a) El campo gravitatorio es siempre atractivo, por lo que puede ser nulo en un punto del segmento que une a las dos masas. I..S. VICNT MDINA Depatamento de Física y Química Sapee aude CUSTIONS FÍSICA CAMPO LÉCTRICO Soluciones a las cuestiones planteadas 1. xplique las analogías y difeencias ente el campo eléctico ceado po

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles