UTILIDAD RELATIVA DE UN SISTEMA DE MEDICIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UTILIDAD RELATIVA DE UN SISTEMA DE MEDICIÓN"

Transcripción

1 UTILIDAD RELATIVA DE UN SISTEMA DE MEDICIÓN G. Américo Rivas C. Prof. De la Escuela de Ingeniería Industrial. Área de Postgrado. Maestría en Ingeniería Industrial. Universidad de Carabobo e. Mail: Resumen En este artículo se plantea la necesidad de disponer de una medida de la calidad relativa de un Sistema de Medición. Medida relativa por cuanto se hace con relación a la variación en un producto determinado de un proceso de producción dado. Se discute y analiza el proceso de desarrollo de los datos que se generan en un estudio del Sistema de Medición empleado para determinada característica de calidad. Como resultado del análisis, se deriva una medida de la utilidad relativa de una medición. Abstract This paper poins out the necessity of assessing the relative usefulness of a measurement for a specific product. Before such a relative measure of usefulness can be obtained, one will have to have an estimate of the product variation and a framework for comparing the error of measurement with product variation. This framework and a statistic for measuring the relative usefulness of a measurement, are given in this paper INTRODUCCIÓN. Uno de los aspectos más importante en el área de la evaluación de un Sistema de Medición es el tema relacionado con la capacidad de discriminación de tal sistema. El tema del presente trabajo se relaciona con la obtención de una medida de la efectividad relativa a un producto determinado, de un sistema de medición. UTILIDAD RELATIVA DE UNA MEDICIÓN. El estimado de la Desviación Estándar del Sistema de Medición proporciona una medida absoluta del Error de la Medición. Sin embargo, esto no es suficiente para calificar la utilidad relativa de esa medición para un determinado producto o proceso. Para poder obtener esa medida relativa es necesario, en primer lugar, disponer de un estimado de la variación del producto. Una vez que se dispone de tal estimado, entonces se debe definir la forma en que se compararán tales estimados. Como se establece en el Manual del curso Análisis de los Sistemas de Medición (Ing. G. Américo Rivas C, ver referencia 2): Varianza Obs.= Varianza del Producto + varianza del Error de Medición Esta relación puede reflejarse bajo la figura de un triángulo rectángulo cuya hipotenusa es el valor de σ obs.

2 En la medida en que la desviación estándar del producto es mayor que la del sistema de medición, aquella será la que aporte más a la desviación estándar observada. Ahora bien, si se producen mejoras continuas en el proceso, entonces llegará un momento en que prevalecerá la desviación estándar del sistema de medición. En el momento en que eso ocurra ya el sistema de medición no podrá detectar la variación en el producto, y entonces es el momento en que la prioridad debe ser la mejora del sistema de medición. Por lo que se ha expuesto, es muy importante tener una, manera de evaluar la utilidad relativa de una medición. Para eso se necesita discutir con algún detenimiento, las características que rodean el estudio de un sistema de medición. Cuando se hace un estudio del sistema de medición, se selecciona una muestra aleatoria del proceso de producción. Supóngase que la misma es de P artículos. Sean x l, x 2,... x P, los valores verdaderos de cierta característica de calidad x, en tales artículos. Estos valores son una muestra aleatoria de una población cuya media es µ y cuya varianza es σ p 2. A cada uno de estos artículos se le hace "r" lecturas. Para mantener el análisis lo más simple posible, supóngase que para cada parte i se hacen r = 2 lecturas. Cuando se hace la j-ésima lectura sobre el i-ésimo artículo, la lectura correspondiente, y ij será igual a en donde e ij es el error de medición, cuya mediase asume que es iguala cero y su varianza es σ m 2. Los e ij se consideran v.a. no correlacionadas entre sí, e independientes de los valores verdaderos de las partes, x i, por lo tanto Bajo estos supuestos: 1. Todas las observaciones tienen la misma media (p). 2. Las observaciones no son estadísticamente independientes. Esta dependencia estadística es el reflejo de una realidad: las 2 lecturas hechas sobre la misma parte están ligadas a su valor verdadero, alrededor del cual varían, de acuerdo al valor de σ m 2. La dependencia mencionada permite definir el llamado Coeficiente de Correlación Intraclase, ρ 1, (Ver Scheffé, Referencia 6) Recuérdese que

3 De todo esto se deduce que las "r" variables aleatorias que conforman las lecturas hechas sobre la misma parte no son independientes, y que su Coeficiente de Correlación es ρ 1. En resumen, las variables aleatorias se pueden considerar variables aleatorias bidimensionales, cuyo Coeficiente de Correlación es ρ 1. En la metodología estadística es usual suponer que las variables aleatorias consideradas en el modelo, siguen una distribución Normal. Bajo este supuesto adicional, las v.a. antes mencionadas se pueden considerar Bi-variables Normales. MODELO NORMAL B1-VARIABLE. El modelo Normal Bi-variable tiene 5 parámetros que son, µ 1, µ 2, σ 1, σ 2 y el Coeficiente de Correlación ρ, que en el contexto que se está analizando es el ya definido Coeficiente de Correlación Intraclase. La función de densidad de probabilidad de la distribución Normal Bi-variable es Cuando esta superficie, con la forma parecida a una campana, se intercepta con un plano paralelo al eje X-Y, se generan curvas planas, cada una de las cuales es una elipse. Estas elipses son las curvas de contorno las cuales permiten representar de una forma más sencilla, la función de densidad de probabilidad de la distribución Normal Bi-variable. En las figuras que siguen, se muestra la función de densidad de la Normal Bi-Variable, con Sigmas iguales y Coeficiente de Correlación igual a 0,80, y las curvas de contorno de esa misma función de densidad, las cuales permiten describir de manera más sencilla dicha función.

4 La ecuación de cada una de estas elipses (ver Brownlee, referencia 4), es Cuando ρ es igual a cero, se obtiene la ecuación de una elipse cuyos ejes principales son paralelos a los ejes de coordenadas. Sin perder generalidad y para simplificar el análisis, se considerará que Por otra parte, los parámetros σ 1 y σ 2 son iguales, debido a que las lecturas que se hacen sobre cada parte pertenecen a la misma población. Para simplificar la expresión de la ecuación de la elipse, se considerará que σ 1 = σ 2 = 1. Bajo estos supuestos, la ecuación de la elipse se simplifica a la expresión

5 En el Apéndice se demuestra que esta ecuación corresponde a una elipse cuyo eje principal forma un ángulo de 45 con el eje de las abscisas. A1 girar los ejes 45, y 1 y y 2 se convierten en z 1 y z 2, y la ecuación de la elipse queda como Observe que, efectivamente, el eje principal mayor de la elipse forma 45 con el eje de las abscisas. Es conveniente destacar que cuando la variable bi-dimensional considerada se forma con las lecturas hechas sobre la misma parte, como es el caso que se analiza, siempre será verdad que σ 1 = σ 2, y el ángulo será de 45. Si los valores de las medias µ 1 y µ 2 no son iguales a cero, el cambio consiste, simplemente, en una la relación traslación de los ejes. Al sustituir en la ecuación IX, las funciones trigonométricas por sus valores sen 45 = 1/ 2, cos 45 = 1/ 2, se obtiene la ecuación de la elipse cuyos ejes principales son paralelos a los ejes de coordenadas A1 dividir por (1 - ρ 2 ), queda Como esta es la ecuación de una elipse cuyos ejes son paralelos a los ejes de coordenadas, el valor de la constante debe ser (1- ρ 2 ). En consecuencia, la longitud del eje mayor es 2 (l + ρ), mientras que la longitud del eje menor es 2 (l - ρ). GRÁFICO DE LA RELACIÓN DE DISCRIMINACIÓN. Si se desea ver reflejado en un solo gráfico, la variación dentro de las lecturas repetidas sobre la misma parte y la variación debida al proceso de producción, se puede tomar la idea de Wheeler-Lyday (ver referencia número 3), de colocar en un gráfico X-Y, los puntos que corresponden a los valores de para cada parte, esto es, para i = 1, 2,..., p. El gráfico resultante mostrará la dispersión de los datos alrededor del diagonal. De acuerdo a lo que se desarrollara antes, estos puntos deben ajustarse a una elipse, cuyo eje principal mayor tiene una longitud igual a 2 (l + ρ) y el eje principal menor tiene una, longitud igual a 2 (l - ρ).

