COLEGIO BILINGÜE BUCKINGHAM. Matemáticas. Nivel Medio. Portafolio. Tipo I. Números Estelares. Preparado por. Juan Manuel Barreto. Cód.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "COLEGIO BILINGÜE BUCKINGHAM. Matemáticas. Nivel Medio. Portafolio. Tipo I. Números Estelares. Preparado por. Juan Manuel Barreto. Cód."

Transcripción

1 COLEGIO BILINGÜE BUCKINGHAM Matemáticas Nivel Medio Portafolio Tipo I Números Estelares Preparado por Juan Manuel Barreto Bogotá, Colombia

2 1 Para el estudio de figuras geométricas que llevan a los números especiales se trabajo en etapas. En primer lugar se trabajo con los números triangulares, que sirvieron para entender el concepto de número especial y su relación con las figuras geométricas. El trabajo con los números triangulares consistió en encontrar una proposición general que sirviera para encontrar cualquier término dentro de los números triangulares. Esto se logro por medio del análisis y los medios tecnológicos que ayudaron a llegar a la proposición general. Después de esto se trabajo con los números, donde representa el número de vértices en la estrella. El propósito de este trabajo era encontrar una proposición general para cualquier número estelar. Primero se trabajo con el numero 6estelar, organizando los datos en una tabla, graficando y obteniendo una proposición general para el numero 6estelar. El mismo procedimiento se hizo con los números 4 y 5 estelares, lo que permitió llegar a una proposición general. Por ultimo se analizaron los alcances y las limitaciones de la proposición general. Esta tarea tendrá como propósito la búsqueda de números especiales. Un ejemplo de estos números especiales los constituyen los números cuadrados 1,4, 9 y 16 que pueden ser representados por cuadrados de lados 1,2, 3 y 4 respectivamente. Esto quiere decir que tanto la base como la altura de la representación del cuadrado, deben representar la raíz cuadrada del número cuadrado. Otro ejemplo de los números especiales son los números triangulares. Los números triangulares son aquellos que se pueden representar en la forma de un triangulo equilátero, es decir que el numero triangular se pueda reorganizar en igual numero de puntos por ejemplo y de esta manera formar un triangulo equilátero. Los siguientes son ejemplos de números triangulares: Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Podemos observar los números triangulares 1, 3, 6, 10 y 15. En cada uno de ellos observamos como el numero triangular se distribuye en igual numero de puntos, y estos se organizan de manera que representen un triangulo equilátero que al sumar el numero de puntos obtenemos el numero triangular. A partir de esto podemos dibujar los siguientes tres números triangulares que son 21, 28 y 36.

3 2 Figura 6 Figura 7 Figura 8 Teniendo en cuenta las figuras de las representaciones de los números triangulares podemos organizar los datos en una tabla: Termino Numero Estelar Tabla 1: Números triangulares A partir de los datos que tenemos podemos proceder a encontrar una proposición general que nos permita encontrar el respectivo número estelar para cualquier término. Para este propósito podemos graficar los datos de la tabla anterior en el programa graficador Graphmatica y ajustar la curva a una función. La grafica que se obtiene es la siguiente:

4 3 Grafica 1: Números triangulares en un sistema de coordenadas Al graficar los números podemos ver como forman una curva y con la aplicación Curve Fit del software Graphmatica ajustamos la grafica a distintas funciones hasta encontrar la más apropiada. En este caso, la función que mejor se ajusto a los datos fue una función polinomica de segundo grado, también conocida como función cuadrática, que se expresa de la forma: Otra función del software Graphmatica es que al seleccionar la curva que se ajusto a los datos, nos entrega la función específica para este juego de datos. De esta manera al seleccionar la curva en esta grafica obtenemos: Esta información nos muestra distintos aspectos a considerar. En primer lugar nos muestra un coeficiente de correlación, lo que quiere decir que el ajuste de la función cuadrática o polinómica de segundo grado es perfecta para los datos. Además de esto nos muestra el dato mas importante y es el valor de las variables para la función cuadrática en esta caso en especifico. Graphmatica nos entrega la función:

5 4 Esto quiere decir que y que. Además de esto podemos considerar que el valor de debido a que Graphmatica no lo tiene en cuenta. Podemos considerar entonces la función como una sucesión donde, por lo cual la proposición general para los números triangulares es: Para comprobar la validez de la proposición general podemos encontrar dos números triangulares que ya tengamos y otros dos números triangulares mas grandes. Termino En la proposición Resultado Tabla 2: Comprobación de la validez de la proposición general Podemos ver como para distintos números se cumple la proposición general de los números triangulares. Como un segundo punto podemos considerar las figuras estelares de vértices, que representan de igual manera los números. Estas figuras son las siguientes: Figura 9 Figura 10 Figura 11 Figura 12

6 5 A partir de estas figuras podemos graficar hasta el término, y de esta manera encontrar el número de puntos en cada estrella que representa así mismo el número 6estelar. Las figuras son las siguientes: Figura 13 Figura 14 Tras realizar las figuras de los números estelares podemos organizar el número de puntos en cada término lo que nos indicara así mismo el número 6estelar. De esta manera obtenemos la siguiente tabla: Termino Numero 6 estelar Tabla 3: Datos de los números 6 estelar Es importante tener en cuenta la notación cuando trabajamos con números debido a que indica el número de vértices que lleva la estrella, por lo cual no es lo mismo referirse al numero que al numero

7 6 Continuando con el análisis de los datos podemos observar que al realizar las restas entre los términos obtenemos un patrón y es el siguiente: Al realizar las restas observamos que los resultados son múltiplos de 12, por lo cual podemos ver que los términos van a estar dados por la suma del término anterior mas un determinado múltiplo de 12, de la siguiente manera: Después de analizar estos patrones en los números 6estelares podemos proceder a encontrar una proposición general que nos permita encontrar el número de puntos, o número estelar para cualquier término. Para lograr esto se grafican los datos en el software Graphmatica, donde podremos ajustar la curva a una función que nos permita encontrar la proposición general. De esta manera la grafica que se obtiene es la siguiente:

8 7 Grafica 2: Números 6estelares Al probar distintas funciones que se ajusten a la curva observamos que la función que mejor se ajusta es la cuadrática o polinomial de segundo grado que esta dada de la forma: Además de esto, al seleccionar la curva observamos que los datos que nos brinda el software proporcionan información exacta sobre el ajuste de los datos a este determinado set de datos. La información es la siguiente: En primer lugar observamos que la función tiene un coeficiente de correlación, lo que indica que el ajuste es perfecto. En segundo lugar encontramos que la función cuadrática para este set de datos es: Si consideramos esta función como una proposición:

9 8 A partir de esta función podemos encontrar distintos términos para los números 6 estelar. Para comprobar la validez de esta proposición podemos encontrar el termino numero 7 o, de los números 6estelar. Para esto reemplazamos 7 en la proposición: Además, para confirmar que este si es el término 7, tomamos en cuenta el patrón de los múltiplos de 12 por lo cual: Para comprobar por completo la validez de la proposición general tomamos otros valores, como el. Y además de esto con los múltiplos de 12: Teniendo en cuenta la validez, podemos afirmar que la proposición general para términos de los números 6 estelar es: De igual manera podemos tener en cuenta otros valores para, es decir trabajar con distintos números estelares. Para esto se trabajara con dos valores, y En primer lugar, debemos tener en cuenta las figuras para los números 4estelar, en las fases.

10 9 Figura 15 Podemos organizar los datos de los términos en una tabla para analizarlos y buscar regularidades o patrones: Termino Numero 4estelar Tabla 4: Números 4estelar Al analizar los datos podemos encontrar que hay un patrón y de nuevo tiene que ver con la diferencia que se presenta entre los números 4 estelares. Para analizar este patrón realizamos las restas entre los términos de la siguiente manera: Podemos observar que el patrón para los números 4estelar están relacionados con los múltiplos de 8. Además de esto podemos ver que:

11 10 Para encontrar una proposición general que nos permita encontrar distintos términos para los números 4estelares graficamos en Graphmatica los puntos que obtenemos y ajustamos la curva a la función cuadrática o polinomica de segundo grado. A partir de esto obtenemos la siguiente grafica: Grafica 3: Numero 4 estelares Además de esto podemos tener en cuenta la información que nos presenta el graficador en el momento en que se selecciona la curva. La información es la siguiente: Podemos observar que el ajuste de la función cuadrática es perfecta y que el coeficiente de correlación es Además de esto, el programa nos presenta la función ajustada a los datos de la forma: Lo que podemos considerar como la proposición general para los números 4 estelares de la forma:

12 11 Para confirmar la validez de la proposición podemos encontrar los términos y. Que se confirma por el patrón de los múltiplos de 8: De igual manera con Que se confirma por el patrón de los múltiplos de 8: Teniendo en cuenta la validez, podemos afirmar que la proposición general para los números 4estelares es: Ahora podemos trabajar con los números 5estelares, o con el valor lo que quiere decir que trabajaremos con estrellas que tendrán 5 vértices. Para empezar debemos encontrar las figuras de los números 5estelares para cuatro etapas. Figura 16

13 12 En primer lugar podemos organizar los datos de los distintos términos en una tabla para buscar regularidades o patrones. La tabla es la siguiente:. Termino Numero 5estelar Tabla 5: Numero 5estelar Al analizar los datos podemos encontrar que hay un patrón y de nuevo tiene que ver con la diferencia que se presenta entre los números 5 estelares. Para analizar este patrón realizamos las restas entre los términos de la siguiente manera: Podemos observar que el patrón para los números 4estelar están relacionados con los múltiplos de 10. Además de esto podemos ver que: Para encontrar una proposición general que nos permita encontrar distintos términos para los números 5estelares graficamos en Graphmatica los puntos que obtenemos y ajustamos la curva a la función cuadrática o polinomica de segundo grado. A partir de esto obtenemos la siguiente grafica:

14 13 Grafica 4: Números 5estelares Además de esto podemos tener en cuenta la información que nos presenta el graficador en el momento en que se selecciona la curva. La información es la siguiente: Podemos observar que el ajuste de la función cuadrática es perfecta y que el coeficiente de correlación es Además de esto, el programa nos presenta la función ajustada a los datos de la forma: Lo que podemos considerar como la proposición general para los números 4 estelares de la forma: Para confirmar la validez de la proposición podemos encontrar los términos. y

15 Que se confirma por el patrón de los múltiplos de 10: Juan Manuel Barreto 14 De igual manera con Que se confirma por el patrón de los múltiplos de 8: Teniendo en cuenta la validez, podemos afirmar que la proposición general para los números 5estelares es: Teniendo en cuenta las proposiciones generales de los números 4,5 y 6 estelares podemos llegar a una proposición general para los números estelares. De esta manera, si: Podemos observar que las proposiciones solo varían en las constantes y de la función cuadrática por lo cual podemos afirmar que y, por lo cual la proposición general para los números esterales es: Donde es el número de vértices en la estrella, y es el término a encontrar dentro del número estelar. Para comprobar la validez de la proposición podemos encontrar el termino 7 del numero estelar 6, del cual ya conocemos el resultado. De esta forma:

16 15 Recordando que previamente se había realizado, obteniendo: Teniendo en cuenta que la proposición es valida podemos proceder a considerar los alcances y las limitaciones de la proposición. En primer lugar tenemos que tener en cuenta que la proposición general se debe tomar solo para números En segundo lugar la proposición esta establecida para números naturales, debido a que una estrella debe tener un numero entero de vertices, que ademas sean positivos. En tercer lugar la proposicion abarca todos los valores positivos desde 0 hasta por lo cual podemos afirmar que la proposicion abarca un gran numero de valores lo que la hace ser efectiva y que sus alcances sean muy amplios. Por ultimo, se explicara brevemente como se llego a la proposición general. En primer lugar, al analizar números especiales se tuvo en cuenta los números triangulares y los números estelares. Los números triangulares sirvieron como preámbulo para introducir el concepto de número especial. Tras entender esto se empezó a trabajar con los números estelares, y lo primero que se tomo en cuenta fue el numero 6 estelar que sentó las bases para la investigación de los números estelares. Al organizar los datos obtuvimos un patrón respecto a los múltiplos de 12, lo que ayudo posteriormente a comprobar los resultados. Se graficaron los datos de la tabla y se obtuvo la proposición por medios tecnológicos. Tras comprobar la validez al reemplazar y al confirmar por medio del método de los múltiplos se tuvo en cuenta la proposición. Esto se repitió con los números 4 y 5 estelares, mostrando resultados muy parecidos con respecto a las proposiciones generales, que solo variaban en un aspecto muy claro, lo que permitió reunir toda la investigación hecha previamente en la proposición general establecida.

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán para realizar un análisis, la obtención del rendimiento esperado

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

En este curso nos centraremos en un nuevo concepto de curva la cual estará descrita por una o mas ecuaciones denominadas ecuaciones paramétricas.

En este curso nos centraremos en un nuevo concepto de curva la cual estará descrita por una o mas ecuaciones denominadas ecuaciones paramétricas. Unidad I - Curvas en R ecuaciones paramétricas.. Ecuaciones paramétricas En cursos anteriores se ha considerado a una curva como una sucesión de pares ordenados ubicados en un plano rectangular provenientes

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

GUION TÉCNICO AUDIO. El Conjunto De Los Números Reales. realidad, es una ciencia resultado de más de 4 mil años de

GUION TÉCNICO AUDIO. El Conjunto De Los Números Reales. realidad, es una ciencia resultado de más de 4 mil años de 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. El Conjunto De Los Números Reales. Hablar de matemáticas, no es solo referirse a números. En realidad, es

Más detalles

Trabajo 2. Jonathan A. Trejos O. El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría.

Trabajo 2. Jonathan A. Trejos O. El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría. Trabajo Jonathan A. Trejos O. 1 Primer problema El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría. Enunciado 1 Halle y pruebe una bonita fórmula para el producto

Más detalles

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio) demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección

Más detalles

Ecuaciones de 2º grado

Ecuaciones de 2º grado Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos

Más detalles

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1 BLOQUE 1 Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones de números

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Acuerdo 286 Matemáticas

Acuerdo 286 Matemáticas Acuerdo 286 Matemáticas Habilidad Matemática Fausto Zarate Melchor Habilidad Matemática. La habilidad matemática se compone de dos tipos de habilidad: la espacial y la numérica. a) Representación del espacio.

Más detalles

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente. Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

Fórmula para generar el triángulo de Pitágoras

Fórmula para generar el triángulo de Pitágoras Fórmula para generar el triángulo de Pitágoras El teorema de Pitágoras es muy conocido por todo el mundo, uno de sus triángulos más conocido es el de lados 3, 4 y 5. Catetos 3 y 4, hipotenusa 5. Existe

Más detalles

Titulo: COMO GRAFICAR UNA FUNCION RACIONAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

Una ecuación de segundo grado con una incógnita es de la forma:

Una ecuación de segundo grado con una incógnita es de la forma: ECUACIONES CUADRÁTICAS CON UNA INCÓGNITA Una ecuación de segundo grado con una incógnita es de la forma: ax 2 + bx + c = 0, en donde a, b y c son constantes, con a IR, b IR y c IR, además a 0 y x es la

Más detalles

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS Para encontrar la solución de la Ecuacion diferencial de orden n definida por Donde los son constantes y f(x) es un función

Más detalles

Prácticas para Resolver PROBLEMAS MATEMÁTICOS

Prácticas para Resolver PROBLEMAS MATEMÁTICOS Prácticas para Resolver PROBLEMAS MATEMÁTICOS 1 Prólogo El presente manual está dirigido a los estudiantes de las facultades de físico matemáticas de las Escuelas Normales Superiores que estudian la especialidad

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

Ecuación general de la circunferencia

Ecuación general de la circunferencia Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso

Más detalles

Cartografía Temática Recopilación Apuntes Juan E. Gutiérrez Palacios

Cartografía Temática Recopilación Apuntes Juan E. Gutiérrez Palacios IV. MAPAS DE PUNTOS 4.1. INTRODUCCIÓN En los mapas de puntos la información cuantitativa se representa por medio de la repetición de puntos que, a diferencia de los mapas de símbolos proporcionales, no

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

Introducción: En el contexto de la asignatura, deseo hacer notar que la utilización de herramientas de productividad, tales como las TIC (Tecnologías de la Información y Comunicaciones) en el ámbito de

Más detalles

. De R (Reales) a C (Complejos)

. De R (Reales) a C (Complejos) INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo

Más detalles

UNIDAD 8 INECUACIONES. Objetivo general.

UNIDAD 8 INECUACIONES. Objetivo general. 8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química Leyes Ponderales 1. Si 72,9 g de magnesio reaccionan completamente con 28,0 g de nitrógeno qué masa de magnesio se necesita para que reaccione con 9,27 g de nitrógeno? Para desarrollar este ejercicio,

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados Subject Matemáticas Grade 8 UoL4 El triángulo: un polígono con propiedades especiales Title of LO3 Identificación de los puntos y las líneas notables del triángulo de Grado: 7 aprendizaje relacionado (pre

Más detalles

Lección 10: Representación gráfica de algunas expresiones algebraicas

Lección 10: Representación gráfica de algunas expresiones algebraicas LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

SUPERFICIES CUÁDRICAS

SUPERFICIES CUÁDRICAS SUPERFICIES CUÁDRICAS Un cuarto tipo de superficie en el espacio tridimensional son las cuádricas. Una superficie cuádrica en el espacio es una ecuación de segundo grado de la forma Ax + By + Cz + Dx +

Más detalles

PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,

PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento, OBJETIVO EDUCACIONAL PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO Resolver problemas de aplicación e interpretar las soluciones utilizando matrices y sistemas de ecuaciones lineales para las diferentes

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Construcciones con regla y compás

Construcciones con regla y compás Universidad de Buenos Aires - CONICET Semana de la Matemática - 2009 Algunos ejemplos Vamos a hacer algunos dibujos usando un papel, un lápiz, un compás y una regla sin medidas marcadas. Algunos ejemplos

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes

Más detalles

FUNCIONES. DEFINICIONES: Toda relación de A en B tal que cada valor de la variable independiente (dominio) le corresponde uno sólo un valor de la variable dependiente (rango). Conjunto de pares ordenados

Más detalles

Actividades de apoyo. Problemas aritméticos y algebraicos. Actividad 1.1.

Actividades de apoyo. Problemas aritméticos y algebraicos. Actividad 1.1. Problemas aritméticos y algebraicos Actividad 1.1. Indicador. Elabora ejemplos de representaciones de números y practica operaciones aritméticas. Nivel de aprendizaje. Conceptual y procedimental Observa

Más detalles

Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS 1.1.- SISTEMAS DE ECUACIONES LINEALES Ecuación lineal Las ecuaciones siguientes son lineales: 2x 3 = 0; 5x + 4y = 20; 3x + 2y + 6z = 6; 5x 3y + z 5t =

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MÁS EJEMPLOS DE OPERACIONES ARITMÉTICAS EN DIFERENTES SISTEMAS NUMÉRICOS. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS 1.1.1 1.1.2 Las figuras geométricas, como los polígonos, aparecen en muchos lugares. En estas lecciones, los alumnos estudiarán más atentamente los polígonos y

Más detalles

Inecuaciones lineales y cuadráticas

Inecuaciones lineales y cuadráticas Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN FUERZAS CONCURRENTES Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN En este laboratorio lo que se hizo inicialmente fue tomar diferentes masas y ponerlas en la mesa de fuerzas de esa manera precisar

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

El Teorema Fundamental del Álgebra

El Teorema Fundamental del Álgebra El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

UNIVERSIDAD TÉCNICA DE MACHALA DIRECCIÓN ACADÉMICA BIBLIOTECA GENERAL

UNIVERSIDAD TÉCNICA DE MACHALA DIRECCIÓN ACADÉMICA BIBLIOTECA GENERAL UNIVERSIDAD TÉCNICA DE MACHALA DIRECCIÓN ACADÉMICA BIBLIOTECA GENERAL INSTRUCTIVO DE USO DEL REPOSITORIO DIGITAL INSTITUCIONAL DE LA UNIVERSIDAD TÉCNICA DE MACHALA. 1. INTRODUCCION El Repositorio Digital

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Las operaciones con números irracionales

Las operaciones con números irracionales Las operaciones con números irracionales Antes de empezar a sumar, restar, multiplicar, y realizar cualquier tipo de las operaciones con números irracionales, debemos comprender como extraer, e introducir

Más detalles

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos

Más detalles

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV DESCRIPCIÓN: En el siguiente trabajo se mostrarán algunos métodos para encontrar

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia

Más detalles

Eje 2. Razonamiento lógico matemático

Eje 2. Razonamiento lógico matemático Razonamiento deductivo e inductivo La historia de las matemáticas se remonta al antiguo Egipto y Babilonia. Ante la necesidad de resolver problemas a través de errores y victorias, estas culturas lograron

Más detalles

Resolución de problemas mediante ecuaciones.

Resolución de problemas mediante ecuaciones. Resolución de problemas mediante ecuaciones. 1.- La suma de un número con el doble de ese mismo número es 72. Cuál es ese número? 2.- Un señor compró 2 kilos de papas y 3 de tomates. El kilo de papas costaba

Más detalles

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1- Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

PROBLEMAS Y EJERCICIOS RESUELTOS SOBRE FUERZA ELECTROMOTRIZ, FUERZA CONTRAELECTROMOTRIZ, CIRCUITOD DE CORRIENTE CONTINUA A C B

PROBLEMAS Y EJERCICIOS RESUELTOS SOBRE FUERZA ELECTROMOTRIZ, FUERZA CONTRAELECTROMOTRIZ, CIRCUITOD DE CORRIENTE CONTINUA A C B Ejercicio resuelto Nº 1 Dado el circuito de la figura adjunta: ε = 15 V A r i = 0,5 Ω B R 2 R 1 A C B R 3 R 4 R 1 = 2 Ω ; R 2 = 1 Ω ; R 3 = 2 Ω ; R 4 = 3 Ω Determinar: a) Intensidad de corriente que circula

Más detalles

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

Descubrimos el patrón de formación en configuraciones de puntos

Descubrimos el patrón de formación en configuraciones de puntos sexto GRADO - Unidad 2 - Sesión 14 Descubrimos el patrón de formación en conuraciones de puntos En esta sesión se espera que los niños y las niñas identifiquen patrones en conuraciones de puntos participando

Más detalles

Administración de la producción. Sesión 9: Hojas de cálculo (Microsoft Excel)

Administración de la producción. Sesión 9: Hojas de cálculo (Microsoft Excel) Administración de la producción Sesión 9: Hojas de cálculo (Microsoft Excel) Contextualización Microsoft Excel es un programa de hoja de cálculo electrónica que permite la representación gráfica y el análisis

Más detalles

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje

Más detalles

Profr. Efraín Soto Apolinar. Polígonos

Profr. Efraín Soto Apolinar. Polígonos Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional página 1/11 Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional Índice de contenido Ecuación vectorial, paramétrica y continua de la recta...2 Ecuación general o implícita de la recta...5

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

Funciones Básicas de la Hoja de Cálculo

Funciones Básicas de la Hoja de Cálculo 1 Funciones Básicas de la Hoja de Cálculo Objetivos del capítulo Conocer el concepto y características de una hoja de cálculo. Conocer los elementos más importantes de una hoja de cálculo. Explicar la

Más detalles

El cuerpo de los números complejos

El cuerpo de los números complejos Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

Guía del estudiante. Clase 16 Tema: Números racionales - orden en los racionales y representación decimal. Lectura. Colombia Biodiversa Amenazada

Guía del estudiante. Clase 16 Tema: Números racionales - orden en los racionales y representación decimal. Lectura. Colombia Biodiversa Amenazada MATEMÁTICAS Grado Séptimo Bimestre III Semana Número de clases 16-19 Clase 16 Tema: Números racionales - orden en los racionales representación decimal Lectura Colombia Biodiversa Amenazada Colombia ocupa

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Guía de Matemática Tercero Medio

Guía de Matemática Tercero Medio Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y

Más detalles

4. FUNCIONES COMO MODELO MATEMÁTICO

4. FUNCIONES COMO MODELO MATEMÁTICO 4. FUNCIONES COMO MODELO MATEMÁTICO El aplicar las matemáticas a los problemas de la vida real comprende tres etapas. Primero se traduce el problema a términos matemáticos, entonces decimos que tenemos

Más detalles

FRACCIONES EQUIVALENTES 3.1.1

FRACCIONES EQUIVALENTES 3.1.1 FRACCIONES EQUIVALENTES 3.. Fracciones que nombran el mismo valor se llaman fracciones equivalentes, como 2 3 = 6 9. Un método para encontrar fracciones equivalentes es usar la identidad multiplicativa

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles