Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estadística II Tema 4. Regresión lineal simple. Curso 2009/10"

Transcripción

1 Estadística II Tema 4. Regresión lineal simple Curso 009/10

2 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias sobre el modelo de regresión: Inferencia sobre la pendiente Inferencia sobre la varianza Estimación de una respuesta promedio Predicción de una nueva respuesta

3 Tema 4. Regresión lineal simple Objetivos de aprendizaje Saber construir un modelo de regresión lineal simple que describa cómo influye una variable X sobre otra variable Y Saber obtener estimaciones puntuales de los parámetros de dicho modelo Saber contruir intervalos de confianza y resolver contrastes sobre dichos parámetros Saber estimar el valor promedio de Y para un valor de X Saber predecir futuros de la variable respuesta, Y

4 Tema 4. Regresión lineal simple Referencias en la bibliografía Meyer, P. Probabilidad y aplicaciones estadísticas (199) Capítulo Newbold, P. Estadística para los negocios y la economía (1997) Capítulo 10 Peña, D. Regresión y análisis de experimentos (005) Capítulo 5

5 Introducción Un modelo de regresión es un modelo que permite describir cómo influye una variable X sobre otra variable Y. X: Variable independiente o explicativa o exógena Y: Variable dependiente o respuesta o endógena El objetivo es obtener estimaciones razonables de Y para distintos valores de X a partir de una muestra de n pares de valores (x 1, y 1 ),..., (x n, y n ).

6 Introducción Ejemplos Estudiar cómo influye la estatura del padre sobre la estatura del hijo. Estimar el precio de una vivienda en función de su superficie. Predecir la tasa de paro para cada edad. Aproximar la calificación obtenida en una materia según el número de horas de estudio semanal. Prever el tiempo de computación de un programa en función de la velocidad del procesador.

7 Introducción Tipos de relación Determinista: Conocido el valor de X, el valor de Y queda perfectamente establecido. Son del tipo: y = f (x) Ejemplo: La relación existente entre la temperatura en grados centígrados (X ) y grados Fahrenheit (Y ) es: y = 1,8x Plot of Grados Fahrenheit vs Grados centígrados Grados Fahrenheit Grados centígrados

8 Introducción Tipos de relación No determinista: Conocido el valor de X, el valor de Y no queda perfectamente establecido. Son del tipo: y = f (x) + u donde u es una perturbación desconocida (variable aleatoria). Ejemplo: Se tiene una muestra del volumen de producción (X ) y el costo total (Y ) asociado a un producto en un grupo de empresas. 80 Plot of Costos vs Volumen 60 Costos Volumen Existe relación pero no es exacta.

9 Introducción Tipos de relación Lineal: Cuando la función f (x) es lineal, f (x) = β 0 + β 1 x Si β1 > 0 hay relación lineal positiva. Si β1 < 0 hay relación lineal negativa. Relación lineal positiva Relación lineal negativa Y Y X X Los datos tienen un aspecto recto.

10 Introducción Tipos de relación No lineal: Cuando la función f (x) no es lineal. Por ejemplo, f (x) = log(x), f (x) = x + 3,... Relación no lineal 1 0 Y X Los datos no tienen un aspecto recto.

11 Introducción Tipos de relación Ausencia de relación: Cuando f (x) = 0.,5 Ausencia de relación 1,5 0,5 Y -0,5-1,5 -, X

12 Medidas de dependencia lineal La covarianza Una medida de la dependencia lineal es la covarianza: cov (x, y) = n (x i x) (y i ȳ) i=1 n 1 Si hay relación lineal positiva, la covarianza será positiva y grande. Si hay relación lineal negativa, la covarianza será negativa y grande en valor absoluto. Si hay no hay relación entre las variables o la relación es marcadamente no lineal, la covarianza será próxima a cero. PERO la covarianza depende de las unidades de medida de las variables.

13 Medidas de dependencia lineal El coeficiente de correlación lineal Una medida de la dependencia lineal que no depende de las unidades de medida es el coeficiente de correlación lineal: r (x,y) = cor (x, y) = cov (x, y) s x s y donde: n (x i x) n (y i ȳ) s x = i=1 n 1 y s y = i=1 n 1-1 cor (x, y) 1 cor (x, y) = cor (y, x) cor (ax + b, cy + d) = cor (x, y) para cualesquiera valores a, b, c, d.

14 El modelo de regresión lineal simple El modelo de regresión lineal simple supone que, donde: y i = β 0 + β 1 x i + u i y i representa el valor de la variable respuesta para la observación i-ésima. x i representa el valor de la variable explicativa para la observación i-ésima. u i representa el error para la observación i-ésima que se asume normal, u i N(0, σ) β 0 y β 1 son los coeficientes de regresión: β0 : intercepto β1 : pendiente Los parámetros que hay que estimar son: β 0, β 1 y σ.

15 El modelo de regresión lineal simple El objetivo es obtener estimaciones ˆβ 0 y ˆβ 1 de β 0 y β 1 para calcular la recta de regresión: ŷ = ˆβ 0 + ˆβ 1 x que se ajuste lo mejor posible a los datos. Ejemplo: Supongamos que la recta de regresión del ejemplo anterior es: Costo = 15,65 + 1,9 Volumen 80 Plot of Fitted Model 60 Costos Volumen Se estima que una empresa que produce 5 mil unidades tendrá un costo: costo = 15,65 + 1,9 5 = 16,6 mil euros

16 El modelo de regresión lineal simple La diferencia entre cada valor y i de la variable respuesta y su estimación ŷ i se llama residuo: e i = y i ŷ i Valor observado Dato (y) Recta de regresión estimada Ejemplo (cont.): Indudablemente, una empresa determinada que haya producido exactamente 5 mil unidades no va a tener un gasto de exactamente 16,6 mil euros. La diferencia entre el costo estimado y el real es el residuo. Si por ejemplo el costo real de la empresa es de 18 mil euros, el residuo es: e i = 18 16,6 = 1,4mil euros

17 Hipótesis del modelo de regresión lineal simple Linealidad: La relación existente entre X e Y es lineal, f (x) = β 0 + β 1 x Homogeneidad: El valor promedio del error es cero, E[u i ] = 0 Homocedasticidad: La varianza de los errores es constante, Var(u i ) = σ Independencia: Las observaciones son independientes, E[u i u j ] = 0 Normalidad: Los errores siguen una distribución normal, u i N(0, σ)

18 Hipótesis del modelo de regresión lineal simple Linealidad Los datos deben ser razonablemante rectos. 80 Plot of Fitted Model 60 Costos Volumen Si no, la recta de regresión no representa la estructura de los datos. 34 Plot of Fitted Model 4 Y X

19 Hipótesis del modelo de regresión lineal simple Homocedasticidad La dispersión de los datos debe ser constante para que los datos sean homocedásticos. 80 Plot of Costos vs Volumen 60 stos Cos Volumen Si no se cumple, los datos son heterocedásticos.

20 x i In Objetivo: Analizar la relación entre una o varias Hipótesis del modelo de regresión lineal simple Independencia variables dependientes y un conjunto de factores independientes. Los datos deben ser independientes. Tipos de relaciones: f ( Y, Y,..., Y X, X,..., X ) 1 k 1 Una observación- Relación no debe no lineal dar información sobre las demás. Habitualmente, -se Relación sabelineal por el tipo de datos si son adecuados o no para el análisis. Regresión lineal simple En general, las series temporales no cumplen la hipótesis de Regresión Lineal independencia. Normalidad Se asume que Modelo los datos son normales a priori. y 0 1x u, u N(0, ) i i i l i Núm. Obs (i) Regresión H L y i 0 1 x N H

21 Estimadores de mínimos cuadrados Gauss propuso en 1809 el método de mínimos xi cuadrados para obtener los valores ˆβ 0 y ˆβ 1 que mejor se ajustan a los datos: Regresión Lineal ŷ i = ˆβ 0 + ˆβ 1 x i El método consiste en minimizar la suma de los cuadrados de las distancias verticales entre los datos y las estimaciones, es decir, minimizar la suma de los residuos al cuadrado, Residuos n n n ( ( )) ei = y (y i ŷ i ) = ˆ ˆ y i ˆβ 0 + ˆβ 1 x i i 0 1xi e i i=1 i=1 i=1 Valor Observado Valor Previsto Residuo e i x 7 y i yˆ i ˆ ˆ 0 1x i x i

22 y, Estimadores de mínimos i 1xi u u cuadrados i i y El resultado que se obtiene i : Variable dependiente es: cov(x, y) ˆβ 1 = = Regresión Lineal 0 N(0, ) x i : Variable independiente u i : Parte aleatoria s x n (x i x) (y i ȳ) i=1 0 n (x i x) i=1 6 y i y Regresión Lineal Recta de regresión ˆβ 0 = ȳ ˆβ 1 x yˆ ˆ ˆ 1x 0 Residuos y i Valor Observ y ˆ 0 y ˆ 1x x Pendiente ˆ 1 y i Regresión Lineal 8 Regresión Lineal

23 Estimadores de mínimos cuadrados Ejercicio 4.1 Los datos de la producción de trigo en toneladas (X ) y el precio del kilo de harina en pesetas (Y ) en la década de los 80 en España fueron: Producción de trigo Precio de la harina Ajusta la recta de regresión por el método de mínimos cuadrados Resultados ˆβ 1 = 10 i=1 10 i=1 x i y i n xȳ xi n x = ,6 35, ,6 = 1,3537 ˆβ 0 = ȳ ˆβ 1 x = 35,4 + 1,3537 8,6 = 74,116 La recta de regresión es: ŷ = 74,116 1,3537x

24 Estimadores de mínimos cuadrados Ejercicio 4.1 Los datos de la producción de trigo en toneladas (X ) y el precio del kilo de harina en pesetas (Y ) en la década de los 80 en España fueron: Producción de trigo Precio de la harina Ajusta la recta de regresión por el método de mínimos cuadrados Resultados ˆβ 1 = 10 i=1 10 i=1 x i y i n xȳ xi n x = ,6 35, ,6 = 1,3537 ˆβ 0 = ȳ ˆβ 1 x = 35,4 + 1,3537 8,6 = 74,116 La recta de regresión es: ŷ = 74,116 1,3537x

25 Estimadores de mínimos cuadrados 50 Plot of Fitted Model Precio en ptas Produccion en kg. βˆ0 βˆ1 Regression Analysis - Linear model: Y = a + b*x Dependent variable: Precio en ptas. Independent variable: Produccion en kg. Standard T Parameter Estimate Error Statistic P-Value Intercept 74,1151 8, ,4841 0,0000 Slope -1, ,300-4,5094 0,000 Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model 58, ,475 0,33 0,000 Residual 07,95 8 5,9906 Total (Corr.) 736,4 9 Correlation Coefficient = -0,84714 R-squared = 71,7647 percent Standard Error of Est. = 5,0981

26 Estimación de la varianza Para estimar la varianza de los errores, σ, podemos utilizar, ˆσ = que es el estimador máximo verosímil de σ, pero es un estimador sesgado. n i=1 Un estimador insesgado de σ es la varianza residual, n n i=1 e i e i sr = n

27 Estimación de la varianza Ejercicio 4. Calcula la varianza residual en el ejercicio 4.1. Resultados Calculamos primero los residuos, e i, usando la recta de regresión, ŷ i = 74,116 1,3537x i x i y i ŷ i e i La varianza residual es: s R = n e i i=1 n = 07,9 = 5,99 8

28 Estimación de la varianza Ejercicio 4. Calcula la varianza residual en el ejercicio 4.1. Resultados Calculamos primero los residuos, e i, usando la recta de regresión, ŷ i = 74,116 1,3537x i x i y i ŷ i e i La varianza residual es: s R = n e i i=1 n = 07,9 = 5,99 8

29 Estimación de la varianza Regression Analysis - Linear model: Y = a + b*x Dependent variable: Precio en ptas. Independent variable: Produccion en kg. Standard T Parameter Estimate Error Statistic P-Value Intercept 74,1151 8, ,4841 0,0000 Slope -1, ,300-4,5094 0,000 Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model 58, ,475 0,33 0,000 Residual 07,95 8 5,9906 Total (Corr.) 736,4 9 Correlation Coefficient = -0,84714 R-squared = 71,7647 percent Standard Error of Est. = 5,0981 s R

30 Inferencias sobre el modelo de regresión Hasta ahora sólo hemos obtenido estimaciones puntuales de los coeficientes de regresión. Usando intervalos de confianza podemos obtener una medida de la precisión de dichas estimaciones. Usando contrastes de hipótesis podemos comprobar si un determinado valor puede ser el auténtico valor del parámetro.

31 Inferencia para la pendiente El estimador ˆβ 1 sigue una distribución normal porque es una combinación lineal de normales, n (x i x) n ˆβ 1 = (n 1)sX y i = w i y i i=1 donde y i = β 0 + β 1 x i + u i, que cumple que y i N ( β 0 + β 1 x i, σ ). Además, ˆβ 1 es un estimador insesgado de β 1, y su varianza es, Por tanto, [ ] Var ˆβ 1 = [ ] E ˆβ1 = i=1 i=1 i=1 n (x i x) (n 1)sX E [y i ] = β 1 n ( ) (xi x) σ (n 1)sX Var [y i ] = (n 1)sX ( ˆβ 1 N β 1, σ (n 1)s X )

32 Intervalo de confianza para la pendiente Queremos ahora obtener el intervalo de confianza para β 1 de nivel 1 α. Como σ es desconocida, la estimamos con sr. El resultado básico cuando la varianza es desconocida es: ˆβ 1 β 1 s R (n 1)s X t n que nos permite obtener el intervalo de confianza para β 1 : sr ˆβ 1 ± t n,α/ (n 1)sX La longitud del intervalo disminuirá si: Aumenta el tamaño de la muestra. Aumenta la varianza de las x i. Disminuye la varianza residual.

33 Contrastes sobre la pendiente Usando el resultado anterior podemos resolver contrastes sobre β 1. En particular, si el verdadero valor de β 1 es cero entonces Y no depende linealmente de X. Por tanto, es de especial interés el contraste: H 0 : β 1 = 0 H 1 : β 1 0 La región de rechazo de la hipótesis nula es: ˆβ 1 s R /(n 1)sX > t n,α/ Equivalentemente, si el cero está fuera del intervalo de confianza para β 1 de nivel 1 α, rechazamos la hipótesis nula a ese nivel. El p-valor del contraste es: ( ) ˆβ 1 p-valor = Pr t n > s R /(n 1)sX

34 Inferencia para la pendiente Ejercicio Calcula un intervalo de confianza al 95 % para la pendiente de la recta de regresión obtenida en el ejercicio Contrasta la hipótesis de que el precio de la harina depende linealmente de la producción de trigo, usando un nivel de significación de Resultados 1. t n,α/ = t 8,0,05 =,306,306 1,3537 β1 5,99 9 3,04,046 β 1 0,661,306. Como el intervalo no contiene al cero, rechazamos que β 1 = 0 al nivel De hecho: ˆβ 1 s R / (n 1) sx = 1,3537 5,99 = 4,509 >,306 p-valor= Pr(t 8 > 4,509) = 0,00 9 3,04

35 Inferencia para la pendiente Ejercicio Calcula un intervalo de confianza al 95 % para la pendiente de la recta de regresión obtenida en el ejercicio Contrasta la hipótesis de que el precio de la harina depende linealmente de la producción de trigo, usando un nivel de significación de Resultados 1. t n,α/ = t 8,0,05 =,306,306 1,3537 β1 5,99 9 3,04,046 β 1 0,661,306. Como el intervalo no contiene al cero, rechazamos que β 1 = 0 al nivel De hecho: ˆβ 1 s R / (n 1) sx = 1,3537 5,99 = 4,509 >,306 p-valor= Pr(t 8 > 4,509) = 0,00 9 3,04

36 Inferencia para la pendiente s R ( n 1) sx ˆ β 1 s /( n 1) R s X Regression Analysis - Linear model: Y = a + b*x Dependent variable: Precio en ptas. Independent variable: Produccion en kg. Standard T Parameter Estimate Error Statistic P-Value Intercept 74,1151 8, ,4841 0,0000 Slope -1, ,300-4,5094 0,000 Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model 58, ,475 0,33 0,000 Residual 07,95 8 5,9906 Total (Corr.) 736,4 9 Correlation Coefficient = -0,84714 R-squared = 71,7647 percent Standard Error of Est. = 5,0981

37 Inferencia para el intercepto El estimador ˆβ 0 sigue una distribución normal porque es una combinación lineal de normales, n ( ) 1 ˆβ 0 = n xw i y i i=1 donde w i = (x i x) /ns X y donde y i = β 0 + β 1 x i + u i, que cumple que y i N ( β 0 + β 1 x i, σ ). Además, ˆβ 0 es un estimador insesgado de β 0, y su varianza es, [ ] Var ˆβ 0 = y por tanto, [ ] E ˆβ 0 = n i=1 n i=1 ( ) 1 n xw i E [y i ] = β 0 ( ) ( 1 1 n xw i Var [y i ] = σ n + x ) (n 1)sX ( 1n ˆβ 0 N (β 0, σ + x )) (n 1)sX

38 Intervalo de confianza para el intercepto Queremos ahora obtener el intervalo de confianza para β 0 de nivel 1 α. Como σ es desconocida, la estimamos con s R. El resultado básico cuando la varianza es desconocida es: s R ˆβ 0 β 0 ( 1 n + x ) t n (n 1)sX que nos permite obtener el intervalo de confianza para β 0 : ( ) ˆβ 0 ± t n,α/ sr 1 n + x (n 1)sX La longitud del intervalo disminuirá si: Aumenta el tamaño de la muestra. Aumenta la varianza de las x i. Disminuye la varianza residual. Disminuye la media de las x i.

39 Contrastes sobre el intercepto Usando el resultado anterior podemos resolver contrastes sobre β 0. En particular, si el verdadero valor de β 0 es cero entonces la recta de regresión pasa por el origen. Por tanto, es de especial interés el contraste: H 0 : β 0 = 0 H 1 : β 0 0 La región de rechazo de la hipótesis nula es: ˆβ 0 ( ) > t n,α/ sr 1 n + x (n 1)s X Equivalentemente, si el cero está fuera del intervalo de confianza para β 0 de nivel 1 α, rechazamos la hipótesis nula a ese nivel. El p-valor es: p-valor = Pr t n > ˆβ 0 ( ) sr 1 n + x (n 1)s X

40 Inferencia para el intercepto Ejercicio Calcula un intervalo de confianza al 95 % para el intercepto de la recta de regresión obtenida en el ejercicio Contrasta la hipótesis de que la recta de regresión pasa por el origen, usando un nivel de significación de Resultados 1. t n,α/ = t 8,0,05 =,306,306 5,99 74,1151 β 0 ( ,6 9 3,04 ),306 53,969 β0 94,61. Como el intervalo no contiene al cero, rechazamos que β 0 = 0 al nivel De hecho: ˆβ 0 ( ) = 74,1151 ( ) = 8,484 >,306 sr 1 + n 5,99 x (n 1)s X p-valor= Pr(t 8 > 8,483) = 0, ,6 9 3,04

41 Inferencia para el intercepto Ejercicio Calcula un intervalo de confianza al 95 % para el intercepto de la recta de regresión obtenida en el ejercicio Contrasta la hipótesis de que la recta de regresión pasa por el origen, usando un nivel de significación de Resultados 1. t n,α/ = t 8,0,05 =,306,306 5,99 74,1151 β 0 ( ,6 9 3,04 ),306 53,969 β0 94,61. Como el intervalo no contiene al cero, rechazamos que β 0 = 0 al nivel De hecho: ˆβ 0 ( ) = 74,1151 ( ) = 8,484 >,306 sr 1 + n 5,99 x (n 1)s X p-valor= Pr(t 8 > 8,483) = 0, ,6 9 3,04

42 Inferencia para el intercepto ˆ β 0 1 x sr n ( n 1) s 1 x X sr n ( n 1) s Regression Analysis - Linear model: Y = a + b*x X Dependent variable: Precio en ptas. Independent variable: Produccion en kg. Standard T Parameter Estimate Error Statistic P-Value Intercept 74,1151 8, ,4841 0,0000 Slope -1, ,300-4,5094 0,000 Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model 58, ,475 0,33 0,000 Residual 07,95 8 5,9906 Total (Corr.) 736,4 9 Correlation Coefficient = -0,84714 R-squared = 71,7647 percent Standard Error of Est. = 5,0981

43 Inferencia para la varianza El resultado básico es que: (n ) s R σ χ n Utilizando este resultado podemos: Construir el intervalo de confianza para la varianza: (n ) s R χ n,α/ σ (n ) s R χ n,1 α/ Resolver contrastes del tipo: H 0 : σ = σ 0 H 1 : σ σ 0

44 Estimación de una respuesta promedio y predicción de una nueva respuesta Se distiguen dos tipos de problemas: 1. Estimar el valor medio de la variable Y para cierto valor X = x 0.. Predecir el valor que tomará la variable Y para cierto valor X = x 0. Por ejemplo, en el ejercicio 4.1: 1. Cuál será el precio medio del kg. de harina para los años en que se producen 30 ton. de trigo?. Si un determinado año se producen 30 ton. de trigo, cuál será el precio del kg. de harina? En ambos casos el valor estimado es: ŷ 0 = ˆβ 0 + ˆβ 1 x 0 = ȳ + ˆβ 1 (x 0 x) Pero la precisión de las estimaciones es diferente.

45 Estimación de una respuesta promedio Teniendo en cuenta que: ( ) Var (ŷ 0 ) = Var (ȳ) + (x 0 x) Var ˆβ 1 ( ) = σ 1 n + (x 0 x) (n 1) sx El intervalo de confianza para la respuesta promedio es: ( ) ŷ 0 ± t n,α/ s 1 R n + (x 0 x) (n 1) sx

46 Predicción de una nueva respuesta La varianza de la predicción de una nueva respuesta es el error cuadrático medio de la predicción: [ E (y 0 ŷ 0 ) ] = Var (y 0 ) + Var (ŷ 0 ) ( ) = σ n + (x 0 x) (n 1) s X El intervalo de confianza para la predicción de una nueva respuesta es: ( ) ŷ 0 ± t n,α/ s R n + (x 0 x) (n 1) sx La longitud de este intervalo es mayor que la del anterior (menos precisión) porque no corresponde a un valor medio sino a uno específico.

47 Estimación de una respuesta promedio y predicción de una nueva respuesta En rojo se muestran los intervalos para las medias estimadas y en rosa los intervalos de predicción. Se observa que la amplitud de estos últimos es considerablemente mayor. 50 Plot of Fitted Model Precio en ptas Produccion en kg.

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Segunda práctica de REGRESIÓN.

Segunda práctica de REGRESIÓN. Segunda práctica de REGRESIÓN. DATOS: fichero practica regresión 2.sf3. Objetivo: El objetivo de esta práctica es interpretar una regresión y realizar correctamente la diagnosis. En la primera parte se

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA

CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA 3.- INTERVALO DE CONFIANZA PARA LA VARIANZA 4.- INTERVALO DE

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): 0 81 098 www.ceformativos.com EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E.

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E. OPTIMIZACIÓN EXPERIMENTAL Ing. José Luis Zamorano E. Introducción n a la metodología de superficies de respuesta EXPERIMENTACIÓN: Significa variar deliberadamente las condiciones habituales de trabajo

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular

Más detalles

Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo

Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo Favor de abrir el navegador Mozilla Firefox y escriba la siguiente dirección http://math.uprag.edu/area.mtw

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

EJERCICIOS DE ESTADÍSTICA:

EJERCICIOS DE ESTADÍSTICA: EJERCICIOS DE ESTADÍSTICA: 1º/ Una biblioteca desea estimar el porcentaje de libros infantiles que posee. La biblioteca está compuesta de 4 salas (orte, Sur, Este y Oeste) con 2500, 2740, 4000 y 6900 libros,

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido:

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido: INTRODUCCIÓN A LA ESTADÍSTICA. Relación 4: REGRESIÓN Y CORRELACIÓN 1.- En una población se ha procedido a realizar observaciones sobre un par de variables X e Y. Xi 4 5 4 5 6 5 6 6 Yi 1 1 3 3 3 4 4 ni

Más detalles

Técnicas Cuantitativas para el Management y los Negocios

Técnicas Cuantitativas para el Management y los Negocios Segundo cuatrimestre - 4 Técnicas Cuantitativas para el Management y los Negocios Mag. María del Carmen Romero 4 romero@econ.unicen.edu.ar Módulo III: APLICACIONES Contenidos Módulo III Unidad 9. Análisis

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán para realizar un análisis, la obtención del rendimiento esperado

Más detalles

1. Distribución Normal estándar

1. Distribución Normal estándar Distribución Normal estándar y cuadrados mínimos Universidad de Puerto Rico ESTA 3041 Prof. Héctor D. Torres Aponte 1. Distribución Normal estándar En efecto, todas las distribuciones Normales son lo mismo

Más detalles

Introducción a la regresión ordinal

Introducción a la regresión ordinal Introducción a la regresión ordinal Jose Barrera jbarrera@mat.uab.cat 20 de mayo 2009 Jose Barrera (UAB) Introducción a la regresión ordinal 20 de mayo 2009 1 / 11 Introducción a la regresión ordinal 1

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

Tema 8. Análisis de dos variables Ejercicios resueltos 1

Tema 8. Análisis de dos variables Ejercicios resueltos 1 Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

Estimación no-paramétrica Máximo Camacho Alonso Universidad de Murcia

Estimación no-paramétrica Máximo Camacho Alonso Universidad de Murcia Estimación no-paramétrica Máximo Camacho Alonso Universidad de Murcia www.um.es/econometria/tecpre mcamacho@um.es Maximo Camacho Estimación no-paramétrica 1 Contenido del tema Introducción: ventajas e

Más detalles

Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos)

Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Alberto Contreras Cristán, Miguel Ángel Chong Rodríguez. Departamento de Probabilidad y Estadística Instituto de Investigaciones en

Más detalles

Muestreo e inferencia

Muestreo e inferencia Images created with STATA software. 1 Muestreo e inferencia Calidad de los datos y las mediciones Razones para hablar de muestreo Formación académica de la población Comprender los datos que se van a utilizar

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL.

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. Benjamín R. Sarmiento Lugo. Universidad Pedagógica Nacional bsarmiento@pedagogica.edu.co Esta conferencia está basada en uno de los temas desarrollados

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 01221701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia URRUTIA MOSQUERA, JORGE ANDRÉS; SALAZAR, HEVER DARÍO; CRUZ TREJOS, EDUARDO ARTURO EVALUACIÓN DE LA ROBUSTEZ

Más detalles

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.

Más detalles

8.2.5. Intervalos para la diferencia de medias de dos poblaciones

8.2.5. Intervalos para la diferencia de medias de dos poblaciones 8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:

Más detalles

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10 Estadistica II Tema 1. Inferencia sobre una población Curso 2009/10 Tema 1. Inferencia sobre una población Contenidos Introducción a la inferencia Estimadores puntuales Estimación de la media y la varianza

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

1. Caso no lineal: ajuste de una función potencial

1. Caso no lineal: ajuste de una función potencial 1. Caso no lineal: ajuste de una función potencial La presión (P) y el volumen (V ) en un tipo de gas están ligados por una ecuación del tipo PV b = a, siendo a y b dos parámetros desconocidos. A partir

Más detalles

PRÁCTICA 3: Ejercicios del capítulo 5

PRÁCTICA 3: Ejercicios del capítulo 5 PRÁCICA 3: Eercicios del capítulo 5 1. Una empresa bancaria a contratado a un equipo de expertos en investigación de mercados para que les asesoren sobre el tipo de campaña publicitaria más recomendable

Más detalles

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013 ema 3.1: Modelo lineal general: hipótesis y estimación Universidad Complutense de Madrid 2013 Introducción El objetivo es especificar y estimar un Modelo Lineal General (MLG) en donde una variable de interés

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción Curso de Estadística Aplicada a las Ciencias Sociales Tema 12. Contraste de (Cap. 22 del libro) Tema 12. Contraste de 1. Tipos de 2. La nula y la Ejercicios Tema 12, Contraste de 2 En muchas investigaciones

Más detalles

CONCEPTOS FUNDAMENTALES

CONCEPTOS FUNDAMENTALES TEMA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICAS PRIMERA PARTE: Conceptos fundamentales 8.1. Hipótesis estadística. Tipos de hipótesis 8.2. Región crítica y región de aceptación 8.3. Errores tipo I y tipo

Más detalles

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad 15. Confiabilidad La confiabilidad se refiere a la consistencia de los resultados. En el análisis de la confiabilidad se busca que los resultados de un cuestionario concuerden con los resultados del mismo

Más detalles

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que

Más detalles

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como:

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como: 1 Regresión Lineal Simple Cuando la relación funcional entre las variables dependiente (Y) e independiente (X) es una línea recta, se tiene una regresión lineal simple, dada por la ecuación donde: Y =

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7 EJERCICIOS T12-MODELOS MULTIVARIANTES ESPECÍFICOS 1. Un determinado estadístico J se distribuye según un modelo jhi-dos de parámetro (grados de libertad) 14. Deseamos saber la probabilidad con la que dicho

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Conceptos básicos estadísticos

Conceptos básicos estadísticos Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Curva de Lorenz e Indice de Gini Curva de Lorenz

Curva de Lorenz e Indice de Gini Curva de Lorenz Curva de Lorenz e Indice de Gini Curva de Lorenz La curva de Lorenz es útil para demostrar la diferencia entre dos distribuciones: por ejemplo quantiles de población contra quantiles de ingresos. También

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

Econometria de Datos en Paneles

Econometria de Datos en Paneles Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

Modelos de Regresión y Correlación

Modelos de Regresión y Correlación Artículo de Educación Modelos de Regresión y Correlación REGRESSION AND CORRELATION MODELS Claudio Silva Z 1, Mauricio Salinas 2 1. PhD en Estadística Escuela de Salud Pública Universidad de Chile. 2.

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Fuente de los comics: La Estadística en Comic. LarryGonicky Woollcatt Smith. Ed. ZendreraZariquiey, 1999 ESTADÍSTICA ESTADÍSTICA

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES La estadística unidimensional estudia los elementos de un conjunto de datos considerando sólo una variable o característica. Si ahora incorporamos, otra variable, y se observa simultáneamente el comportamiento

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles