ENUNCIADO y SOLUCIONES. Problema 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ENUNCIADO y SOLUCIONES. Problema 1"

Transcripción

1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad. Si la memoria proviene del fabricante A, la probabilidad de que falle antes del tiempo especificado por la garantía es P(X ) donde la variable X sigue una ley exponencial de parámetro λ = 0.; si la memoria proviene del fabricante B, la probabilidad de que falle antes del tiempo especificado por la garantía es P( Y < ) donde Y tiene una distribución normal de media µ = 4 y varianza σ = 4. a). (0.5pt) Si el experimento aleatorio consiste en probar una memoria RAM hasta que falle, traducir los datos del enunciado, introduciendo los sucesos convenientes. Introduzco los sucesos: A= La memoria proviene del fabricante A, B= La memoria proviene del fabricante B, y R= La memoria rompe antes del tiempo especificado por la garantía. Nos dicen: P (F A) = P(X ) y P (F B) = P( Y < ). Además sabemos que P(A) = P(B) = 0.5. b). (.5pt) Cuál es la probabilidad de que una memoria RAM falle antes del tiempo especificado por la garantía? Nos piden P(F ). Estamos en las condiciones de aplicación de la fórmula de la probabilidad total: P(F ) = P(F A)P(A) + P(F B)P(B). Nos falta calcular P (F A) = P(X < ) y P(F B) = P( Y < ). Por una parte, hemos visto en clase que si X sigue una distribución exponencial de parámetro λ, para cualquier número t > 0, tenemos P(X t) = exp( λt). Deducemos por lo tanto que P(F A) = P(X ) = exp( 0.) = Por otra parte, P( Y < ) = P( < Y < ) = P (( 4)/ < Z < ( 4)/) = φ() φ( 3)

2 Por lo tanto: P(F ) = (0.574 / / = c). (0.75pt) Si se ha observado que la memoria RAM ha fallado, cuál es la probabilidad de que proceda del fabricante A? Nos piden: P(A F ), por el Teorema de Bayes, se obtiene como P(A F ) = P(F A)P(A) P(F ) = d). (0.75pt) Si se tienen memorias RAM, cuál es la probabilidad de que al menos el 90% de ellas duren más que el tiempo especificado por la garantía? Introducimos ahora la variable N = número de memorias defectuosas entre las. Nos piden P(N < 4). Reconocemos que estamos ante un experimento simple con una situación dicotómica que repetimos veces. Por lo tanto, sabemos que N sigue una distribución Binomial de parámetros n = y p = P(F ) = P(N < 4) = P(N = 0) + P(N = ) + P(N = ) + P(N = 3) = = Problema II. Una determinada empresa química está interesada en comprar un dispositivo que mida la concentración de sosa en el producto y su PH. Los errores asociados a las mediciones de dicho dispositivo pueden ser consideradas como dos variables aleatorias X e Y (X = Error al medir la concentración de sosa e Y = Error en la determinación del PH ) cuya distribución conjunta viene dada por: k[ + xy(x y si y [, ] )] si x [, ] f(x, y) = 0 en caso contrario

3 a). (0.5pt) Calcular el valor de la constante k. Para que la función descrita sea una función de densidad debe cumplir f(x, y) 0 y Tenemos f(x, y)dxdy) = = k Por lo tanto, deducimos k = 4. f(x, y)dxdy =. k[ + xy(x y )]dxdy [( + y y3 y3 ) ( + y ) ] dy = 4k. b). (0.75pt) Calcular las distribuciones marginales de ambas variables. Obtenemos la distribución marginal de X integrando la función de densidad conjunta respecto a y. Empezamos por notar que si x está fuera del intervalo [, ], la densidad conjunta es nula y por lo tanto su densidad marginal también es nula. Si x [, ], f(x, y)dy) = = 4 =. 4 [ + xy(x y )]dy Deducimos que X sigue una distribución uniforme en el intervalo [, ]. De la misma manera deducimos que Y sigue una distribución uniforme sobre el intervalo [, ]. c). (0.5pt) Se pueden considerar independientes ambas variables? Puesto que no se cumple que f X,Y (x, y) = f X (x)f Y (y), para todo par (x, y), deducimos que X e Y NO son independientes. d). (0.5pt) Calcular la función de distribución acumulada de la variable X. Recordar que f X (x) = /, si < x <, y 0 en otro caso. Tenemos que F X (t) = P(X t) = t f X(x)dx. Distinguimos según los distintos casos para t: Si t <, F X (t) = t Si t <, F X (t) = t Si t, F X (t) = 0dx = 0. dx = (t + )/. dx + 0 =. e). (0.5pt) Calcular E[X]. Al tratarse de una distribución uniforme, sabemos que E[X] = (+)/ = 0. 3

4 f). (0.5pt) Sabiendo que en un determinado producto el error que se comete al medir la concentración de sosa es inferior a 0.5, calcular la probabilidad de que el error cometido al medir su PH sea inferior a 0.5 (±0.5). Nos piden P( 0.5 < Y < < X < 0.5) Utilizamos la definición de la probabilidad condicionada para obtener: P( 0.5 < Y < 0.5 X < 0.5) = P( 0.5 < Y < < X < 0.5). P( 0.5 < X < 0.5) El numerador se calcula como: P( 0.5 < Y < < X < 0.5) = 0.5 ( f X,Y (x, y)dy 0.5 ) dx = /4, mientras que el numerador se calcula usando la densidad marginal de X, y es igual a /. Deducimos: P(Y < < X < 0.5) = /. II. (0.75pt) Considere dos variables X e Y que satisfacen: Calcular la correlación de X y de Y. cov(x + Y ) = cov(x Y ). Sabemos que var(x + Y ) = var(x) + var(y ) + cov(x, Y ) y por otra parte var(x Y ) = var(x) + var(y ) cov(x, Y ). Si igualamos las dos expresiones, nos quedamos con cov(x, Y ) = cov(x, Y ), lo que implica que cov(x, Y ) = 0, y por lo tanto corr(x, Y ) = 0. Problema 3 Para analizar la precisión de un nuevo aparato de medida, se mide en repetidas ocasiones una determinada tensión de 8 voltios obteniéndose las siguientes lecturas: 8.6; 7.8; 7.; 7.4; 7.6; 7.8; 7.9; 7.0; 7.4; 8.3; 8.3; 8.5 Asumiendo que la lectura del aparato puede modelizarse por una distribución normal con desviación típica igual a 0.5, se pide: 4

5 a). (0.75pt+0.5pt) Construir de manera detallada un intervalo de confianza al 98% para la lectura promedio del dispositivo. Qué interpretación tiene el intervalo obtenido? Construcción detallada del intervalo para la media poblacional para un α dado. Sean X, X,... X, las variables valor obtenido en la primera medición, etc hasta valor obtenido en la o medición. Consideramos la media muestral X = X +X + +X. Puesto que estamos en el caso en que la variable X sigue una distribución normal, tenemos que Z = X µ σ/ N(0, ). n Tenemos Lo que es sequivalente a Despejando obtenemos P ( z α/ Z z α/ ) = α. P ( z α/ X µ σ/ n z α/) = α. P ( X z α/ σ n µ X + z α/ σ n ) = α. Deducimos que un intervalo de confianza al 00( α)% de confianza para la media poblacional es X z α/ σ n µ X + z α/ σ n. En nuestro caso particular, nos fijamos α = 0.05, necesitamos z 0.975, que según la tabla es igual a.96. Sustituyendo obtenemos por lo tanto ±

6 b). (0.5pt) Si en la estimación de la lectura promedio queremos cometer un error inferior a 0.5 voltios, al 95% de confianza, determinar el tamaño de la muestra mínimo necesario para garantizar este objetivo. Explica el procedimiento utilizado. El margen de error es z α/ σ/ n. Buscamos n para garantizar que este margen sea inferior a 0.5: z α/ σ/ n 0.5, despejando n obtenemos que n , lo que implica que n debe ser 6 como mínimo. c). (pt) Podemos afirmar que el dispositivo nos proporciona valores inferiores al valor real?. Plantea la prueba estadística correspondiente e interpreta los resultados obtenidos, indicando el p-valor. LLevamos a cabo el contraste {. H 0 : µ = 8, H : µ < 8. El nivel de confianza de 95% corresponde a α = El estadístico de contraste es: Z 0 = X µ 0 σ/ n que sigue, bajo H 0, una distribución normal estándar. Se trata de un contraste unilateral, y la región crítica o de rechazo vendrá dada por: Para α = 0.05 z α = z 0.95 =.64. Para mi muestra el estadístico de prueba toma el valor z 0 = =.70. El valor z 0 no cae en la región de 0.5/ rechazo, lo que implica que,al 95% de confianza, no podemos rechazar H 0 y no 6

7 podemos afirmar que el valor central de la distribución de X sea menor que 8. Calculamos el p-valor. Buscamos el valor α 0 de α más pequeño que nos permita rechazar H 0, lo encontraremos haciendo coincidir el límite de nuestra región de rechazo con el valor del estadístico de prueba: Deducimos que α 0 = P (Z 0 <.70) = φ(.70) 0.0. Podríamos por lo tanto rechazar H 0 hasta un máximo de 89.8% de confianza.(bajo) 7

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Primavera 15 FECHA: de Junio de 15 Fecha publicación notas: 11 de Junio de 15 Fecha revisión

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Septiembre 010 (Prueba Específica) SEPTIEMBRE 010 Opción A 1.- Se considera el sistema de ecuaciones: x y = 3x+ y = 4 4x + y = a a) Clasifica el sistema en función de sus posibles soluciones para los distintos

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias Universidad de Chile Facultad De Ciencias Físicas y Matemáticas MA3403 - Probabilidades y Estadística Prof. Auxiliar: Alberto Vera Azócar. albvera@ing.uchile.cl Vectores Aleatorios 1. Vectores Aleatorios

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY Nombre y apellido: Nota

FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY Nombre y apellido: Nota FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY0 2015 Nombre y apellido: Legajo: 1 2 3 4 5 Nota / / / / / 1.- El gobierno de la ciudad ha construido senderos especiales para bicicletas en un barrio de la

Más detalles

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Integral Lapso 2010-2 745 1/5 Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: 610-612-613 Fecha: 26-02-2011 OBJ. 2 PTA 1 MODELO DE RESPUESTAS Objetivos 2,

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos 5.3-1 El % de los DVDs de una determinada marca son defectuosos. Si se venden en lotes de 5 unidades, calcular

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Cuáles son las características aleatorias de la nueva variable?

Cuáles son las características aleatorias de la nueva variable? Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias Distribución conjunta de variables aleatorias En muchos problemas prácticos, en el mismo experimento aleatorio, interesa estudiar no sólo una variable aleatoria sino dos o más. Por ejemplo: Ejemplo 1:

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

Muestreo y Distribuciones muestrales. 51 SOLUCIONES

Muestreo y Distribuciones muestrales. 51 SOLUCIONES Muestreo y Distribuciones muestrales. 51 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería Soluciones de la hoja de problemas 5. Muestreo

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

INSTRUCCIONES. Lee cuidadosamente cada pregunta antes de contestarla

INSTRUCCIONES. Lee cuidadosamente cada pregunta antes de contestarla INSTRUCCIONES 1. Las cuestiones respondidas correctamente valen un punto. Hay una única respuesta correcta para cada cuestión. Las respuestas fallidas tienen una penalización de 0. puntos, por tanto, es

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO CURSO 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Tema 7: Introducción a la Teoría sobre Estimación

Tema 7: Introducción a la Teoría sobre Estimación Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) = SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Sabemos que en un proceso de Poisson la función de probabilidad está dada por:

Sabemos que en un proceso de Poisson la función de probabilidad está dada por: DISTRIBUCIÓN DE WEIBULL Relación entre la dist eponencial y la dist de Poisson Sabemos que en un proceso de Poisson la función de probabilidad está dada por: e-! ( λt ) λt f X (, λ ) P( X = ) = Queremos

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

1) Características del diseño en un estudio de cohortes.

1) Características del diseño en un estudio de cohortes. Departamento de Estadística Universidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de cohortes CONCEPTOS CLAVE 1) Características del diseño en un estudio de cohortes. ) Elección del tamaño

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 4 Distribución de Probabilidades Distribución de Probabilidades Distribución de Probabilidades Variables Aleatorias: Discreta y Continua Función Densidad

Más detalles

Intervalos de confianza con STATGRAPHICS

Intervalos de confianza con STATGRAPHICS Intervalos de confianza con STATGRAPHICS Ficheros empleados: TiempoaccesoWeb.sf3 ; TiempoBucle.sf3; 1. Ejemplo 1: Tiempo de acceso a una página Web Se desean construir intervalos de confianza para la media

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

Estadística Descriptiva y Probabilidad FORMULARIO

Estadística Descriptiva y Probabilidad FORMULARIO Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Ejercicios resueltos

Ejercicios resueltos UNIDAD TEMÁTICA 7 CONTRASTE DE HIPÓTESIS ENUNCIADO 1 Se ha realizado una encuesta en una población mediante una muestra de 200 personas resultando 72 fumadores. (a Estima la proporción de fumadores así

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Inferencia con una variable Tema 2

Inferencia con una variable Tema 2 Inferencia con una variable Tema 2 1. Contraste sobre una proporción 2. Bondad de ajuste 3. Contraste de hipótesis sobre una media 3.1. Con σ 2 conocida, prueba Z 3.2. Con σ 2 desconocida, prueba T 4.

Más detalles

Jueves, 3 de Noviembre de La parte escrita del examen representa el 40 % de la nota y el cuestionario el 60 % restante.

Jueves, 3 de Noviembre de La parte escrita del examen representa el 40 % de la nota y el cuestionario el 60 % restante. Univ. de Alcalá. Estadística 2016-17 Dpto. de Fíca y Matemáticas Biología Jueves, 3 de Noviembre de 2016 N o : studentnumber currentstudent INSTRUCCIONES (LEER ATENTAMENTE). La parte escrita del examen

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Conceptos Fundamentales Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Análisis de datos en física de partículas Experimento en física de partículas: Observación de n sucesos de un cierto tipo (colisiones

Más detalles

Tema 4: Variable Aleatoria Bidimensional

Tema 4: Variable Aleatoria Bidimensional Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

IES Fco Ayala de Granada Sobrantes 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes 010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1_A Sea el recinto del plano

Más detalles

Soluciones Examen de Estadística

Soluciones Examen de Estadística Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico Solución. Curso 016 Ejercicio 1 Suponemos que hay independencia en la concurrencia o no entre las personas. Dado este supuesto y las características

Más detalles

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 2010 Contenidos...............................................................

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles