Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo de probabilidad. Tema 3: Variables aleatorias continuas"

Transcripción

1 Cálculo de probabilidad Tema 3: Variables aleatorias continuas

2 Guión

3 Guión

4 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice que una variable aleatoria X : Ω R es continua si existe una función integrable y no negativa f : R R tal que para cada intervalo A R se tiene P(X A) = f (x) dx. Se dice que f es la función de densidad de probabilidad de X. Está claro que f (x) 0 para todo x R y que A f (x) dx = 1.

5 3.1. La función de densidad de probabilidad Si X es una variable aleatoria continua con función de densidad de probabilidad f entonces la función de distribución de X viene dada por la expresión F (x) = P(X x) = x f (t) dt. Se sigue del teorema fundamental del cálculo que si f es continua en x R entonces F es derivable en x y además F (x) = f (x). Ejemplo 3.2 Sea X una variable aleatoria continua cuya función de densidad de probabilidad viene dada por la expresión { c(4x 2x f (x) = 2 ), si 0 < x < 2, 0, en otro caso.

6 3.1. La función de densidad de probabilidad Calcular el valor de c > 0. Calcular la probabilidad P(X > 1). Tenemos 1 = luego c = 3/8, + f (x) dx = c 2 0 (4x 2x 2 ) dx = 8c 3, Además, P(X > 1) = + 1 f (x) dx = (4x 2x 2 ) dx = 1 2.

7 Guión

8 3.2. Esperanza y varianza Definición 3.3 Sea f la función de densidad de probabilidad de una variable aleatoria X. Se define la esperanza matemática de X mediante µ = E(X) = + xf (x) dx. Se define la varianza de X como Var (X) = E[(X µ) 2 ]. Es fácil comprobar que, al igual que para una variable aleatoria discreta, la varianza se puede calcular de acuerdo con la fórmula Var (X) = E(X 2 ) E(X) 2.

9 3.2. Esperanza y varianza Proposición 3.4 Sei f la función de densidad de probabilidad de una variable aleatoria continua X. 1. Si X es no negativa entonces E(X) = 2. Si g es una función real de variable real entonces E[g(X)] = 0 g(x)f (x) dx. P(X > x) dx. La primera afirmación se sigue del teorema de Fubini. En efecto, 0 P(X > x) dx = = 0 x y 0 0 f (y) dy dx f (y) dx dy = 0 yf (y) dy = E(X).

10 3.2. Esperanza y varianza Proposición 3.5 Sea X una variable aleatoria continua con esperanza µ = E(X) y sean a, b R. Tenemos 1. Var (ax + b) = a 2 Var (X), 2. La expresión E[(X a) 2 ] se minimiza cuando a = µ.

11 Guión

12 3.3. Distribuciones uniforme, normal y exponencial Definición 3.6 Sean a, b R with a < b. Se dice que una variable aleatoria X está uniformemente distribuida en el intervalo [a, b] y se simboliza X U(a, b) si su función de densidad de probabilidad viene dada por la expresión { 1, si a x b, f (x) = b a 0, en otro caso. Es fácil comprobar que E(X) = a + b, 2 E(X 2 ) = a2 + ab + b 2, 3 (b a)2 Var (X) =. 12

13 3.3. Distribuciones uniforme, normal y exponencial Definición 3.7 Se dice que una variable aleatoria X obedece a una distribución exponencial de parámetro λ > 0 y se simboliza X Exp(λ) si su función de densidad de probabilidad viene dada por la expresión { λe f (x) = λx, si x 0, 0, si x < 0. Surge en problemas relacionados con tiempos de espera, y tiene una curiosa propiedad conocida como falta de memoria, que se expresa del siguiente modo. Proposición 3.8 Si X Exp(λ) entonces P(X > x + t X > t) = P(X > x) para todo x, t 0.

14 3.3. Distribuciones uniforme, normal y exponencial Demostración La función de distribución de X viene dada por F (x) = 0 si x < 0 y Tenemos F (x) = = x x 0 f (t) dt λe λt dt = 1 e λx si x 0. P(X > x + t, X > t) P(X > x + t X > t) = P(X > t) P(X > x + t) 1 F (x + t) = = P(X > t) 1 F (t) = e λ(x+t) e λt = e λx = 1 F (x) = P(X > x).

15 3.3. Distribuciones uniforme, normal y exponencial Es fácil probar que si X Exp(λ) entonces E(X) = 1 λ, E(X 2 ) = 2 λ 2, Var (X) = 1 λ 2.

16 3.3. Distribuciones uniforme, normal y exponencial Definición 3.9 Sea µ R y sea σ > 0. Se dice que una variable aleatoria X obedece una distribución normal de parámetros (µ, σ) y se simboliza X N(µ, σ) si la función de densidad de probabilidad de X viene dada por la expresión f (x) = 1 [ ] σ 2π exp (x µ)2 2σ 2. Se puede probar que si X N(µ, σ) entonces E(X) = µ, E(X 2 ) = µ 2 + σ 2, Var (X) = σ 2.

17 3.3. Distribuciones uniforme, normal y exponencial Proposición 3.10 Si X N(µ, σ) y si a, b R entonces X obedece una distribución normal de media aµ + b y varianza a 2 σ 2. En particular, se tiene X µ σ N(0, 1).

18 Guión

19 3.4. Teorema de De Moivre - Laplace Hay muchos problemas que requieren un cálculo con la distribución binomial y resulta adecuado aproximar la distribución binomial mediante una distribución continua. Utilizando la fórmula de Stirling n! ( n ) n 2πn, e se puede demostrar que si f es la función de probabilidad de una variable aleatoria X B(n, p), y si n y np son suficientemente grandes entonces f (x) [ 1 exp 2πnpq ( (x np) 2 2npq )], es decir, que la función de probabilidad de X puede ser aproximada por la función de densidad de una variable aleatoria normal de esperanza np y de varianza npq.

20 3.4. Teorema de De Moivre - Laplace Ejemplo 3.11 Se lanza una moneda fiel 40 veces. Sea X la variable aleatoria que representa el número de caras obtenido. Calcular la probabilidad de que X = 20. Aproximar por la distribución normal y comparar el valor aproximado con el valor exacto. Como X B(40, 0 5), el resultado exacto viene dado por ( 40) P(X = 20) = (0 5) El valor aproximado se obtiene suponiendo que X N(20, 10). Sea Z = (X 20)/ 10 N(0, 1). Tenemos P(X = 20) = P(19 5 < X < 20 5) ( = P < X 20 ) < P( 0 16 < Z < 0 16)

21 Guión

22 3.5. Distribución de una función de una variable aleatoria Sea X una variable aleatoria continua con función de densidad de probabilidad f, y sea Y = g(x) para cierta función g : R R. El objetivo de esta sección es calcular la función de densidad de probabilidad de Y. Ejemplo o. Sea X U(0, 1) y sea n N. Calcular la función de densidad de probabilidad de la variable aleatoria Y = X n. Sea F X la función de distribución acumulada de X, sea f X la función de densidad de probabilidad de X, sea F Y la función de distribución acumulada de Y, sea f Y la función de densidad de probabilidad de Y, y sea 0 y 1. Tenemos F Y (y) = P(Y y) = P(X n y) = P(X y 1/n ) = F X (y 1/n ) = y 1/n.

23 3.5. Distribución de una función de una variable aleatoria Ahora se tiene para todo 0 y 1 f Y (y) = F Y (y) = 1 n y 1/n 1, y está claro que f Y (y) = 0 en otro caso. 2 o. Sea X una variable aleatoria continua con función de densidad de probabilidad f X y función de distribución acumulada F X, y sea Y = X. Calcular la función de densidad de probabilidad de Y. Sea F Y la función de distribución acumulada de Y. Tenemos F Y (y) = P(Y y) = P( X y) = P( y X y) = P(X y) P(X < y) F X (y) F X ( y),

24 3.5. Distribución de una función de una variable aleatoria de donde se deduce que si g es la función de densidad de probabilidad de Y entonces para y 0, y por lo tanto f Y (y) = F X (y) = F X (y) + F X ( y) = f X (y) + f X ( y). Teorema 3.14 Sea X una variable aleatoria continua con función de densidad de probabilidad f X, sea g : R R una función estrictamente creciente y derivable. Si Y = g(x), entonces la función de densidad de probabilidad de Y viene dada por la expresión { fx (g f Y (y) = 1 (y))(g 1 ) (y), si y = g(x) para algún x, 0, si y g(x) para todo x.

25 3.5. Distribución de una función de una variable aleatoria Demostración Tenemos P(a < Y b) = P(g 1 (a) < X g 1 (b)) = g 1 (b) g 1 (a) f X (x) dx. Practicando el cambio de variable x = g 1 (y) resulta P(a < Y b) = b a de donde se deduce el resultado. f X (g 1 (y)) (g 1 ) (y) dy.

26 3.5. Distribución de una función de una variable aleatoria Ejemplo 3.15 Sea X una variable aleatoria continua y no negativa, y sea f X la función de densidad de probabilidad de X. Calcular la función de densidad de probabilidad f Y de la variable aleatoria Y = X n. Si g(x) = x n entonces g 1 (y) = y 1/n, luego (g 1 ) (y) = 1 n y 1/n 1 y de acuerdo con el resultado anterior, f Y (y) = 1 n y 1/n 1 f (y 1/n ).

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Tema 3: Funcio n de Variable Aleatoria

Tema 3: Funcio n de Variable Aleatoria Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD ESTADÍSTICA, CURSO 008 009 TEMA : DISTRIBUCIONES DE PROBABILIDAD LEYES DE PROBABILIDAD. SUCESOS ALEATORIOS Experimetos aleatorios, espacio muestral. Sucesos elemetales y compuestos. Suceso imposible Ø,

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Tema 2: Variables Aleatorias Unidimensionales

Tema 2: Variables Aleatorias Unidimensionales Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

I. Distribuciones discretas

I. Distribuciones discretas Probabilidades y Estadística (M) Funciones de densidad o probabilidad puntual, esperanzas, varianzas y funciones características de las variables aleatorias más frecuentes I. Distribuciones discretas Distribución

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Tema 2: Variables Aleatorias

Tema 2: Variables Aleatorias Estadística Aplicada I. Curso 2009-2010 Tema 2: Variables Aleatorias José G. Clavel 1 1 Departamento de Métodos Cuantitativos para la Economía y la Empresa jjgarvel@um.es Universidad de Murcia 6 de octubre

Más detalles

Ejemplos 31 En el lanzamiento de una moneda podemos tomar E = { Cara } y F = { Cruz }. Si la moneda no está trucada, p = 1.

Ejemplos 31 En el lanzamiento de una moneda podemos tomar E = { Cara } y F = { Cruz }. Si la moneda no está trucada, p = 1. Capítulo 4 Modelos de probabilidad 4.1 Modelos discretos 4.1.1 Pruebas de Bernoulli Definición 4.1.1. Una prueba de Bernoulli es un experimento aleatorio cuyos posibles resultados se agrupan en dos conjuntos

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

Tema 1. Probabilidad y modelos probabiĺısticos

Tema 1. Probabilidad y modelos probabiĺısticos 1 Tema 1. Probabilidad y modelos probabiĺısticos En este tema: Probabilidad Variables aleatorias Modelos de variables aleatorias más comunes Vectores aleatorios 2 Tema 1. Probabilidad y modelos probabiĺısticos

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

Tema 4: Variable aleatoria. Métodos Estadísticos

Tema 4: Variable aleatoria. Métodos Estadísticos Tema 4: Variable aleatoria. Métodos Estadísticos Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Tema 5 Variables aleatorias: distribuciones de probabilidad y características.

Tema 5 Variables aleatorias: distribuciones de probabilidad y características. Tema 5 Variables aleatorias: distribuciones de probabilidad y características. 1. Introducción Según se ha reflejado hasta el momento, el espacio muestral asociado a un experimento aleatorio puede ser

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Generación de variables aleatorias discretas Método de la Transformada Inversa

Generación de variables aleatorias discretas Método de la Transformada Inversa Generación de variables aleatorias discretas Método de la Transformada Inversa Patricia Kisbye FaMAF 30 de marzo, 2010 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Tablas de Probabilidades

Tablas de Probabilidades Tablas de Probabilidades Ernesto Barrios Zamudio José Ángel García Pérez José Matuk Villazón Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Mayo 2016 Versión 1.00 1 Barrios

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

Modelado de la aleatoriedad: Distribuciones

Modelado de la aleatoriedad: Distribuciones Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva Bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Transformaciones de variables aleatorias (Borradores, Curso 23)

Transformaciones de variables aleatorias (Borradores, Curso 23) Transformaciones de variables aleatorias Borradores, Curso 23 Sebastian Grynberg 3 de abril de 203 Mi unicornio azul ayer se me perdió, pastando lo dejé y desapareció. Silvio Rodríguez Índice. Funciones

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,

Más detalles

Disponible en el sitio OCW de la Universidad Nacional de Córdoba.

Disponible en el sitio OCW de la Universidad Nacional de Córdoba. OCW - UNC OpenCourseWare I UNC Curso: Estadística I U 4. Variables Aleatorias Autora: Rosanna Casini Cómo citar el material: Disponible en el sitio OCW de la Universidad Nacional de Córdoba. Casini, Rosanna

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

5 Variables aleatorias contínuas

5 Variables aleatorias contínuas 5 Variables aleatorias contínuas Una variable aleatoria continua puede tomar cualquier valor en un intervalo de números reales.. Función de densidad. La función de densidad de una variable aleatoria continua

Más detalles

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i : Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática)

GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) ESTADISTICA 2008-2009 PRACTICA 2. VARIABLES ALEATORIAS OBJETIVOS: Introducción a las variables aleatorias:

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Introducción a los Procesos de Poisson *

Introducción a los Procesos de Poisson * Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 2.1. Variables aleatorias: funciones de distribución,

Más detalles

Tema 4: Leyes de la desintegración

Tema 4: Leyes de la desintegración Tema 4: Leyes de la desintegración 1. Ley exponencial 1.1. Constante de desintegración y ley exponencial El proceso de la desintegración es de naturaleza estadística: Imposible predecir el momento de la

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

TALLER N 4 DE ESTADÍSTICA

TALLER N 4 DE ESTADÍSTICA UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS PEDAGOGÍA EN MATEMÁTICA Y COMPUTACIÓN TALLER N 4 DE ESTADÍSTICA Integrante 1 : Victor Córdova Cornejo (heibubu@hotmail.com) Integrante 2 : Rodrigo

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

Sabemos que en un proceso de Poisson la función de probabilidad está dada por:

Sabemos que en un proceso de Poisson la función de probabilidad está dada por: DISTRIBUCIÓN DE WEIBULL Relación entre la dist eponencial y la dist de Poisson Sabemos que en un proceso de Poisson la función de probabilidad está dada por: e-! ( λt ) λt f X (, λ ) P( X = ) = Queremos

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44

Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Procesos de Poisson Fabián Mancilla U. de Santiago de Chile fabian.mancillac@usach.cl Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Introducción En este curso estudiaremos algunos modelos probabiĺısticos

Más detalles

Unidad Temática 3 UT3-1: Variable Aleatoria

Unidad Temática 3 UT3-1: Variable Aleatoria Autoevaluación UT3 Unidad Temática 3 UT3-1: Variable Aleatoria Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza.

Más detalles

El Teorema de la Convergencia Dominada

El Teorema de la Convergencia Dominada Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

Tema 2: Modelos de probabilidad. Estadística Aplicada (Bioquímica). Profesora: Amparo Baíllo Tema 2: Modelos de probabilidad 1

Tema 2: Modelos de probabilidad. Estadística Aplicada (Bioquímica). Profesora: Amparo Baíllo Tema 2: Modelos de probabilidad 1 Tema 2: Modelos de probabilidad Estadística Aplicada (Bioquímica). Profesora: Amparo Baíllo Tema 2: Modelos de probabilidad 1 Variables aleatorias Intuitivamente una variable aleatoria (v.a.) X es una

Más detalles

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA FÍSICA ESTADÍSTICA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA FÍSICA ESTADÍSTICA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA DIPLOMA DE ESPECIALIZACIÓN EN FÍSICA (ANEP UDELAR) FÍSICA ESTADÍSTICA Curso 013 Práctico II Fundamentos de Probabilidad y Estadística. Fecha de Entrega: 13 de

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Definición Una hipótesis es una afirmación acerca de un parámetro.

Definición Una hipótesis es una afirmación acerca de un parámetro. Capítulo 8 Prueba de hipótesis Existen dos áreas de interés en el proceso de inferencia estadística: la estimación puntual y las pruebas de hipótesis. En este capítulo se presentan algunos métodos para

Más detalles

Tema 1. Probabilidad y modelos probabiĺısticos

Tema 1. Probabilidad y modelos probabiĺısticos 1 Tema 1. Probabilidad y modelos probabiĺısticos En este tema: Probabilidad Variables aleatorias Modelos de variables aleatorias más comunes Vectores aleatorios Tema 1. Probabilidad y modelos probabiĺısticos

Más detalles