Superficie dada en forma explícita.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Superficie dada en forma explícita."

Transcripción

1 Prof. Anrea Capillo Análisis Mateático II Interales e superficie Recoreos la efinición e área e una superficie alabeaa. 3 ea la superficie sieno siple reular iaen e la función f : R R cuplieno la función f con las coniciones necesarias para efinir una superficie siple a través e su conjunto iaen. efinios el área e eiante la siuiente epresión: Área f u f v u v La epresión anterior perite el cálculo el área e siepre que tenaos la superficie paraetriaa. Evaluareos ahora los casos en que la superficie está efinia eiante una ecuación cartesiana en fora eplícita o iplícita. uperficie aa en fora eplícita. i la superficie siple reular está aa eiante una ecuación eplícita icha ecuación será el tipo f Analiaos en prier luar el caso f En este caso poeos paraetriar la superficie e la siuiente anera: 3 h : R R / h f sieno la proección e la superficie sobre el plano. Utiliano la fórula para el cálculo el área e obteneos: Área Realiaos los cálculos para hallar el proucto vectorial e la epresión. 0 f 0 f

2 Prof. Anrea Capillo Análisis Mateático II i j k f f 0 f 0 f. Este vector resulta siepre istinto el vector nulo a que su tercera coponente es una constante istinta e cero. Por lo tanto para calcular el área e evaluaos la nora el vector obtenio. f f Reeplaano en la epresión resulta: Área f f sieno el recinto que resulta e proectar la superficie en el plano. Analiaos el caso En este caso poeos paraetriar la superficie e la siuiente anera: 3 h : R R / h sieno la proección e la superficie sobre el plano. Utiliano la fórula para el cálculo el área e obteneos: Área Realiaos los cálculos para hallar el proucto vectorial e la epresión. 0 0 i j k 0. Este vector resulta siepre istinto el vector 0 nulo a que su priera coponente es una constante istinta e cero. Por lo tanto para calcular el área e evaluaos la nora el vector obtenio.

3 Prof. Anrea Capillo Análisis Mateático II Reeplaano en la epresión resulta: sieno el recinto que resulta e Área proectar la superficie en el plano. 3 Analiaos el caso En este caso poeos paraetriar la superficie e la siuiente anera: 3 h : R R / h sieno la proección e la superficie sobre el plano. Utiliano la fórula para el cálculo el área e obteneos: Área Realiaos los cálculos para hallar el proucto vectorial e la epresión. 0 0 i j k 0. Este vector resulta siepre istinto el vector 0 nulo a que su seuna coponente es una constante istinta e cero. Por lo tanto para calcular el área e evaluaos la nora el vector obtenio. Reeplaano en la epresión resulta: 3

4 Prof. Anrea Capillo Análisis Mateático II sieno el recinto que resulta e Área proectar la superficie en el plano. uperficie aa en fora iplícita. i la superficie siple reular está aa en fora iplícita la ecuación que la escribe será el tipo 0 en este caso la superficie es la superficie e nivel 0 e la función. 0 uponeos que la función cuple las coniciones para efinir iplícitaente una función f recorar el teorea e las funciones efinias en fora iplícita o e Cauch-ini. En este caso poeos paraetriar la superficie e la siuiente 3 anera: h : R R / h f Recorano el análisis anterior el área e puee calcularse coo: Área f f En el caso e las funciones efinias iplícitaente las erivaas parciales quean aas por: f f Reeplaano en la epresión para el cálculo el área e obteneos: Área f f Por lo tanto poeos efinir el iferencial e superficie coo: 4

5 Prof. Anrea Capillo Análisis Mateático II i consieraos ahora que la función cuple las coniciones para efinir iplícitaente una función poeos paraetriar la superficie e la siuiente anera: / : 3 h R R h En este caso el área e puee calcularse coo: Área En el caso e las funciones efinias iplícitaente las erivaas parciales quean aas por: Reeplaano en la epresión para el cálculo el área e obteneos: Área Por lo tanto poeos efinir el iferencial e superficie coo: Análoaente si consieraos ahora que la función cuple las coniciones para efinir iplícitaente una función poreos calcular el área e eiante la siuiente epresión: Área Por lo tanto poeos efinir el iferencial e superficie coo: 5

Pre saberes: Despeje de ecuaciones. Concepto de línea recta.

Pre saberes: Despeje de ecuaciones. Concepto de línea recta. Colegio Javier III Triestre En el 07 Activa tu fe Presentación # Tea: La recta Elaborao por: profesor Héctor Luis Fernánez Pre saberes: Despeje e ecuaciones. Concepto e línea recta. OBJETIVOS DE CLASE:.

Más detalles

3.7 DEFINICIÓN DE UNA RECTA

3.7 DEFINICIÓN DE UNA RECTA Página 40 3.7 DEFINICIÓN DE UNA RECTA Existen os foras para ejar bien efinia a una recta, pero antes e señalarlas es inispensable coprener bien el significao e la frase quear bien efinio. Un objeto quea

Más detalles

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x CURSO 22-23. Septiebre de 23. ) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: f() -e 2) Utilizando la definición, calcula las derivadas laterales de la función f()

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

Geometría: Vectores en el plano

Geometría: Vectores en el plano Geoetría: Vectores en el plano Mateaticas Geoetría: Vectores en el plano. Conjunto R Vaos a crear el producto cartesiano de RR, que desinareos por R : R RR todos los pares ordenados forados por núeros

Más detalles

Una recta queda geométricamente determinada, si se conocen un punto P1 (P1 r) y la dirección determinada por un vector a.

Una recta queda geométricamente determinada, si se conocen un punto P1 (P1 r) y la dirección determinada por un vector a. Álgebra Geometría nalítica Recta en E E - Plano Faculta Regional La Plata Recta en E (punte basao en LGEOMETRI el Ing. Lope, arlos) Lugar geométrico e los puntos tales que, tomaos os puntos cualesquiera

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017 EXAME EXTRAORDIARIO DE FÍSICA I. CUESTIOES 30/0/07.- a) Defina el momento angular e una partícula. Demostrar que si la partícula se mueve en un plano, la irección el momento angular permanece constante.

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES.

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. º Bachillerato Mateáticas I Tea 6: Geoetría analítica.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. Un Sistea de referencia en el plano está forado por: Un punto O llaado Origen

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eáenes de Mateáticas de Selectividad ndalucía resueltos http://qui-i.co/ Eaen de Selectividad Mateáticas JUNIO 8 - ndalucía OPCIÓN.- [,5 puntos] Halla los coeficientes a, b y c sabiendo que la función

Más detalles

1, / 3, /

1, / 3, / 1. Teneos un rectánulo e e base y 1 e alto. En tres e sus cuatro esquinas se colocan 3 asas iuales e k caa una. Calcula razonaaente: a. El vector intensia e capo ravitatorio en la otra esquina. b. El potencial

Más detalles

PROBLEMAS DE TEOREMA DE LA DIVERGENCIA

PROBLEMAS DE TEOREMA DE LA DIVERGENCIA PROBLMA D TORMA D LA DIVRGNCIA NUNCIADO DL TORMA ea una región simple sólia cua superficie frontera tiene una orientación positiva (hacia afuera). ea un campo vectorial cuas funciones componentes tienen

Más detalles

Cinemática y Dinámica de Fluidos: Fundamentos Básicos

Cinemática y Dinámica de Fluidos: Fundamentos Básicos Cinemática y Dinámica e Fluios: Funamentos Básicos Santiago López Algunas Definiciones Antes e empezar con el tema central e éste capítulo, se eben introucir unos conceptos que son útiles a la hora e e

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

Reglas de derivación (continuación)

Reglas de derivación (continuación) Derivaas Reglas e erivación Suma [f() + g()] = f () + g () Proucto Cociente [kf()] = kf () [f()g()] = f ()g() + f()g () [ ] f() = f ()g() f()g () g() g() Regla e la caena {f[g()]} = f [g()]g () {f(g[h()])}

Más detalles

A y B

A y B TIVIDDES DE MTRIES. º HILLERTO Hallar el rango e la matriz: 7 8 7 9 8 Se observa que el menor e oren formao por la primera y tercera filas y columnas no es nulo sino igual a 8, veamos: 8 Luego rg () es

Más detalles

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) =

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) = BLOQUE I: CÁLCULO IFERENCIAL. Tema 1: Funciones de una variable EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA BOLETINES E PROBLEMAS E MATEMÁTICAS I 1. Estudiar la continuidad de las siguientes funciones:

Más detalles

Variables de estado, una metodología de enseñanza

Variables de estado, una metodología de enseñanza Variables e estao, una etoología e enseñanza Attilio Gabriel Lavagna María Elba IMAPeC. Departaento e Fisicoateática. Faculta e Ingeniería e la U.N.L.P 47. La Plata. Argentina elavagna@ahoo.co.ar gabrielattilio@infovia.co.ar

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos I.E.S. ASTELAR BADAJOZ A. enguiano PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 8 (RESUELTOS por Antonio enguiano) ATEÁTIAS II Tiepo áio: horas inutos Se valorará la corrección la claridad en

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

Universidad Politécnica de Cartagena. Universidad Politécnica de Cartagena

Universidad Politécnica de Cartagena. Universidad Politécnica de Cartagena Escuela Técnica Superior e Ingeniería e Telecomunicación CAMOS ELECTOMAGNÉTICOS ráctica 3. La Teoría e Imágenes..-rofesores: ero Vera Castejón Alejanro Álvare Melcón Fernano Quesaa ereira 1 1. Introucción

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coorinación e Matemática II (MAT0) Primer semestre e 03 Semana 6: Lunes e Abril Viernes 6 e Abril CÁLCULO Contenios Clase : Funciones Trascenentales: Función logaritmo natural y eponencial. Propieaes algebraicas

Más detalles

Apuntes de Circuitos Eléctricos II Análisis de la respuesta de CA en régimen permanente sinusoidal

Apuntes de Circuitos Eléctricos II Análisis de la respuesta de CA en régimen permanente sinusoidal 01 Apuntes e Circuitos Eléctricos II Análisis e la respuesta e CA en régien peranente sinusoial En este ocuento se presenta un análisis e rees siples usano el étoo fasorial Usuario UTP UTP 4/07/01 1 1

Más detalles

{ } ( ) ( ) ( ) ( ) ( ) ( ) Opción A. = ± m. min. Ejercicio A.1- Se considera el sistema de ecuaciones lineales:

{ } ( ) ( ) ( ) ( ) ( ) ( ) Opción A. = ± m. min. Ejercicio A.1- Se considera el sistema de ecuaciones lineales: IES Mediterráneo de Málaga Solución Junio Juan Carlos lonso Gianonatti Opción Ejercicio.- Se considera el sistea de ecuaciones lineales: a) Discutir su copatibilidad en función del paráetro b) Resolver

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían Problea 1 Las fuerzas que se ejercen sobre la estrella de asa serían 1, F D Podeos establecer las coordenadas de las estrellas en un plano cartesiano para siplificar el problea. La distancia de la estrella

Más detalles

FUERZA E INTERACCIÓN

FUERZA E INTERACCIÓN FUERZA E INTERACCIÓN Unia 13 CONTENIDOS. 1.- Evolución histórica el concepto e fuerza (concepciones pregalineanas)..- Naturaleza e las fuerzas.1. Carácter vectorial e la fuerza... Meia e las fuerzas..3.

Más detalles

Ecuación de Schrödinger

Ecuación de Schrödinger Ecuación e Schröinger En cuanto a onas electromagnéticas, ya vimos que su comportamiento está regio por las ecuaciones e Maxwell. También hemos visto que a una partícula con masa se le puee asignar una

Más detalles

Aplicaciones Evolución de Galaxias

Aplicaciones Evolución de Galaxias Aplicaciones Evolución e alaias Evolución pasiva en cúulos e galaias y q Raón asauinosia Fooérica Núero e esrellas en isinas fases e evolución Peria e asa e esrellas Evolución Pasiva en Cúulos Un éoo raicional

Más detalles

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe DERIVADA DEFINICION DE DERIVADA Sea una función efinia en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite eiste Dicho límite, cuano eiste, se llama DERIVADA e f

Más detalles

3.1 Definiciones previas

3.1 Definiciones previas ÍNDICE 3.1 Definiciones previas............................... 1 3.2 Operaciones con funciones........................... 8 3.3 Límite e una función en un punto...................... 15 3.3.1 Operaciones

Más detalles

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA 1 ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA AUTORES: Cra. Laura S. BRAVINO Mgter. Oscar A. MARGARIA Esp. Valentina CEBALLOS SALAS Departaento de Estadística y Mateática

Más detalles

PRÁCTICA Nº 1 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE

PRÁCTICA Nº 1 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE PRÁCTICA Nº LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE.- INTRODUCCION TEORICA..-Estudio estático Cuando se obliga a un cuerpo a cabiar de fora, la "fuerza deforadora" puede ser proporcional a la deforación,

Más detalles

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas)

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas) .6.. Ecuación característica (raíces reales distintas, raíces reales iguales, raíces coplejas conjugadas).6.. Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces coplejas

Más detalles

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

CLASE II Estática de las construcciones II

CLASE II Estática de las construcciones II ntroucción a las construcciones CLASE Estática e las construcciones lustración sobre la variación e los esfuerzos e estructuras simples. Galileo Galilei, en Discorsi e Dimostrazioni Matematiche, intorno

Más detalles

!!!""#""!!!!!!""#""!!!!!!""#""!!!!!!""#""!!!

!!!#!!!!!!#!!!!!!#!!!!!!#!!! Tea 11 Capos agnéticos y corrientes eléctricas! 1 Probleas para entrenarse 1 Una partícula α (q 3, 10-19 C) se introduce perpendicularente en un capo cuya inducción agnética es,0 10 3 T con una velocidad

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO

TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO Moelo e estao. De la misma forma que se planteó para sistemas continuos, existe la posibilia e moelar un sistema iscreto meiante un moelo e estaos. El sistema

Más detalles

Física I Segunda convocatoria. 3 de septiembre de 2012

Física I Segunda convocatoria. 3 de septiembre de 2012 Segunda convocatoria. 3 de septiebre de 2012 C I Blan -El test se calificará sobre 5 puntos. -Las respuestas correctas (C) puntúan positivaente y las incorrectas (I) negativaente, resultando la puntuación

Más detalles

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV 75 CAPÍTULO IV DERIVACIÓN. LA DERIVADA COMO PENDIENTE DE UNA CURVA La peniente e una curva en un punto ao, es iual a la peniente e la recta tanente a la curva en icho punto. Δ Q, Δ Q Q P, La peniente e

Más detalles

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral)

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral) Pruebas de Acceso a nseñanas Universitarias Oficiales de Grado. Bachillerato L. O.. Materia: MATMÁTICA II Instrucciones: l aluno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

f(x,y) = e x+y cos(xy)

f(x,y) = e x+y cos(xy) Universia e los Anes Departamento e Matemáticas MATE1207 Cálculo Vectorial Tarea 1 Iniviual Entregue en clase a su profesor e la MAGISTRAL la semana 6 (Lu. 3 Sep. Vi. 7 Sep.) 1. Consiere la función f efinia

Más detalles

Segunda parte: Modos de vibración

Segunda parte: Modos de vibración Segunda parte: odos de vibración Objetivo: Estudiar el oviiento general de un sistea oscilatorio de varios grados de libertad étodo: Deterinar los odos de vibración del sistea. El oviiento general será

Más detalles

Tema 4 resolución de sistemas mediante Determinantes

Tema 4 resolución de sistemas mediante Determinantes Tea 4 resolución de sisteas ediante Deterinantes. Estudio del carácter de un sistea Teorea de Rouché Estudia la copatibilidad de los siguientes sisteas resuélvelos si tienen solución: 5 5 4 a b c t t a

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-1-M--00-017 CURSO: Matemática Básica SEMESTRE: Seguno CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Primer eamen

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

d) Si tiene la siguiente función para la oferta de trabajo:

d) Si tiene la siguiente función para la oferta de trabajo: Capítulo MERCADO DE TRABAJO, FUNCIÓN DE RODUCCIÓN Y OFERTA AGREGADA DE ARGO AZO. Sea la función e proucción: Y = A0( f 0 f ) Done las uniaes en las que se expresa la cantia e trabajaores a emplear son

Más detalles

1. Introducción: aproximación de un vector

1. Introducción: aproximación de un vector .6 Ajuste lineal por ínios cuadrados (6_AL_T_v9;005.w0.4; C & / C) 0. Notación (, ) producto interno de vectores A atriz de diseño (rectangular; n); contiene por colunas los vectores de las funciones del

Más detalles

TEMA No 3.- VECTORES EN EL PLANO.

TEMA No 3.- VECTORES EN EL PLANO. 3.1.- CONCEPTO DE VECTOR. UNIDAD EDUCATIVA ROMULO GALLEGOS TEMA No 3.- VECTORES EN EL PLANO. Mérida, 4 de mayo de 2017 Un vector fijo es un segmento de recta orientado y dirigido que tiene su origen en

Más detalles

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales.

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. Sonia L. Rueda ETS Arquitectura. UPM Año 2016-2017. 1 GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. 1. Determinar si los siguientes conjuntos de vectores son subespacios vectoriales de R 4. A = {(x,

Más detalles

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim FORMULARIO V1.00 - Introucción a la Física Licenciatura en Física 1 Operaor Derivaa 1.1 De nición formal f (z 0 ) lim lim z 0!z z z 0 4z!0 f (z + 4z) 4z (1) 1. Derivaas e algunas funciones elementales

Más detalles

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía Trabajo y Energía Trabajo de una Fuerza Es una anera diferente de resolver probleas de dináica en los que la fuerzas son funciones de la posición y no del tiepo. F r Observaciones: Sólo cuenta la coponente

Más detalles

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico.

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico. MMII_CV_c CÁLCULO VARIACIONAL: Introucción moelo básico. Guión Esta es una clase e introucción al Cálculo e Variaciones (CV). Por un lao, se establece su relación con otros campos e la Optimización en

Más detalles

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque

Más detalles

Tema 9: EL TEOREMA DE LOS RESIDUOS. APLICACIONES Programa detallado:

Tema 9: EL TEOREMA DE LOS RESIDUOS. APLICACIONES Programa detallado: Tea 9: EL TEOREMA DE LOS RESIDUOS. APLICACIONES Prograa detallado: 9.1 Introducción. 9.2 Puntos singulares aislados de una función. 9.3 Residuos: Definición y cálculo. 9.4 El teorea de los residuos. 9.5

Más detalles

Derivación de funciones trascendentes.

Derivación de funciones trascendentes. 57 Derivación e funciones trascenentes. Como en el caso e las funciones algebraicas eisten teoremas para erivar las funciones trascenentes como se muestra a continuación: Teoremas e erivación: Sean u y

Más detalles

PREINFORME 3 PERIODO DIRECCIÓN MEDIA VOCACIONAL

PREINFORME 3 PERIODO DIRECCIÓN MEDIA VOCACIONAL PROF. 12010483768 11A X X X X X X 12008465369 11A X X X X X X X 12009480558 11A X X X X X X 12010486829 11A 12011493890 11A X X X X 12012000956 11A X X X X X X X X 12008470492 11A X X 12010488239 11A X

Más detalles

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema:

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema: ísica Dos planos inclinados con dos cuerpos, unidos a través de una cuerda que pasa por una polea despreciable. Supongaos que ha rozaiento en los dos planos inclinados. Supongaos que el sistea se ueva

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos .E.S. CSTELR DJOZ. Menguiano PRUE DE CCESO (LOGSE) UNVERSDD DE LERES SEPTEMRE - (RESUELTOS por ntonio Menguiano) MTEMÁTCS Tiepo áio: horas inutos Contesta de anera clara raonada una de las dos opciones

Más detalles

Comunicaciones II. Ejemplos Tema 3 Transmisión digital PAM a través de canales AWGN limitados en banda

Comunicaciones II. Ejemplos Tema 3 Transmisión digital PAM a través de canales AWGN limitados en banda Counicaciones II Ejeplos ea 3 ransisión igital PA a través e canales AWGN liitaos en bana Javier oríguez Fonollosa y argarita Cabrera Beán Ejeplos ea 3 ransisión igital PA a través e canales AWGN liitaos

Más detalles

VECTORES: RECTAS Y PLANOS

VECTORES: RECTAS Y PLANOS ECTORES: RECTAS Y LANOS Determinar la ecuación e la recta que pasa por los puntos (3, 1, 0) y (1, 1, 2). Solución: I.T.I. 93, I.T.T. 04 Sea un punto A genérico e la recta e coorenaas ( x, y, z), los vectores

Más detalles

TRABAJO EN GRUPO 1: PARÁBOLAS Y SUBCONJUNTOS 22/09/2008

TRABAJO EN GRUPO 1: PARÁBOLAS Y SUBCONJUNTOS 22/09/2008 TRABAJO EN GRUPO : PARÁBOLAS Y SUBCONJUNTOS /9/8 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.).- De las siguientes ecuaciones que representan parábolas, hallar las coordenadas del vértice, del

Más detalles

Para medir la pendiente de una recta, o sea su inclinación, se mide cuánto subió verticalmente en qué distribución horizontal.

Para medir la pendiente de una recta, o sea su inclinación, se mide cuánto subió verticalmente en qué distribución horizontal. página 9 4.1 DEFINICIONES Y CONCEPTOS PRELIMINARES 1) abscisa (el latín, abscissa cortaa, que corta. Se refiere a que corta a la vertical): Es el valor nuérico e la coorenaa x en el plano cartesiano. )

Más detalles

ELECTRICIDAD 6. Campo eléctrico 1

ELECTRICIDAD 6. Campo eléctrico 1 LCTRICIDAD 6. Campo eléctrico 0*. n 838, Faraay, a través e los experimentos realizaos con los campos magnéticos y visualizar como se orientaba el polvillo e hierro en tales campos, sugirió una forma e

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

Distancia entre dos puntos

Distancia entre dos puntos GAE-05_MAAL3_Distancia entre dos puntos Distancia entre dos puntos Por: Sandra Elvia Pérez Para deterinar una expresión que te ayude a calcular la distancia entre dos puntos cualesquiera, toa los siguientes

Más detalles

MATEMÁTICA DE JORGE JUAN

MATEMÁTICA DE JORGE JUAN LA FIGUA DE LA TIEA MATEMÁTICA DE JOGE JUAN POFESO DIEGO GACÍA CASTAÑO LA ASAMBLEA AMISTOSA LITEAIA La Figura e la Tierra E,; ED ECUADO DB SEMIEJE DE LA TIEA ; GI ; FH Ecuaciones e la elipse : cosφ; senφ

Más detalles

Ayudantía #1: MAT1532 Ecuaciones Diferenciales Carlos Pérez Arancibia

Ayudantía #1: MAT1532 Ecuaciones Diferenciales Carlos Pérez Arancibia Pontificia Universidad Católica de Chile Facultad de Mateáticas Departaento de Mateáticas Prier Seestre de 6 Ayudantía #1: MAT153 Ecuaciones Diferenciales Carlos Pérez Arancibia caperez3@puc.cl 1 Modelaiento

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

EJERCICI0S PARA ENTRENARSE. Hacemos la tabla de valores y después representamos la función.

EJERCICI0S PARA ENTRENARSE. Hacemos la tabla de valores y después representamos la función. Unidad Funciones LINEALES EJERCICI0S PARA ENTRENARSE Representa las siguientes funciones: Haceos la tabla de valores después representaos la función. a)) - + b)) c)) 7 Unidad Funciones LINEALES + d)) e))

Más detalles

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE: IES Fernando de Herrera Curso 6 / Segundo triestre Observación evaluable escrita nº º Bach CT NOMBRE: Instrucciones: ) Todos los folios deben tener el nobre estar nuerados en la parte superior. ) Todas

Más detalles

x, la curva tiene una tangente en P ( )

x, la curva tiene una tangente en P ( ) MATEMÁTICAS BÁSICAS APLICACIONES DE LA DERIVADA A través el uso el concepto e erivaa se logra conocer algunas propieaes relevantes e las unciones. El estuio e estas características acilita la representación

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014 ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº Recta Plano Cursada Desarrollo Temático de la Unidad La recta en el plano: su determinación. Distintas formas de la ecuación de la recta a partir de la

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES Asignatura Clave: FIM6 Número e Créitos: 7 Teóricos: 4 Prácticos: INSTRUCCIONES PARA OPERACIÓN ACADÉMICA: El Sumario representa un reto, los Contenios son los ejes temáticos, los

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) IES CSTELR BDJOZ RUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO 4 (RESUELTOS por ntonio Menguiano) MTEMÁTICS II Tiepo áio: horas inutos Conteste de anera clara raonada una de las dos opciones propuestas

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nobre: Curso: º Grupo: A Día: CURSO Opción A. Considera la atriz a a B a a que depende de un paráetro. a) [, puntos] Para qué valores de a tiene B

Más detalles

Opción A. 2. Cuál de las siguientes gráficas representa mejor la variación de energía cinética de un oscilador armónico en función del tiempo?

Opción A. 2. Cuál de las siguientes gráficas representa mejor la variación de energía cinética de un oscilador armónico en función del tiempo? Física º Bach. Tea: Recuperación de la ª Evaluación 4/04/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nobre: Opción A Probleas [3 PUNTOS / UNO] 1. Se disponen cuatro cargas en los vértices de un cuadrado centrado

Más detalles

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables MATEMÁTICAS II Valores etremos Curso - e unciones e varias variables EJERCICIOS ) Calcular el volumen e la caja rectangular más grane situaa en el primer octante con tres e sus caras en los planos coorenaos

Más detalles

DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO REGULAR A PARTIR DE DOS MÉTODOS DIFERENTES

DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO REGULAR A PARTIR DE DOS MÉTODOS DIFERENTES Atlántia Año: 009 Profesor: Anrés Pazos DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO REGULAR A PARTIR DE DOS MÉTODOS DIFERENTES RESUMEN En este infore se escriben algunas e las posibles aneras e eterinar

Más detalles

solución para los valores del parámetro que anulan el determinante de la matriz de coeficientes.

solución para los valores del parámetro que anulan el determinante de la matriz de coeficientes. UNIVERSIDDES PÚBLICS DE L COUNIDD DE DRID PRUEBDE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Curso - (JUNIO) TERI: TEÁTICS PLICDS LS CIENCIS SOCILES II INSTRUCCIONES Y CRITERIOS GENERLES DE CLIFICCIÓN

Más detalles

Programa de Estudio Matemáticas Primer año Medio Unidad 3 SUGERENCIAS DE EVALUACIÓN EVALUACIÓN 1. Objetivos de Aprendizaje OA 8

Programa de Estudio Matemáticas Primer año Medio Unidad 3 SUGERENCIAS DE EVALUACIÓN EVALUACIÓN 1. Objetivos de Aprendizaje OA 8 Prograa de Estudio Mateáticas Prier año Medio Unidad 3 SUGERENCIAS DE EVALUACIÓN Objetivos de Aprendizaje OA 8 EVALUACIÓN 1 Mostrar que coprenden el concepto de hootecia: Relacionándola con la perspectiva,

Más detalles

Matemática Discreta - IT Informática de Sistemas - Mónica Esquivel - Antonio J. Lozano

Matemática Discreta - IT Informática de Sistemas - Mónica Esquivel - Antonio J. Lozano Mateática Discreta - IT Inforática de isteas - Mónica squivel - Antonio J. Lozano Tea 4 Técnicas de contar La cobinatoria trata de contar el núero de eleentos de conjuntos finitos. ntre sus aplicaciones

Más detalles

y Si plano tangente y en la superficie S, respectivamente, obtenidas al proyectar la región R P x y f x y, se multiplica esta por

y Si plano tangente y en la superficie S, respectivamente, obtenidas al proyectar la región R P x y f x y, se multiplica esta por .6. Integral de superficie de un campo escalar. Para definir la integral de superficie de un campo escalar, consideraremos una superficie que esta dada paramétricamente por la función vectorial g, definida

Más detalles

SESIÓN 7. Biprisma de Fresnel.

SESIÓN 7. Biprisma de Fresnel. SESÓN 7. Biprisa e Fresnel. TRABAJO PREVO. Conceptos funaentales. Cuestiones. Conceptos funaentales nterferencia óptica: Cuano os haces e luz se cruzan pueen interferir, lo que afecta a la istribución

Más detalles