6 En el gráfico, la variación perpendicular a la diagonal refleja la variación debida al sistema de medición solamente, mientras que la variación a lo largo de la diagonal refleja la variación debida tanto al sistema de medición como al producto. El error en la medición puede representarse como un cuadrado cuyo lado es de longitud 2 (l - ρ). Si la elipse se encierra dentro de un rectángulo formado por tantos cuadrados como haga falta, entonces este número de cuadrados representa el poder o capacidad de discriminación de las mediciones hechas, relativa al producto que se ha medido. Esta capacidad de discriminación se puede medir mediante la relación Esta relación representa el número de categorías diferentes en que el sistema de medición puede clasificar los valores verdaderos del producto, x 1. RELACIÓN CON EL CRITERIO DEL %R&R Según ese criterio, para que el sistema de medición sea aceptable, la desviación estándar del sistema de medición, σ m, debe ser menor o igual que el 10% de la desviación estándar observada, σ obs El Coeficiente de Correlación de la Normal Bi-variable es el Coeficiente de Correlación Intraclase definido en la ecuación V como El criterio anterior (ecuación XII) es equivalente a En consecuencia, el Sistema de Medición es aceptable si

7 Con base al mismo criterio, se considera que puede usarse el equipo si la relación (σ m / σ obs ) ó 0,30. Para este caso, el criterio equivalente es APÉNDICE. En la referencia 4 se establece la ecuación de las elipses que representan las líneas de contorno de una distribución Normal Bi-variable como Estas elipses tienen el centro en el punto cuyas coordenadas son (µ 1, µ 2 ). Para simplificar la expresión, se supondrá que estos valores son iguales a cero, es decir, que la elipse tendrá su centro en el origen de las coordenadas. Como se ha desarrollado en el presente trabajo, en la situación que se analiza, estas elipses provienen de una distribución Normal Bi-variable con Sigmas iguales, es decir, que σ 1 es igual a σ 2. Se asumirá que estos parámetros son iguales a 1. Estas simplificaciones conducen a una expresión de la forma que es la ecuación de una elipse con su eje principal mayor formando un ángulo dado, 0, con el eje de las abscisas. Para derivar la ecuación de una elipse con ejes principales paralelos a los ejes de coordenadas, deben girarse los ejes de coordenadas un ángulo iguala 0. Sean z l y z 2, las coordenadas en este nuevo sistema de coordenadas. Entonces, los valores de y 1 y y 2, expresados en función de z l y z 2 son como sigue (ver Lehmann, referencia 5): A1 hacer estas sustituciones en la ecuación II y después de agrupar términos, se obtiene

8 Como la elipse con ejes principales paralelos a los ejes de coordenadas no tiene término en z 1 z 2, entonces se iguala a cero tal coeficiente, en la ecuación anterior, lo cual conduce a que el ángulo 0 = 45. BIBLIOGRAFÍA 1. Measurement Systems Analysis Reference Manual, AIAG, Detroit, Michigan, Rivas C., G. Américo (1996), Análisis de los Sistemas de Medición. Manual de Referencia. CEATE. Universidad de Carabobo. 3. Wheeler, D. J., Lyday, R.W. (1989): Evaluating the Measurement Process. 4. K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, Tercera Edición Lehmann, Charles H., Geometría Analítica, Editorial Limusa Scheffé, Henry, (1959), The Analysis of Variance, Wiley.

ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO. Resumen

ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO. Resumen ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO RIVAS C., Gerardo A. Escuela de Ingeniería Industrial. Universidad de Carabobo. Bárbula. Valencia. Venezuela Jefe

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano).

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). GEOMETRÍA ANALÍTICA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). LA RECTA.- La recta es un conjunto infinito de puntos alineados en

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Funciones Trigonométricas

Funciones Trigonométricas UNIVERSIDAD LA REPÚBLICA ESCUELA DE INGENIERÍA FUNDAMENTOS DE LA MATEMÁTICA PROF. FRANCISCA GONZÁLEZ AY. GABRIEL SORIA TRABAJO: Funciones Trigonométricas FECHA: 22 de septiembre de 1999 INTEGRANTES: CARLOS

Más detalles

Sistema de coordenadas. Plano cartesiano

Sistema de coordenadas. Plano cartesiano Geometría analítica La geometría analítica estudia las figuras geométricas mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas.. Actualmente la geometría

Más detalles

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información Patrones y ecuaciones

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información Patrones y ecuaciones TERCER GRADO bloque i Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando

Más detalles

CENTRO UNIVERSITARIO MONTEJO A. C. Temario de Matemáticas 3. Bloque I

CENTRO UNIVERSITARIO MONTEJO A. C. Temario de Matemáticas 3. Bloque I Bloque I Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando procedimientos

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL 1. DATOS INFORMATIVOS MATERIA O MODULO: ESTADÍSTICA CARRERA: INGENIERÍA CIVIL NIVEL: 2 No. CREDITOS 4 CREDITOS

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini. Otras páginas Matemáticas 5º Matemáticas I. Bloque I: ARITMÉTICA Y ÁLGEBRA Los números reales Los números reales, concepto y características. Estructura algebraica, orden, representación en la recta real

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Tema 2. Regresión Lineal

Tema 2. Regresión Lineal Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite

Más detalles

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística MINISTERIO DE EDUCACIÓN Educación Técnica y Profesional Familia de especialidades: Economía Programa: Estadística Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 12mo. Grado AUTORA MSc. Caridad

Más detalles

FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93

FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS ISBN: 978-84-941559-0-1 Depósito Legal: M-20468-2013 Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS INDICE MATEMÁTICAS BÁSICAS CONJUNTOS

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

MUESTREO APUNTE. Índice: MUESTREO. Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA

MUESTREO APUNTE. Índice: MUESTREO. Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA APUNTE MUESTREO Índice: MUESTREO Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA Método de Cálculo Ejemplo Ing. Rogelio Hernán Bello Página 1

Más detalles

INDICADORES MULTIVARIADOS DE CAPACIDAD DE PROCESOS. SU EFICIENCIA BAJO DISTRIBUCIONES NORMALES.

INDICADORES MULTIVARIADOS DE CAPACIDAD DE PROCESOS. SU EFICIENCIA BAJO DISTRIBUCIONES NORMALES. Dianda, Daniela Hernández, Lucia Quaglino, Marta Pagura, José Alberto Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística INDICADORES MULTIVARIADOS DE CAPACIDAD DE PROCESOS.

Más detalles

Estadística. Sesión 4: Medidas de dispersión.

Estadística. Sesión 4: Medidas de dispersión. Estadística Sesión 4: Medidas de dispersión. Contextualización En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal es el caso del rango, la varianza y la desviación estándar,

Más detalles

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π DISTRIBUCIÓN NORMAL. Es la más importante de las distribuciones teóricas, es también conocida con los nombres de curva normal y curva de Gauss. De Moivre publico en 1773 su trabajo sobre la curva normal

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática MINISTERIO DE EDUCACIÓN Dirección de Educación Técnica y Profesional Familia de especialidades:servicios Programa: Estadística Matemática Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 9no.

Más detalles

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA 1 CLASES DE ESTADÍSTICA II CLASE ) ESPERANZA ABSOLUTA. ESPERANZA CONDICIONAL. ESPERANZA ABSOLUTA El cálculo de valores esperados o esperanzas a nivel de dos variables aleatorias es una generalización matemática

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Pendientes de Matemáticas Aplicadas a las Ciencias Sociales I b) 5-2

Pendientes de Matemáticas Aplicadas a las Ciencias Sociales I b) 5-2 . ARITMÉTICA OPERACIONES CON FRACCIONES. Realiza las siguientes operaciones teniendo en cuenta el orden de prioridades: 8-5 ( 5. Opera y simplifica: 5 5 5+ + ( ) 5 5 5 : c) 7-4 -(5-5- + PROPIEDADES DE

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I

CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I UNIDAD 1 NÚMEROS REALES 1.1. Dados varios números, los clasifica en los distintos campos numéricos y los representa en la recta real. 1.2. Domina

Más detalles

ESTÁTICA 3 3 VECTORES

ESTÁTICA 3 3 VECTORES ESTÁTICA Sesión 3 3 VECTORES 3.1. Componentes en dos dimensiones 3.1.1. Operación con vectores por sus componentes 3.1.2. Vectores de posición por sus componentes 3.2. Componentes en tres dimensiones 3.2.1.

Más detalles

Práctica 3: Regresión simple con R

Práctica 3: Regresión simple con R Estadística II Curso 2010/2011 Licenciatura en Matemáticas Práctica 3: Regresión simple con R 1. El fichero de datos Vamos a trabajar con el fichero salinity que se encuentra en el paquete boot. Para cargar

Más detalles

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 INDICE Geometría Analítica Plana Capitulo Primero Sistema de Coordenadas Articulo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Distribuciones Continuas

Distribuciones Continuas Capítulo 5 Distribuciones Continuas Las distribuciones continuas mas comunes son: 1. Distribución Uniforme 2. Distribución Normal 3. Distribución Eponencial 4. Distribución Gamma 5. Distribución Beta 6.

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría. PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas

Más detalles

MANTENIMIENTO INDUSTRIAL.

MANTENIMIENTO INDUSTRIAL. REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL MANTENIMIENTO INDUSTRIAL. Realizado por: Ing. Danmelys Perozo UNIDAD II: ESTADÍSTICAS DE FALLAS

Más detalles

MATEMÁTICAS 1º DE BACHILLERATO

MATEMÁTICAS 1º DE BACHILLERATO POLINOMIOS Y FRACCIONES 1. Operaciones fracciones algebraicas 2. Opera y simplifica fracciones 3. Repaso fracciones 4. Fracciones equivalentes 5. Potencias de fracciones 6. Operaciones con fracciones 7.

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual

PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual Programa PREPAES, Universidad Francisco Gavidia015 PROGRAMA PRE-PAES 015 Asignatura: Matemática Contenido Virtual TEMA: APLIQUEMOS ELEMENTOS DE GEOMETRIA ANALITICA Profesor: Luis Roberto Padilla R. e-mail:

Más detalles

Estadística Descriptiva y Probabilidad FORMULARIO

Estadística Descriptiva y Probabilidad FORMULARIO Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.

Más detalles

Estadística Descriptiva

Estadística Descriptiva M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Desde la segunda mitad del siglo anterior, el milagro industrial sucedido en Japón, hizo

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación. Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016

Más detalles

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( )

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( ) 1 Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º (2015-2016) Tema 1: NÚMEROS REALES Conjuntos numéricos. Números naturales. Números enteros. Números racionales. Números

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE Guía 3 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Análisis de Capacidad Multivariada

Análisis de Capacidad Multivariada Análisis de Capacidad Multivariada Resumen El procedimiento Análisis de Capacidad Multivariada determina la probabilidad de que los puntos caracterizados por dos o más variables se encuentren establecidos

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Aniel Nieves-González () LSP 1 / 16 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por departamento. La v.a. dependiente

Más detalles

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES Hasta el momento hemos tratado integrales dobles en las cuales la región de integración es una región rectangular de la forma *(

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

CRITERIOS DE EVALUACIÓN

CRITERIOS DE EVALUACIÓN + ω DEPARTAMENTO DE MATEMATICAS. I.E.S. ROSA CHACEL (Colmenar Viejo) Resumen de contenidos y criterios de evaluación MATEMÁTICAS NIVEL SUPERIOR BI (PRIMER AÑO). 1º DE BACHILLERATO. 1. NÚMEROS REALES CRITERIOS

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Fecha: 29/10/2013 MATEMÁTICAS

Fecha: 29/10/2013 MATEMÁTICAS Página: 1/5 MATEMÁTICAS Álgebra 1.- Conceptos y operaciones algebraicas fundamentales Terminología Operaciones fundamentales con monomios y polinomios o Reducción de términos semejantes o Suma, resta o

Más detalles

Exactitud y Linearidad del Calibrador

Exactitud y Linearidad del Calibrador Exactitud y Linearidad del Calibrador Resumen El procedimiento Exactitud y Linearidad del Calibrador fue diseñado para estimar la exactitud del sistema de medición. En contraste con los procedimientos

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

4. PROPIEDAD DE ÁREAS PLANAS Y LINEAS Centroides de áreas compuestas

4. PROPIEDAD DE ÁREAS PLANAS Y LINEAS Centroides de áreas compuestas 4. PROPIEDAD DE ÁREAS PLANAS Y LINEAS 4.1. Centroides de áreas compuestas 4.1.1. Centros de gravedad de un cuerpo bidimensional Para iniciar, considere una placa plana horizontal (figura 5.1). La placa

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

SERVICIOS DE INGENIERÍA DE CONFIABILIDAD Colombia, Cali

SERVICIOS DE INGENIERÍA DE CONFIABILIDAD Colombia, Cali Resumen: SERVICIOS DE INGENIERÍA DE CONFIABILIDAD CONFIABILIDAD DE PLANTAS DE GENERACION Ing. William M Murillo En este artículo, se presenta una metodología para calcular la confiabilidad de componentes,

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad: III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden

Más detalles

Disponible en el sitio OCW de la Universidad Nacional de Córdoba.

Disponible en el sitio OCW de la Universidad Nacional de Córdoba. OCW - UNC OpenCourseWare I UNC Curso: Estadística I U 4. Variables Aleatorias Autora: Rosanna Casini Cómo citar el material: Disponible en el sitio OCW de la Universidad Nacional de Córdoba. Casini, Rosanna

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el

Más detalles

Regresión polinomial y factores

Regresión polinomial y factores Capítulo Regresión polinomial y factores.. Regresión polinomial Si una función media tiene un predictor X pueden usarse sus potencias enteras para aproximar E (Y X). El caso más simple es la regresión

Más detalles

Guía de Matemática Segundo Medio

Guía de Matemática Segundo Medio Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL DEPARTAMENTO DE GEOGRAFÍA FACULTAD DE HUMANIDADES UNNE Prof. Silvia Stela Ferreyra Revista Geográfica Digital. IGUNNE. Facultad de Humanidades.

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

ORGANIZACIÓN Y REPRESENTACIÓN GRÁFICA DE LOS DATOS

ORGANIZACIÓN Y REPRESENTACIÓN GRÁFICA DE LOS DATOS ORGANIZACIÓN Y REPRESENTACIÓN GRÁFICA DE LOS DATOS Licenciatura en Gestión Ambiental 2015 Una vez que se ha realizado la recolección de los datos, se obtienen datos en bruto, los cuales rara vez son significativos

Más detalles

Área Académica: Gestión Tecnológica. Asignatura (Estadística para el Desarrollo Tecnológico, 3er Semestre)

Área Académica: Gestión Tecnológica. Asignatura (Estadística para el Desarrollo Tecnológico, 3er Semestre) Área Académica: Gestión Tecnológica. Asignatura (Estadística para el Desarrollo Tecnológico, 3er Semestre) Tema: Generalidades de los Elementos de Tendencia Central y de Dispersión Profesor: Dr. Ernesto

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles