Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)"

Transcripción

1 Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre dos variables y el sentido de su relación (positivo o negativo). Sus valores oscilan desde -1 hasta 1. La hipótesis nula señala que r=0. Correlación lineal directa: el valor de r se aproxima a +1, es decir, valores mayores de X se vinculan con valores mayores de Y. Correlación lineal inversa: el valor de r se aproxima a -1, es decir, valores mayores de una variable se asocian con valores menores en la otra variable. 1

2 Correlación 2

3 Conviene tener en cuenta dos cuestiones: 1. a través de los resultados de un coeficiente de correlación no se puede hablar de relaciones de causalidad. 2. un coeficiente de correlación de Pearson igual a cero indica que no hay ningún tipo de relación lineal entre las variables pero quizás podría haber relación no lineal. Se puede realizar un contraste de hipótesis para comprobar si la correlación entre las variables va más allá del azar (con t de Student y n-2 grados de libertad). t r xy n 2 1 r 2 xy 3

4 Regresión El análisis de regresión se utiliza principalmente para modelar relaciones entre variables y para realizar pronósticos o predicciones de respuestas a partir de variables explicativas El modelo de regresión predice el valor de una variable dependiente (variable respuesta Y, predicha o explicada, variable criterio) basándose en el valor de al menos una variable independiente (variable explicativa X o variable predictora). Se utiliza cuando la variable respuesta (dependiente) es de tipo numérico o cuantitativa. Cuando la respuesta es de tipo dicotómico se utiliza el modelo de regresión logística. Las variables explicativas (independientes) pueden ser numéricas y no numéricas (nominales tipo dicotómico como variables dummy 1 0). 4

5 Con la regresión lineal es posible modelar la relación entre las variables predictoras y predicha, de manera que se puede determinar una expresión matemática que permita predecir la variable dependiente a partir de la o las variables independientes. La regresión lineal estima los coeficientes de la ecuación lineal que predice mejor el valor de la variable dependiente. 5

6 Requisitos para poder aplicar el modelo de regresión: 1. Linealidad. Relación lineal entre las variables 2. Normalidad y equidistribución de los residuos. Si el valor de Durbin Watson está próximo a 2 entonces los residuos no están autocorrelacionados. 3. Colinealidad. Si dos variables independientes están muy relacionadas entre sí y se incluyen en el modelo es muy probable que ninguna de las dos resulte estadísticamente significativa. En cambio, si se incluye una sola de ellas sí podría resultar estadísticamente significativa. El investigador debe examinar los coeficientes para ver si se vuelven inestables al introducir una nueva variable. Si eso sucede entonces existe colinealidad entre la nueva variable y las anteriores. 6

7 Número de variables independientes. Como regla general al menos tienen que existir 20 observaciones por cada variable independiente que se considere a priori como teóricamente relevante. Si utilizamos menos observaciones por variable es muy probable que aumente el error de Tipo II, es decir, disminuya la potencia estadística del diseño de investigación. 7

8 Ecuación de regresión poblacional: Y=b 0 +b 1 X i Variables Dependiente Respuesta Variable predicha Constante poblacional Pendiente poblacional Variables Independiente Explicativa Variable predictora Ecuación de regresión en términos de la muestra: Y=b 0 +b 1 X i Estimación de la constante Estimación de la pendiente 8

9 Coeficientes de la ecuación de regresión: -El coeficiente b 0, conocido como la ordenada en el origen, o constante indica cuánto es Y cuando X = 0. -El coeficiente b 1, conocido como la pendiente, nos indica cuánto aumenta Y por cada aumento en X. El valor de la constante coincide con el punto en el que la recta de regresión corta el eje de ordenadas. En la ecuación de predicción se mantiene constante para todos los individuos. Cuando las variables han sido estandarizadas (puntuaciones Z) o si se utilizan los coeficientes Beta, la constante es igual a 0 por lo que no se incluye en la ecuación de predicción. El coeficiente b 1 indica el número de unidades que aumentará la variable dependiente o criterio por cada unidad que aumente la variable independiente. 9

10 Puntuación predicha Y: Y predicha =b 0 +b 1 X i La diferencia entre la Y obtenida y la Y predicha por la ecuación es el término de error de la ecuación. Si r XY = 1: los valores predichos de Y a partir de X según el modelo de regresión coincidirán exactamente con los valores observados en Y, no cometiéndose ningún error de predicción. 10

11 La puntuación en Y es igual a: Y=b 0 +b 1 X i +e i Estimación de la constante residuo Estimación de la pendiente El error es la diferencia entre la Y y la Y predicha por la ecuación de regresión. Gráficamente, el residual correspondiente a cualquier punto del diagrama de dispersión viene representado por su distancia vertical a la recta de regresión. 11

12 Para el cálculo de la recta de regresión se aplica el método de mínimos cuadrados entre dos variables. La línea obtenida es la que hace mínima la suma de los cuadrados de los residuos, es decir, es aquella recta en la que las diferencias elevadas al cuadrado entre los valores calculados por la ecuación de la recta y los valores reales de la serie, son las menores posibles. 12

13 Rectas se podrían representar muchas. El análisis de regresión por mínimos cuadrado estima la recta de regresión que minimiza los cuadrados de los errores. Sin embargo, aún así podría suceder que la recta no tenga suficiente capacidad para explicar el fenómeno que se está estudiando. Se debe comprobar la bondad de ajuste en términos de su valor predictivo. 13

14 Bondad de ajuste del modelo Qué proporción representa la Suma de Cuadrados explicada por la regresión respecto a la suma de cuadrados total? 14

15 Bondad de ajuste del modelo Mide la proporción de la variación de Y que es explicada por la variable independiente X en el modelo de regresión 15

16 ERROR TÍPICO DE LA ESTIMACIÓN Es un concepto semejante al de la desviación típica (mide la dispersión alrededor de la media) y mide la dispersión de los datos alrededor de la recta de regresión. Cuando aumenta R disminuye el error. 16

17 El coeficiente de determinación (R 2 ) indica la proporción del ajuste que se ha conseguido con el modelo lineal. Es decir, multiplicado por 100 señala el porcentaje de la variación de Y que se explica a través del modelo lineal que se ha estimado con las variables X (independientes). A mayor porcentaje mejor es nuestro modelo para predecir el comportamiento de la variable Y. El coeficiente de determinación (R 2 ) también se puede interpretar como la proporción de varianza explicada por la recta de regresión y su valor siempre estará entre 0 y 1. Cuanto más se acerque a 1mayor es la proporción de varianza explicada. A medida que se introducen más variables independientes mayor será el valor de R 2. Para evitar este posible sesgo, es mejor interpretar R 2 corregida ya que su valor disminuye cuando se introducen variables independientes innecesarias. 17

18 El coeficiente de determinación (R 2 ) es el coeficiente de correlación al cuadrado. Es decir, representa el valor del tamaño del efecto y se corresponde con eta cuadrado (h 2 ) del ANOVA. R 2 indica la proporción de las variaciones explicadas por el modelo de regresión. Se trata de la varianza explicada por las variables explicativas o predictorasdel modelo lineal. 1-R 2 indica la proporción de las variaciones no explicadas por el modelo de regresión. Se trata de la varianza no explicada por las variables explicativas o predictoras, es decir, se atribuye al error. 18

19 Una vez calculada la recta de regresión y el ajuste que se ha conseguido el siguiente paso es analizar si la regresión es válida y se puede utilizar para predecir. Para ello hay que contrastar si la correlación entre las variables predictoras y predicha es diferente de cero. Es decir, se trata de comprobar si la estimación del modelo es estadísticamente significativa de manera que las variables explicativas X son relevantes para explicar la variable predicha Y. La prueba consiste en contrastar si la pendiente de la recta de regresión poblacional es diferente de cero de forma estadísticamente significativa (hipótesis nula plantea que la pendiente es cero). Si es así entonces se puede esperar que exista una correlación lineal entre las variables. 19

20 Regresión: Residual: El modelo de regresión es estadísticamente significativo: la variabilidad observada en el modelo no está provocada por azar. Existe algún tipo de asociación entre la variable dependientes y las independientes Total: SCR+SCE= Coeficientes del modelo Ecuación o recta de regresión Y= ValoTotal+1.906Sexo+(-1.607)Grupo 20

21 Regresión: Residual: Total: SCR+SCE= Grados de libertad: -Regresión: número de pendientes que se estima. Una por cada variable independiente (p=3) -Error=N-p-1: =26 -Total= N-1: 30-1=29 Coeficientes del modelo Ecuación o recta de regresión Y= ValoTotal+1.906Sexo+(-1.607)Grupo 21

22 Situación de análisis ideal : Tener variables independientes altamente correlacionadas con la variable dependiente pero con poca correlación entre sí. Cuando se tiene colinealidad o multicolinealidad (correlación entre tres o más variables independientes) entonces las variables están correlacionadas entre sí y se reduce el poder predictivo de las variables independientes tomadas individualmente. En otras palabras, cuanto mayor la colinealidad menor es la varianza explicada por cada variable independiente Existe colinealidad cuando: Valor de tolerancia (TOL) próximo a cero Factor de Inflación de la Varianza (FIV) superiores a 4. 22

23 Si el valor de la tolerancia de una de las variables independientes es próximo a 0 se puede pensar que ésta es una combinación lineal del resto de variables. Sin embargo, si el valor de T se aproxima a 1, la variable en cuestión puede reducir parte de la varianza no explicada por el resto de variables. Por lo tanto, se excluyen del modelo las variables que presentan una tolerancia muy pequeña. 23

24 El criterio para obtener los coeficientes de regresión B 0, B 1 es el de mínimos cuadrados. Consiste en minimizar la suma de los cuadrados de los residuos de tal manera que la recta de regresión que se define es la que más se acerca ala nube de puntos observados y, en consecuencia, la que mejor los representa. 24

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Inferencia estadística III. Análisis de Correlación. La inferencia estadística también se puede aplicar para:

Inferencia estadística III. Análisis de Correlación. La inferencia estadística también se puede aplicar para: 1 Inferencia estadística III La inferencia estadística también se puede aplicar para: 1. Conocer el grado de relación o asociación entre dos variables: análisis mediante el coeficiente de correlación lineal

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

Tema 8. Análisis de dos variables Ejercicios resueltos 1

Tema 8. Análisis de dos variables Ejercicios resueltos 1 Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

REGRESIÓN LINEAL CON SPSS

REGRESIÓN LINEAL CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística REGRESIÓN LINEAL CON SPSS 1.- INTRODUCCIÓN El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre

Más detalles

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Modelo Econométrico sobre el Turismo

Modelo Econométrico sobre el Turismo Modelo Econométrico sobre el Turismo Ruth Rubio Rodríguez Miriam Gómez Sánchez Mercados 3ºA GMIM Índice Planteamiento del Problema..4 1. Estadísticos Descriptivos...5 2. Matriz Correlaciones 5 3. Gráfico

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

5 Relaciones entre variables.

5 Relaciones entre variables. ANÁLISIS EPLORATORIO DE DATOS 39 ANÁLISIS EPLORATORIO DE DATOS 40 Relaciones entre variables..1 Ejercicios. Ejercicio.1 En una muestra de 0 individuos se recogen datos sobre dos medidas antropométricas

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL.

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. Benjamín R. Sarmiento Lugo. Universidad Pedagógica Nacional bsarmiento@pedagogica.edu.co Esta conferencia está basada en uno de los temas desarrollados

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

Conceptos básicos estadísticos

Conceptos básicos estadísticos Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 01221701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia URRUTIA MOSQUERA, JORGE ANDRÉS; SALAZAR, HEVER DARÍO; CRUZ TREJOS, EDUARDO ARTURO EVALUACIÓN DE LA ROBUSTEZ

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

Coeficiente de correlación semiparcial

Coeficiente de correlación semiparcial Coeficiente de correlación semiparcial 1.- Introducción...1.- Correlación semiparcial... 3.- Contribución específica de las distintas variables al modelo de egresión Múltiple... 3 4.- Correlación semiparcial

Más detalles

Ley de enfriamiento de un termómetro. Análisis gráfico de resultados experimentales.

Ley de enfriamiento de un termómetro. Análisis gráfico de resultados experimentales. Ley de enfriamiento de un termómetro. Análisis gráfico de resultados experimentales. J Falco, I Franceschelli y M Maro jfalco11@hotmail.com, ignabj@hotmail.com, elpombero@mixmail.com Introducción a la

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como:

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como: 1 Regresión Lineal Simple Cuando la relación funcional entre las variables dependiente (Y) e independiente (X) es una línea recta, se tiene una regresión lineal simple, dada por la ecuación donde: Y =

Más detalles

PRÁCTICA 3: Ejercicios del capítulo 5

PRÁCTICA 3: Ejercicios del capítulo 5 PRÁCICA 3: Eercicios del capítulo 5 1. Una empresa bancaria a contratado a un equipo de expertos en investigación de mercados para que les asesoren sobre el tipo de campaña publicitaria más recomendable

Más detalles

CAPITULO V CONCLUSIONES. a) El índice de Gini, Theil y el Coeficiente de Variación la Distribución Salarial se

CAPITULO V CONCLUSIONES. a) El índice de Gini, Theil y el Coeficiente de Variación la Distribución Salarial se CAPITULO V CONCLUSIONES 5.1 Conclusiones del Análisis A partir de los resultados obtenidos se llevan cabo las siguientes conclusiones: a) El índice de Gini, Theil y el Coeficiente de Variación la Distribución

Más detalles

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular

Más detalles

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON OTRAS HERRAMIETAS ESTADISTICAS UTILES Dra. ALBA CECILIA GARZON Que es un Test de Significancia estadística? El término "estadísticamente significativo" invade la literatura y se percibe como una etiqueta

Más detalles

Correlación entre variables

Correlación entre variables Correlación entre variables Apuntes de clase del curso Seminario Investigativo VI Por: Gustavo Ramón S.* * Doctor en Nuevas Perspectivas en la Investigación en Ciencias de la Actividad Física y el Deporte

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

1. Caso no lineal: ajuste de una función potencial

1. Caso no lineal: ajuste de una función potencial 1. Caso no lineal: ajuste de una función potencial La presión (P) y el volumen (V ) en un tipo de gas están ligados por una ecuación del tipo PV b = a, siendo a y b dos parámetros desconocidos. A partir

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro

Más detalles

y = b 0 + b 1 x 1 + + b k x k

y = b 0 + b 1 x 1 + + b k x k Las técnicas de Regresión lineal multiple parten de k+1 variables cuantitativas: La variable respuesta (y) Las variables explicativas (x 1,, x k ) Y tratan de explicar la y mediante una función lineal

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

ENCUESTA DE EXPECTATIVAS ECONÓMICAS AL PANEL DE ANALISTAS PRIVADOS (EEE)

ENCUESTA DE EXPECTATIVAS ECONÓMICAS AL PANEL DE ANALISTAS PRIVADOS (EEE) ENCUESTA DE EXPECTATIVAS ECONÓMICAS AL PANEL DE ANALISTAS PRIVADOS (EEE) FEBRERO DE 2013 La Encuesta de Expectativas Económicas al Panel de Analistas Privados (EEE), correspondiente a febrero de 2013,

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

INTRODUCCIÓN DIAGRAMA DE DISPERSIÓN. Figura1

INTRODUCCIÓN DIAGRAMA DE DISPERSIÓN. Figura1 Capítulo 5 Análisis de regresión INTRODUCCIÓN OBJETIVO DE LA REGRESIÓN Determinar una función matemática sencilla que describa el comportamiento de una variable dadoslosvaloresdeotrauotrasvariables. DIAGRAMA

Más detalles

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido:

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido: INTRODUCCIÓN A LA ESTADÍSTICA. Relación 4: REGRESIÓN Y CORRELACIÓN 1.- En una población se ha procedido a realizar observaciones sobre un par de variables X e Y. Xi 4 5 4 5 6 5 6 6 Yi 1 1 3 3 3 4 4 ni

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

Análisis de Regresión Lineal Simple para Predicción. (Simple Linear Regression Analysis for Prediction)

Análisis de Regresión Lineal Simple para Predicción. (Simple Linear Regression Analysis for Prediction) Daena: International Journal of Good Conscience. 7(3) 67-81. Noviembre 2012. ISSN 1870-557X Análisis de Regresión Lineal Simple para Predicción (Simple Linear Regression Analysis for Prediction) Badii,

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

Transformaciones de Box-Cox

Transformaciones de Box-Cox Transformaciones de Box-Cox Resumen El procedimiento para las Transformaciones de Box-Cox es diseñado para determinar una transformación optima para Y mientras se estima un modelo de regresión lineal.

Más detalles

Inecuaciones lineales y cuadráticas

Inecuaciones lineales y cuadráticas Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de

Más detalles

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): 0 81 098 www.ceformativos.com EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta

Más detalles

UNED. DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 8] Análisis de Regresión Lineal Simple y Múltiple

UNED. DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 8] Análisis de Regresión Lineal Simple y Múltiple 011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 8] Análisis de Regresión Lineal Simple y Múltiple 1 Índice 8.1 Introducción... 3 8. Objetivos... 4 8.3 Análisis de Regresión Simple... 4 8.3.1

Más detalles

ESTADÍSTICA SEMANA 3

ESTADÍSTICA SEMANA 3 ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...

Más detalles

Máster en comunicaciones. Clase 2. Modelos predictores.

Máster en comunicaciones. Clase 2. Modelos predictores. Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de

Más detalles

Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo

Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo Favor de abrir el navegador Mozilla Firefox y escriba la siguiente dirección http://math.uprag.edu/area.mtw

Más detalles

Tema 2: Estadística Descriptiva Bivariante.

Tema 2: Estadística Descriptiva Bivariante. Estadística 24 Tema 2: Estadística Descriptiva Bivariante. Se va a estudiar la situación en la que los datos representan observaciones, correspondientes a dos variables o caracteres, efectuadas en los

Más detalles

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia Marco de referencia a) Es útil saber si la estrategia de tratamiento sin un biológico (menos costosa), tiene mejor o igual eficacia que la estrategia con un biológico en AR temprana. b) No hay estudios

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad 15. Confiabilidad La confiabilidad se refiere a la consistencia de los resultados. En el análisis de la confiabilidad se busca que los resultados de un cuestionario concuerden con los resultados del mismo

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

Criterios de Evaluación MÍNIMOS

Criterios de Evaluación MÍNIMOS s 2º ESO / 2ºPAB Concreción : CE.1 Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver

Más detalles

x^new = x^old + K(b new A new x^old )

x^new = x^old + K(b new A new x^old ) El Filtro de Kalman: La idea fundamental del filtro de Kalman es la actualización La llegada de una nueva observación supone un cambio en la mejor estimación mínimo cuatrática del parámetro x Se desea

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

PATH ANALYSIS. Luis M. Carrascal Depto. Biodiversidad y Biología Evolutiva MUSEO NACIONAL DE CIENCIAS NATURALES

PATH ANALYSIS. Luis M. Carrascal Depto. Biodiversidad y Biología Evolutiva MUSEO NACIONAL DE CIENCIAS NATURALES Luis M. Carrascal Depto. Biodiversidad y Biología Evolutiva MUSEO NACIONAL DE CIENCIAS NATURALES Estructura de relaciones entre variables Matrices de correlaciones frente a modelos a priori de asociaciones

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Modelos de Regresión y Correlación

Modelos de Regresión y Correlación Artículo de Educación Modelos de Regresión y Correlación REGRESSION AND CORRELATION MODELS Claudio Silva Z 1, Mauricio Salinas 2 1. PhD en Estadística Escuela de Salud Pública Universidad de Chile. 2.

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

I Unidad: La medición de los atributos psicológicos.

I Unidad: La medición de los atributos psicológicos. EL ESCALAMIENTO PSICOFÍSICO. Las primeras escalas elaboradas que se pueden considerar mediciones o medidas previas a la medición de los psicológico son las denominadas escalas psicofísicas. Representan

Más detalles

Selección de fuentes de datos y calidad de datos

Selección de fuentes de datos y calidad de datos Selección de fuentes de datos y calidad de datos ESCUELA COMPLUTENSE DE VERANO 2014 MINERIA DE DATOS CON SAS E INTELIGENCIA DE NEGOCIO Juan F. Dorado José María Santiago . Valores atípicos. Valores faltantes.

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

1º CURSO BIOESTADÍSTICA

1º CURSO BIOESTADÍSTICA E.U.E. MADRID CRUZ ROJA ESPAÑOLA UNIVERSIDAD AUTÓNOMA DE MADRID CURSO ACADÉMICO 2012/2013 1º CURSO BIOESTADÍSTICA Coordinación: Eva García-Carpintero Blas Profesores: María de la Torre Barba Fernando Vallejo

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

TEMA 7 LOS COSTES ESTÁNDARES: ANALISIS DE DESVIACIONES

TEMA 7 LOS COSTES ESTÁNDARES: ANALISIS DE DESVIACIONES TEMA 7 LOS COSTES ESTÁNDARES: ANALISIS DE DESVIACIONES 7.1.- Introducción. La desviación de una partida contable es la diferencia que surge entre la cantidad presupuestada y la cantidad real. Por lo tanto,

Más detalles

Unidad Nº 3. Medidas de Dispersión

Unidad Nº 3. Medidas de Dispersión Unidad Nº 3 Medidas de Dispersión 1.-Definición.- Las medidas de tendencia central nos enseñaban a localizar el centro de la información en una serie de observaciones o distribución, pero no a realizar

Más detalles

PRÁCTICA 4. REGRESIÓN CURVILÍNEA. INTRODUCCIÓN DE VARIABLES ARTIFICIALES EN REGRESIÓN LINEAL

PRÁCTICA 4. REGRESIÓN CURVILÍNEA. INTRODUCCIÓN DE VARIABLES ARTIFICIALES EN REGRESIÓN LINEAL PRÁCTICA 4. REGRESIÓN CURVILÍNEA. INTRODUCCIÓN DE VARIABLES ARTIFICIALES EN REGRESIÓN LINEAL 4.1. Regresión exponencial 4.2. Regresión cúbica 4.3. Regresión con variables artificiales M. Carmen Carollo,

Más detalles

CALIDAD 1 JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE ENSEÑANZA SECUNDARIA

CALIDAD 1 JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE ENSEÑANZA SECUNDARIA CALIDAD 1 DIAGRAMA DE CORRELACIÓN-DISPERSIÓN QUÉ ES EL DIAGRAMA DE CORRELACIÓN-DISPERSIÓN? Es una herramienta gráfica que permite demostrar la relación existente entre dos clases de datos y cuantificar

Más detalles

MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales

MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales 3.1. En algunas reservas naturales se controla el número Y de ejemplares de cierta especie al

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Regresión Polinomial. StatFolio de Ejemplo: polynomial reg.sgp

Regresión Polinomial. StatFolio de Ejemplo: polynomial reg.sgp Regresión Polinomial Resumen El procedimiento Regresión Polinomial está diseñado para construir una modelo estadístico que describa el impacto de un solo factor cuantitativo X en una variable dependiente

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles

CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO

CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO 9 CAPITULO II ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES DE DISEÑO 2.1 Criterios de diseño para el predimensionamiento de los sistemas de abastecimiento de agua 2.1.1 Período de diseño

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Reporte de Pobreza por Ingresos JUNIO 2015

Reporte de Pobreza por Ingresos JUNIO 2015 Reporte de Pobreza por Ingresos JUNIO 2015 1 Resumen Ejecutivo En el presente documento se exhiben los resultados obtenidos en el cálculo de pobreza y desigualdad por ingresos a partir de la Encuesta Nacional

Más detalles