LP Problems. M. En C. Eduardo Bustos Farías

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LP Problems. M. En C. Eduardo Bustos Farías"

Transcripción

1 LP Problems M. En C. Eduardo Bustos Farías

2 2

3 Solution

4 Decision Variables 4

5 Objective function 5

6 Constraints onstraint 3. Amount of raw material purchased determines the amount of Brute and hanelle that is available for sale or further processing. 6

7 7

8 8

9 Constraint 3. Amount of raw material purchased determines the amount of Brute and Chanelle that is available for sale or further processing. 9

10 10

11 11

12 Ejemplo. Tecnología Agrícola, S.A. Mezcla de productos

13 Tecnología Agrícola, S.A. es una compañía fabricante de fertilizantes. El gerente desea planear la combinación de sus dos mezclas a fin de obtener las mayores utilidades. Las mezclas son Hay un costo de $15 por tonelada por mezclado de los fertilizantes. 13

14 CARACTERÍSTICAS DEL CASO. 1. Maximización de las utilidades (de la fabricación de los 2 tipos de fertilizantes).un SOLO OBJETIVO. 2. Recursos escasos (los insumos o ingredientes). RESTRICCIONES. 3. Se pueden sumar las utilidades de los productos para calcular la utilidad total. ADITIVIDAD. 4. Proporcionalidad. LA FUNCIÓN OBJETIVO Y LAS RESTRICCIONES DEBEN SER PROPORCIONALES AL NIVEL DE FABRICACIÓN DE CADA PRODUCTO. 5. No se pueden fabricar cantidades negativas de los productos. 6. Divisibilidad. SON POSIBLES ASIGNACIONES FRACCIONARIAS DE LOS PRODUCTOS. 14

15 MODELO DE PROGRAMACIÓN Variables de decisión. LINEAL X 1 = toneladas del fertilizante que se fabrican al mes. X 2 = toneladas del fertilizante que se fabrican al mes. 15

16 Supuestos Utilidad = Ingresos por ventas Costos Los costos pueden ser fijos y variables. Los fijos no varían con el nivel de producción, por tanto se pueden omitir en el cálculo de la mezcla de productos que maximice las utilidades. 16

17 Los costos que se consideran son los de los insumos: 17

18 Ingresos por ventas Costos = Utilidad del $ $ = $18.50 por tonelada que se fabrique De una manera semejante para el la utilidad por tonelada fabricada es $20.00 La función objetivo (que suma la utilidad de ambos productos) será: Z = 18.5 X X 2 18

19 RESTRICCIONES DEL PROBLEMA Veamos el caso del nitrato. Por cada tonelada de que se fabrica se utilizan 0.05 (5%) de este insumo. Por ello, si se fabrican X 1 toneladas de se utilizarán 0.05 X 1 de nitrato. De forma similar para el , por cada tonelada que se fabrica se utilizan 0.05 (5%) de este insumo. Por ello, si se fabrican X 2 toneladas de se utilizarán 0.05 X 2 de nitrato. Y sólo tenemos 1100 toneladas del mismo. Y en la fabricación podemos o no usar todo el nitrato disponible. De ahí que la restricción del nitrato sería: 0.05 X X 2 <=

20 Los coeficientes de X 1 y X 2 se llaman tasas físicas de sustitución. Las restricciones para los otros dos insumos limitados son: Fosfato: 0.05 X X 2 <= 1800 Potasio: 0.10 X X 2 <=

21 Incluimos las restricciones de no negatividad, ya que no son posibles valores negativos de producción. X 1, X 2 >= 0 En resumen el problema se plantea como: Maximizar Z=18.5 X X 2 Sujeto a 0.05 X X 2 <= X X 2 <= X X 2 <= 2000 X 1, X 2 >= 0 21

22 Escom computers Método simplex

23 ESCOM Computer de México fabrica dos tipos de PCs: un modelo portátil y uno para escritorio. Ensambla los gabinetes y las tarjetas de los circuitos impresos en su única planta, que también fabrica los gabinetes y monta los componentes en las tarjetas de circuitos. La producción mensual está limitada por las siguientes capacidades: 23

24 OPERACIÓN PORTATIL PARA ESCRITORIO PRODUCCIÓN DE CAJAS MONTAJE DE CIRCUITOS ENSAMBLADO DE PORTÁTILES ENSAMBLADO PARA ESCRITORIO Los precios para las tiendas de computadoras son $1500 para la de escritorio y $1400 para la portátil. Con el fin de ser competitiva, ESCOM Computer tiene que fijar el precio de sus computadoras varios cientos de pesos por debajo de los fabricantes de prestigio. En la actualidad la compañía vende todas las computadoras que produce de cualquiera de los modelos. 24

25 Durante el primer trimestre del año produjo en cada mes: 2000 portátiles y 600 para escritorio. Tanto el montaje de los circuitos como el ensamblado de las portátiles operaron a toda su capacidad, pero hubo retraso en la producción de los gabinetes y en el ensamblado de las computadoras de escritorio. Los contadores de costos determinaron los costos estándar y los gastos indirectos fijos como se muestra en las siguientes tablas: 25

26 PARA ESCRITORIO PORTÁTILES MATERIALES DIRECTOS MANO DE OBRA DIRECTA PRODUCCIÓN DE CAJAS EXTERNAS $20 $15 MONTAJE DE TARJETAS ENSAMBLADO FINAL 5 10 $800 $690 $ GASTOS INDIRECTOS FIJOS PRODUCCIÓN DE CAJAS EXTERNAS $95 95 LLENADO DE TARJETAS MONTAJE FINAL $ TOTAL $1640 $1220

27 GASTOS INDIRECTOS FIJOS GASTOS INDIRECTOS FIJOS TOTALES (X $1000) UNITARIOS Producción de cajas externas $247 $95 Montaje de tarjetas Ensamble de componentes de escritorio Ensamblaje de portátiles $

28 En la reunión trimestral de los ejecutivos de la compañía. El gerente de ventas señaló que la computadora de escritorio no estaba produciendo utilidades. Sugirió que se le diera de baja de la línea de productos. El contralor se opuso, su argumento fue: Si producimos más computadoras de escritorio podemos rebajar el costo fijo de $415 del ensamblado final. Ahora es alto porque estamos produciendo pocas unidades. El gerente de producción respondió: Podemos aumentar la producción si subcontratamos externamente el montaje de circuitos. Podríamos proporcionar las tarjetas y los componentes y pagarle al subcontratista sus gastos indirectos y de mano de obra. El presidente terminó la reunión pidiéndole al gerente de ventas, al contralor y al gerente de producción que se reunieran y le presentaran una recomendación en relación con la mezcla de productos de la compañía y con la subcontratación. Les dijo que supusieran que la demanda se mantendría alta y que la capacidad actual permanecería fija. 28

29 ESCRITORIO PORTATILES 29

30 PREGUNTAS 1. Formule un programa lineal para determinar la mezcla óptima de productos. Suponga que no se permite la subcontratación. 30

31 VARIABLES DE DECISIÓN X1 = Número de computadoras de portátiles que se fabrican en un mes. X2= Número de computadoras escritorio que se fabrican en un mes. 31

32 Solución Max Z = 180 X1-140 x2 Sujeta a: (½) x1 + x2 <= 2000 (1) X1 <= 2000 (2) X2 <= 1800 (3) 1.2 X1 + x2 <= 3000 (4) X1, X2 >= 0 PARA GENERAR LAS RESTRICCIONES: (x1,y1) (x2, y2) (4000,0) y (0, 2000) y-y1 = ((y2-y1)/(x2-x1)) (x-x1) 32

33 2. Resuelva el problema usando el método símplex. 33

34 34

35 35

36 36

37 37

38 PROBLEMS. Hillier, Frederick S. & Hillier, Mark S. Introduction to Management Science. 2nd. Ed. USA, Mc Graw Hill - Irwin, pp. M. En C. Eduardo Bustos Farías

39 39

40 estaño plomo 40

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN Asignatura: Investigación de Operaciones 1 Periodo Académico: Julio - Diciembre de 2009 TALLER MÉTODO GRÁFICO 1. PROBLEMA DE PLANEACIÓN DE

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

ANÁLISIS DE DUALIDAD. M. En C. Eduardo Bustos Farías

ANÁLISIS DE DUALIDAD. M. En C. Eduardo Bustos Farías ANÁLISIS DE DUALIDAD M. En C. Eduardo Bustos Farías 1 LA TEORÍA DE LA DUALIDAD El método simplex además de resolver un problema de PL llegando a una solución óptima nos ofrece más y mejores elementos para

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

Dirección de operaciones. SESIÓN # 2: Programación lineal

Dirección de operaciones. SESIÓN # 2: Programación lineal Dirección de operaciones SESIÓN # 2: Programación lineal Contextualización Dentro de la sesión anterior conocimos el concepto y alcance de la administración de operaciones, dicho de otro modo el qué, ahora

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

ACTIVIDAD INTEGRADORA Nº 18 20 (El problema de las cien palomas).al volar sobre un palomar, dijo el gavilán: Adiós mis cien palomas. A lo que una paloma respondió: No somos cien. Pero con nosotras mas

Más detalles

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX.

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. 1. Un empresario tiene a su disposición dos actividades de producción lineales, mediante la contribución de tres insumos, fundición,

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Introducción a la Programación Lineal Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Historia La investigación de Operaciones se caracteriza

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL Y SU SOLUCIÓN ÓPTIMA. Considere el siguiente modelo de programación lineal y su solución óptima. Tabla simplex Final

EJERCICIOS DE PROGRAMACIÓN LINEAL Y SU SOLUCIÓN ÓPTIMA. Considere el siguiente modelo de programación lineal y su solución óptima. Tabla simplex Final EJERCICIOS DE PROGRAMACIÓN LINEAL Y SU SOLUCIÓN ÓPTIMA. Ejercicio 1 X j : Número de horas destinadas a realizar el proceso j; j= 1,2 Máx Z = 1X 1 + 11X 2 (Funcion de Ganancia, $) 1X 1 + 1X 2 12 (Disponibilidad

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES I TAREA Problemas de Transporte, transbordo y asignación Prof. :

Más detalles

UNIDAD II. PROGRAMACIÓN LINEAL

UNIDAD II. PROGRAMACIÓN LINEAL UNIDAD II. PROGRAMACIÓN LINEAL OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Introducción

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

TEMA 5. LA FUNCIÓN PRODUCTIVA DE LA EMPRESA.

TEMA 5. LA FUNCIÓN PRODUCTIVA DE LA EMPRESA. 1. EL ÁREA DE PRODUCCIÓN DE LA EMPRESA. Producir = Aumentar la utilidad de los bienes para satisfacer necesidades. Es necesario: - Adquirir las materias primas. - Transformar las materias primas en productos

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0 Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le

Más detalles

de febrero de Ejemplo de los vasos. Nuevos cambios en el lado derecho. FAQ. Sí, conozco la teoría, pero me puede poner un ejemplo?

de febrero de Ejemplo de los vasos. Nuevos cambios en el lado derecho. FAQ. Sí, conozco la teoría, pero me puede poner un ejemplo? 15.053 26 de febrero de nálisis de sensibilidad La clase sigue un esquema de FQs (preguntas frecuentes) Los distintos puntos se explican a través de un mismo ejemplo sobre fabricación de vasos de cristal.

Más detalles

ANÁLISIS DE DUALIDAD. M. En C. Eduardo Bustos Farías

ANÁLISIS DE DUALIDAD. M. En C. Eduardo Bustos Farías ANÁLISIS DE DUALIDAD M. En C. Eduardo Bustos Farías 1 LA TEORÍA DE LA DUALIDAD El método simplex además de resolver un problema de PL llegando a una solución óptima nos ofrece más y mejores elementos para

Más detalles

Suscripciones Administración Reclamos Formule un modelo de programación lineal.

Suscripciones Administración Reclamos Formule un modelo de programación lineal. EJERCICIOS DE APLICACIÓN 1) Par, Inc. es un pequeño fabricante de equipo y material de golf. El distribuidor de Par cree que existe un mercado tanto para una bolsa de golf de precio moderado, llamada modelo

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

El análisis de costo-volumen-utilidad (punto de equilibrio) es un modelo que estudia como reaccionan los beneficios frente a cambios en los niveles

El análisis de costo-volumen-utilidad (punto de equilibrio) es un modelo que estudia como reaccionan los beneficios frente a cambios en los niveles El análisis de costo-volumen-utilidad (punto de equilibrio) es un modelo que estudia como reaccionan los beneficios frente a cambios en los niveles de actividad y considerando una determinada estructura

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr Nombre: UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS METODOS CUANTITATIVOS II EXAMEN PARCIAL I /3/7 Sección # Cuenta: Catedrático: Desarrolle en forma clara y ordenada lo que a continuación se le pide:.-

Más detalles

Costeo directo y costeo absorbente

Costeo directo y costeo absorbente Costeo directo y costeo absorbente por Alma Ruth Cortés Los costos de pueden determinarse independientemente del comportamiento que éstos tengan, si son fijos o son variables. Es importante destacar que

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO La mayor parte de los PE se resuelven en la práctica mediante la técnica de ramificación y acotamiento. En este método se encuentra la solución

Más detalles

Tema 5: Análisis de Sensibilidad y Paramétrico

Tema 5: Análisis de Sensibilidad y Paramétrico Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el

Más detalles

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010 Programación Lineal Departamento de Matemáticas, CSI/ITESM 28 de abril de 2010 Índice 16.1.Introducción............................................... 1 16.2.Ejemplo 1................................................

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO M. En C. Eduardo Bustos Farías 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta

Más detalles

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1 Ejercicios de Dualidad y Análisis de Sensibilidad 1. Radioco fabrica dos tipos de radios. El único recurso escaso que se necesita para producir los radios es la mano de obra. Actualmente, la compañía tiene

Más detalles

Conceptos financieros. Apalancamiento y Planificación Financiera

Conceptos financieros. Apalancamiento y Planificación Financiera Conceptos financieros Apalancamiento y Planificación Financiera Costos fijos y variables Dependiendo del volumen de actividad de la empresa, los costos pueden dividirse en fijos y variables. Los costos

Más detalles

Plan de Estudios 2007 de la Licenciatura en Contaduría Unidad Académica de Contaduría y Administración

Plan de Estudios 2007 de la Licenciatura en Contaduría Unidad Académica de Contaduría y Administración 1 MODELOS OPERACIONALES 1. GENERALIDADES 3. ESTRUCTURA DIDACTICA Clave: M56 H S C: 4 Semestre: 5º. Créditos: 7 Área: Matemáticas 2. REQUISITOS Asignatura antecedente: Cálculo aplicado Asignatura consecuente:

Más detalles

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios Ubicación dentro del Programa Unidad III UNIDAD II: PROGRAMACIÓN LINEAL 1. Característica. Formulación matemática de un problema de programación lineal. Planteo e interpretación de un sistema de inecuaciones.

Más detalles

PROBLEMAS DE PRECIOS

PROBLEMAS DE PRECIOS PROBLEMAS DE PRECIOS PROBLEMA 1. Una empresa fabrica tres tipos de productos A, B y C, con producciones previstas de 1.200, 2.400 y 4.800 unidades anuales respectivamente. Según el departamento de contabilidad

Más detalles

CONTABILIDAD DE COSTOS POR PROCESOS

CONTABILIDAD DE COSTOS POR PROCESOS LECCIÓN Nº 13 CONTABILIDAD DE COSTOS POR PROCESOS OBJETIVO ESPECÍFICO: Analizar las técnicas y procedimientos de la contabilidad de costos de los procesos de producción por departamentos o similares. PROPÓSITO:

Más detalles

Programación Lineal. Programación Lineal

Programación Lineal. Programación Lineal Programación Lineal Modelo General Max Z = c 1 + C 2 +... c n, s.a. a 11 + a 12 +... + a 1n b 1 a 21 + a 22 +... + a 2n b 2.. a m1 + a m2 +... + a mn b m 0, 0, x 3 0,..., 0 Programación Lineal Interpretación

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal La regla del 100 % 17 de febrero de 2011 La regla del 100 % () Optimización y Programación Lineal 17 de febrero de 2011 1 / 21 Introducción Introducción Veamos ahora

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo IV Unidad UnidadIV Análisis Dualidad de

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

UNIDAD II PLANEACIÓN AGREGADA DE LA PRODUCCIÓN

UNIDAD II PLANEACIÓN AGREGADA DE LA PRODUCCIÓN UNIDAD II PLANEACIÓN AGREGADA DE LA PRODUCCIÓN Curso: Administración de Operaciones III OBJETIVOS Cuando haya completado esta unidad, debe ser capaz de identificar y definir: Planeación agregada Propósito

Más detalles

FINANZAS III MATERIAL DE APOYO- SEGUNDO PARCIAL GRUPO PACE. LABORATORIO No. 1 EVALUACIÓN FINANCIERA DE PROYECTOS DE INVERSIÓN

FINANZAS III MATERIAL DE APOYO- SEGUNDO PARCIAL GRUPO PACE. LABORATORIO No. 1 EVALUACIÓN FINANCIERA DE PROYECTOS DE INVERSIÓN LABORATORIO No. 1 EVALUACIÓN FINANCIERA DE PROYECTOS DE INVERSIÓN PLANTEAMIENTO DEL PROBLEMA El Consejo de Administración de Proyectos Exitosos, S. A. decide desarrollar un proyecto para producir tornos

Más detalles

Breve introducción a la Investigación de Operaciones

Breve introducción a la Investigación de Operaciones Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Programación Lineal Departamento de Matemáticas ITESM Programación Lineal Ma130 - p. 1/27 ducción En esta lectura daremos una introducción a la modelación de problemas

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014 http://www.matematicaaplicada.info 1 de 6 jezasoft@gmail.com MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas

Más detalles

RESOLUCIÓN DE EJERCICIOS. b) Determine el valor de verdad de la siguiente proposición. Justifique su respuesta. El conjunto solución de la inecuación

RESOLUCIÓN DE EJERCICIOS. b) Determine el valor de verdad de la siguiente proposición. Justifique su respuesta. El conjunto solución de la inecuación RESOLUCIÓN DE EJERCICIOS Ejercicio 1. x a) Resuelva: 2 + x 5 x 4 Solución: 6x + 4x 60 x 10x + x 60 1x 60 X 60 1 b) Determine el valor de verdad de la siguiente proposición. Justifique su respuesta. El

Más detalles

SISTEMA DE COSTOS POR ORDENES DE PRODUCCIÓN.

SISTEMA DE COSTOS POR ORDENES DE PRODUCCIÓN. SISTEMA DE COSTOS POR ORDENES DE PRODUCCIÓN. 1.- Definición. Sistema de costos por órdenes de producción. Este sistema recolecta los costos para cada orden o lote físicamente identificables en su paso

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

La Dualidad en el Problema de Transporte

La Dualidad en el Problema de Transporte II Conferencia de Ingeniería de Organización Vigo, 5-6 Septiembre 2002 La Dualidad en el Problema de Transporte Francisco López Ruiz, Germán Arana Landín 2 Doctor Ingeniero Industrial, Departamento Organización

Más detalles

PROGRAMACION CUADRATICA

PROGRAMACION CUADRATICA PROGRAMACION CUADRATICA Programación convexa La programación convexa abarca una amplia clase de problemas, entre ellos como casos especiales, están todos los tipos anteriores cuando /(x) es cóncava. Las

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

PLE: Ramificación y Acotamiento

PLE: Ramificación y Acotamiento PLE: Ramificación y Acotamiento CCIR / Depto Matemáticas TC3001 CCIR / Depto Matemáticas PLE: Ramificación y Acotamiento TC3001 1 / 45 La compañía TELFA fabrica mesa y sillas. Una mesa requiere 1 hora

Más detalles

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA Facultad de Farmacia Grado en Nutrición Humana y Dietética Depto. de Estadística e Investigación Operativa ESTADÍSTICA TEMA 6: Introducción a la Programación Lineal GRUPO C y E. Curso 2015-2016 Profesor:

Más detalles

Universidad del Rosario Facultad de Economía Microeconomía I TALLER V

Universidad del Rosario Facultad de Economía Microeconomía I TALLER V Universidad del Rosario Facultad de Economía Microeconomía I Jacobo Rozo, Andrea Atencio, Rosa Villareal, Carlos Eduardo Hernández TALLER V 1) Pepito Pérez Compañía es una empresa que planea salir al mercado

Más detalles

2.7 a) $30,000 b) $15,000 c) $2 d) $40,000 e) $10,000

2.7 a) $30,000 b) $15,000 c) $2 d) $40,000 e) $10,000 2.1 a) Supervisión Costo de producción (Costo Ind. Fab) b) Honorarios a auditores Gastos de administración c) Sueldos de oficinistas Gastos de administración d) Lubricantes Costo de producción (Costo Ind.

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6 Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla COLEGIO SANTÍSIMA TRINIDAD Sevilla Dpto de Matemáticas Curso 2009-10 Boletín de Programación Lineal Matemáticas 2º Bach CC.SS. 1. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas.

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel Prof.: MSc. Julio Rito Vargas A. UNIVERSIDAD DE MANAGUA Al más alto nivel Análisis de Sensibilidad (Problemas resueltos) Un fabricante produce tres componentes para venderlos a compañías de refrigeración.

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

Clase #1 INTRODUCCIÓN: INVESTIGACIÓN DE OPERACIONES (I.O.) Y MODELAMIENTO MATEMATICO

Clase #1 INTRODUCCIÓN: INVESTIGACIÓN DE OPERACIONES (I.O.) Y MODELAMIENTO MATEMATICO Clase #1 INTRODUCCIÓN: INVESTIGACIÓN DE OPERACIONES (I.O.) Y MODELAMIENTO MATEMATICO CONTENIDO 1. Objetivos del curso 2. Programa Resumido 3. Evaluaciones 4. Bibliografía 5. Orígenes de la I. O. 6. Casos

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

L.A. y M.C.E. Emma Linda Diez Knoth

L.A. y M.C.E. Emma Linda Diez Knoth L.A. y M.C.E. Emma Linda Diez Knoth 1 El estudio de precios tiene una gran importancia e incidencia en el estudio de mercado, ya que de la fijación del precio y de sus posibles variaciones dependerá el

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

IN34A - Optimización

IN34A - Optimización IN34A - Optimización Modelos de Programación Lineal Leonardo López H. lelopez@ing.uchile.cl Primavera 2008 1 / 24 Contenidos Programación Lineal Continua Problema de Transporte Problema de Localización

Más detalles

Producto.- Se debe revisar si es un solo producto o sin son productos estandarizados, varios productos o un producto a pedido.

Producto.- Se debe revisar si es un solo producto o sin son productos estandarizados, varios productos o un producto a pedido. INTRODUCCION RESUMEN EJECUTIVO 1. PROBLEMAS La empresa CASAS PREFABRICADAS Y SERVICIO EN GENERAL S.A. no iene una adecuada distribución de los espacios de trabajo, el cual le genera costos innecesarios

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150 Ejercicios Tema 1. 1.- Utilizar el procedimiento gráfico para resolver los siguientes P.L. a) Max z = 10x 1 + 20x 2 s.a x 1 + 2x 2 15 x 1 + x 2 12 5x 1 + 3x 2 45 x 1,x 2 0 b) Max z = 2x 1 + x 2 s.a. x

Más detalles

La función productiva en la empresa

La función productiva en la empresa en la empresa Área de producción Producir consiste en aumentar la utilidad de los bienes para satisfacer las necesidades humanas Utilidad de forma: transformación de MP a producto deseado Utilidad de lugar:

Más detalles

PROGRAMACION LINEAL. Identificación de las soluciones con GAMS

PROGRAMACION LINEAL. Identificación de las soluciones con GAMS PROGRAMACION LINEAL Identificación de las soluciones con GAMS Max F(x) = x 1 + 2 x 2 s.a: x 1 + x 2 4 2 x 1 + x 2 6 x 1 0 x 2 0 4 (2,2) F(x)=8 0 3 *EJEMPLO N-1 *POLIEDRO - VERTICE VARIABLES X1, X2, F;

Más detalles

ANEXO I RESOLUCION Nº 301/03. Profesor Asociado a cargo Licenciado Schroeder, Norberto Jorge

ANEXO I RESOLUCION Nº 301/03. Profesor Asociado a cargo Licenciado Schroeder, Norberto Jorge Carrera: Contador Público Nacional Departamento: Económico - Social Asignatura: Microeconomia Régimen: Teórico Practico Crédito Horario: 90 horas. Año: 2do. Año Cuatrimestre: Segundo cuatrimestre. ANEXO

Más detalles