Programación Lineal y Optimización Tercer Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programación Lineal y Optimización Tercer Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011"

Transcripción

1 Programación Lineal y Optimización Tercer Examen Parcial Respuesta: : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1 (30 puntos) La compañía Xeroch vende copiadoras. Uno de los factores de venta más importante es que la compañía ofrezca un servicio técnico rápido. La compañía vende copiadoras en seis ciudades C 1 a C 6. La siguiente tabla proyecta las ventas anuales por ciudad con y sin representate técnico a una distancia menor que 150 millas. Ventas Representante? C 1 C 2 C 3 C 4 C 5 C 6 sí no Producir cada copiadora tiene un costo de 500 dólares y se vende en 1,000 dólares. El costo anual por un representante de servicio es de 80,000 dólares. La compañía debe decidir en cuáles de las ciudades debe contratar un representante técnico; y ofrecer en el proceso de venta en cada ciudad el hecho de que se tiene o no un representante técnico. Las distancias entre las ciudades están dadas por la siguiente tabla. Hacia De C 1 C 2 C 3 C 4 C 5 C 6 C C C C C C Determine un plan de mínimo costo que le permita a la compañía maximizar sus ganancias anuales. Variables de decisión Como las decisiones que debe tomar la compañía son en qué ciudades debe contratar un representante técnico, entonces definimos las variables de decisión acorde con ello: { 1 si se contrata un represntante para la ciudad i x i = 0 otro caso En lo siguiente diremos que la ciudad i está cubierta si existe un representante técnico a una distancia menor o igual que 150 millas. Con este concepto definiremos unas variables de decisión auxiliares { 1 si la ciudad i está cubierta y i = 0 si no n i = el número de copiadoras vendidas en la ciudad i Como el objetivo de la empresa es maximizar las ganancias, entonces el objetivo es maximizar g donde g = ventas costos = ) i ventas ciudad i (costos producción + costos representación = ( 6 i=1 1, 000 n 6 i i=1 500 n i + ) 6 i=1 80, 000 x i = 6 i=1 (500 n i 80, 000 x i )

2 TC3001, tercer examen parcial semestre enero-mayo Número de copiadoras vendidas por ciudad. Sea A i el número de copiadoras a ser vendido cuando la ciudad i no está cubierta y B i el correspondiente cuando la ciudad sí lo está. Estos son datos tomados de la primera tabla. Por tanto, Cobertura por ciudad. De los datos de la tabla de distancia observamos que: n i = A i (1 y i ) + B i y i para i = 1, 2,..., 6 C 1 se cubre con un representante técnico en C 1, o en C 2, o en C 3, o en C 5. Así: Si x 1 + x 2 + x 3 + x 5 1, entonces y 1 = 1. Y por el contrario, si x 1 + x 2 + x 3 + x 5 0, entonces y 1 = 0 Similarmente: Si x 1 + x 2 + x 3 + x 5 1, entonces y 2 = 1. Y por el contrario, si x 1 + x 2 + x 3 + x 5 0, entonces y 2 = 0. Similarmente: Si x 1 + x 2 + x 3 + x 4 + x 5 1, entonces y 3 = 1. Y por el contrario, si x 1 + x 2 + x 3 + x 4 + x 5 0, entonces y 3 = 0. Similarmente: Si x 1 + x 3 + x 4 1, entonces y 4 = 1. Y por el contrario, si x 1 + x 3 + x 4 0, entonces y 4 = 0. Similarmente: Si x 1 + x 2 + x 3 + x 5 1, entonces y 5 = 1. Y por el contrario, si x 1 + x 2 + x 3 + x 5 0, entonces y 5 = 0. Similarmente: Si x 6 1, entonces y 6 = 1. Y por el contrario, si x 6 0, entonces y 6 = 0. Naturales x i y y i son binarias para i = 1, 2,..., 6 6 (20 puntos)una empresa dispone de 50 unidades de capital mensualmente para la adquisición de materia prima y para la remuneración de la mano de obra. Si x es el número de unidades de capital empleadas para pagar la mano de obra y y es el número de unidades de capital empleadas para pagar la materia prima la función de producción mensual es : P (x, y) = 16 y + 5 x y Determine la cantidad de unidades de capital destinadas al pago de mano de obra que proporciona una producción máxima. Variables de decisión x el total de unidades de capital destinadas a mano de obra mensulales y el total de unidades de capital destinadas a materia prima mensuales Maximizar la producción mensual P (x, y) = 16 y + 5 x y Utilizar no más del capital mensual x + y 50 Naturales: x, y 0. Codificación En LINGO: max=-16*y+5*x*y; x+y = 50; Objective value: Variable Value Y X 26.6 Interpretación El plan financiero de mayo producción consiste en disponer de 26.6 unidades de capital para el pago de mano de obra y de 23.4 unidades de capital para el pago de materia prima.

3 TC3001, tercer examen parcial semestre enero-mayo (30 puntos)una compañía considera la apertura de almacenes en 6 ciudades: C 1 a C 6. Desde los almacenes enviará un producto específico hacia las tres regiones en las cuales ha dividido el país. Cada almacen puede enviar hasta 100 unidades del producto. El costo semanal para mantener el almacen en la ciudad 1 es de 4,000 dólares, en la ciudad 2 es de 5,000 dólares, en la ciudad 3 es de 3,000 dólares, en la ciudad 4 es de 2,000 dólares, en la ciudad 5 es de 3,500 dólares, y en la ciudad 6 es de 4,000 dólares. Semanalmente, la región 1 del país requiere 100 unidades del producto, la región 2 del país requiere 120 unidades del producto y la región 3 del país requiere 140 unidades del producto. En la siguiente tabla se muestran los costos de envios unitarios desde cada ciudad a cada una de las regiones del país. Hacia De Región 1 Región 2 Región 3 C C C C C C Se desea satisfacer las demandas semanales a un costo mínimo y la campañía requiere de un plan de apertura de los almancenes así como de determinar las cantidades de productos de esos almacenes a las regiones del país. Adicionalmente, la compañía impone las siguientes restricciones. Si se abre un almancen en la ciudad C 1 debe abrir otro en C 2. Debe abrir por lo menos un almacen en las ciudades C 2, C 4 y C 6. variables de decisión Notemos que la compañía debe tomar dos decisiones que están relacionadas: en qué ciudad debe abrir un almacen y cómo debe enviar los productos desde sus almacénes a las regiones del país. Esto nos define las variables de decisión: { 1 si abre almacen en la ciudad i x i = 0 otro caso y i,j = el número de productos enviados desde la ciudad i a la región j El objetivo de la compañía es minimizar los costos. Los costos son de dos tipos: Por apertura de sus almacenes y por envio de los productos. Si C es el costo total, la compañía pretende minimizar C donde C = costo total = costo apertura + costo envio = 6 i=1 a i x i i=1 j=1 c i,j y i,j donde a i es el costo por apertura del almacen en la ciudad i dado en el texto, y c i,j es el costo de enviar un artículo desde el almancen de la ciudad i a la región de país j dado por la tabla. Satisfacer las demandas por región del país Productos enviados a la región 1 del país: y 1,1 + y 2,1 + y 3,1 + y 4,1 + y 5,1 + y 6,1 100 Productos enviados a la región 2 del país: y 1,2 + y 2,2 + y 3,2 + y 4,2 + y 5,2 + y 6,2 120 Productos enviados a la región 3 del país: y 1,3 + y 2,3 + y 3,3 + y 4,3 + y 5,3 + y 6,3 140 No exceder las capacidades instaladas

4 TC3001, tercer examen parcial semestre enero-mayo Para cada almancen i (i = 1, 2,..., 6): y i,1 + y i,2 + y i,3 100 x i Si se abre un almacen en C 1, entonces debe abrirse otro en C 2 : x 2 x 1 Debe abrirse al menos un almance en C 2, C 4 y C 6 : x 2 + x 4 + x 6 1. Naturales x i son binarias para i = 1,..., 6 y y i,j son enteras no negativas para i = 1,..., 6 y j = 1, 2, 3. 5 (20 puntos)para determinar los máximos y mínimos de una función f(x 1, x 2, x 3 ) sujeta a las restricciones x i 0 y 2 x 1 + x 2 + x 3 30, se aplicaron las condiciones KKT a la función y se determinaron los siguientes puntos críticos: F = +f + 4 λ i (g i + s 2 i ) i=1 x 1 x 2 x 3 λ 1 λ 2 λ 3 λ 4 f(x 1, x 2, x 3 ) Determine en cuál punto alcanza el máximo y cuál el mínimo. Indique su razonamiento y sus cálculos. Incluimos en las tablas la sustitución de los puntos en cada una de las restricciones: x 1 x 2 x 3 λ 1 λ 2 λ 3 λ 4 g 1 g 2 g 3 g 4 f(x 1, x 2, x 3 ) De esta tabla eliminamos los renglones que no cumplen las restricciones g i 0 y también eliminamos aquéllos donde aparecen multiplicadores positivos y negativos: x 1 x 2 x 3 λ 1 λ 2 λ 3 λ 4 g 1 g 2 g 3 g 4 f(x 1, x 2, x 3 ) Para hacer el análisis de los puntos usamos como referencia los valores de f y los signos de los multiplicadores de Lagrange: El punto P (x 1 = 0, x 2 = 0, x 3 = 0) corresponde a un mínimo. El punto Q(x 1 = 15, x 2 = 0, x 3 = 0) corresponde a un máximo.

5 TC3001, tercer examen parcial semestre enero-mayo (20 puntos)para determinar los máximos y mínimos de una función f(x 1, x 2, x 3 ) sujeta a la restricción x x 2 + x 1 x x 3 + x 1 x 3 + x 2 x 3 = 4 se aplicó la técnica de los multiplicadores y se obtuvo x 3 + λ x 2 + λ 1 + x 2 + x x 3 + λ x 1 + λ 3 + x 1 + x 3 H F = x 2 + λ 2 + x 1 + λ x 1 + x x 2 + x x 1 + x x 1 + x 2 0 También se determinaron los siguientes puntos críticos: x 1 x 2 x 3 λ Determine en cuál punto alcanza el máximo y cuál el mínimo. Indique su razonamiento y sus cálculos. En nuestro problema el número de variables es n = 3 impar y el número de restricciones es m = 1 también es impar.. Por consiguiente, para hacer el análisis de cada punto crítico se debe calcular hasta el determinante de la hessiana orlada n m = 2: P i x 1 x 2 x 3 λ De los criterios de optimización concluimos que el punto P 1 corresponde a un punto máximo (pues n es impar y los determinantes i se alternan en signo iniciando en negativo), mientras que el punto P 2 corresponde a un punto crítico mínimo (pues m es impar y los determinantes i son todos negativos). 4 (20 puntos) Un fabricante vende dos productos a granel. El producto A que se vende en 3 unidades monetarias el kilogramo y el producto B que se vende en 2. El costo total por fabricar x kilogramos de A y y kilogramos de B está dado por la función: C = 2 x y 2 Suponga que sea desea minimizar sus costos totales, con la condición de que los ingresos obtenidos de venta sean de al menos 30 unidades monetarias. Indique en orden la cantidad de kilogramos del producto A y del producto B que debe producir para lograr su meta. Variables de decisión x el total de kilogramos del producto A a fabricar. y el total de kilogramos del producto B a fabricar. Minimizar los costos productivos del plan: C = 2 x y 2 Ingresos de venta por los menos de 30 unidades monetarias: 3 x + 2 y 30 Naturales: x, y 0. Codificación En LINGO: min=2*x*x+3*y*y; 3*x+2*y >= 30;

6 TC3001, tercer examen parcial semestre enero-mayo Objective value: Variable Value X Y Interpretación El plan productivo de mínimo costo corresponderá a producir kilogramos de A y kilogramos de B.

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: Programación Lineal y Optimización Segundo Examen Parcial Respuesta: : Profr. Eduardo Uresti, Enero-Mayo 2011 1. Suponga que tiene una empresa que produce tres tipos de productos (P

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Esterilización 1 4. Envase 3 2

Esterilización 1 4. Envase 3 2 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

PROBLEMAS DE PROGRAMACIÓN ENTERA I

PROBLEMAS DE PROGRAMACIÓN ENTERA I Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que

Más detalles

IN34A - Optimización

IN34A - Optimización IN34A - Optimización Modelos de Programación Lineal Leonardo López H. lelopez@ing.uchile.cl Primavera 2008 1 / 24 Contenidos Programación Lineal Continua Problema de Transporte Problema de Localización

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato 4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

DP. - AS Matemáticas ISSN: X

DP. - AS Matemáticas ISSN: X DP. - AS - 5119 007 Matemáticas ISSN: 1988-379X 003 APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. Un vendedor de enciclopedias recibe, como sueldo mensual, una cantidad fija

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial :Solución Profr. Eduardo Uresti, Verano 2009

Programación Lineal y Optimización Segundo Examen Parcial :Solución Profr. Eduardo Uresti, Verano 2009 Programación Lineal y Optimización Segundo Examen Parcial : Profr. Eduardo Uresti, Verano 2009 Matrícula: Nombre: 1. Suponga que se tiene disponible la siguiente información salida de LINDO a un problema

Más detalles

Programación Lineal: Modelos PLE

Programación Lineal: Modelos PLE Programación Lineal: Modelos PLE CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas Programación Lineal: Modelos PLE euresti@itesm.mx 1 / 35 Introduccion Introduccion En esta lectura se verán cómo

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal La regla del 100 % 17 de febrero de 2011 La regla del 100 % () Optimización y Programación Lineal 17 de febrero de 2011 1 / 21 Introducción Introducción Veamos ahora

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

Extremos condicionados. APUNTE: Extremos condicionados Multiplicadores de Lagrange

Extremos condicionados. APUNTE: Extremos condicionados Multiplicadores de Lagrange APUNTE: Etremos condicionados Multiplicadores de Larane UNIVERSIDAD NACIONAL DE RIO NEGRO Asinatura: Matemática Carreras: Lic en Administración, Lic en Turismo, Lic en Hotelería Profesor: Prof Mabel Chrestia

Más detalles

Programación lineal. Estimar M. Ejemplos.

Programación lineal. Estimar M. Ejemplos. Departamento de Matemáticas. ITAM. 2010. Los problemas P y P minimizar x c T x sujeta a Ax = b, x 0, b 0 minimizar c T x + M(y 1 + y 2 + + y m ) x sujeta a Ax + y = b, x 0, y 0. Cómo estimar M? Resultado

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

Δx = x2 x1. Δy = y2 y1. Δy = f(x2) - f(x1)

Δx = x2 x1. Δy = y2 y1. Δy = f(x2) - f(x1) INCREMENTO Y TASAS El cálculo diferencial es el estudio del cambio que ocurre en variables dependientes cuando hay variaciones en variables independientes Por ejemplo El cambio del costo de operación de

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014 http://www.matematicaaplicada.info 1 de 6 jezasoft@gmail.com MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

Más detalles

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos:

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: Solución óptima a los problemas de transporte La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: a) Calcular los

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN PROGRAMACIÓN NO LINEAL Conceptos generales INTRODUCCIÓN Una suposición importante de programación lineal es que todas sus funciones Función objetivo y funciones de restricción son lineales. Aunque, en

Más detalles

UNIDAD II PLANEACIÓN AGREGADA DE LA PRODUCCIÓN

UNIDAD II PLANEACIÓN AGREGADA DE LA PRODUCCIÓN UNIDAD II PLANEACIÓN AGREGADA DE LA PRODUCCIÓN Curso: Administración de Operaciones III OBJETIVOS Cuando haya completado esta unidad, debe ser capaz de identificar y definir: Planeación agregada Propósito

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

CONJUNTO Y TIPOS DE CONJUNTOS

CONJUNTO Y TIPOS DE CONJUNTOS CONJUNTO Y TIPOS DE CONJUNTOS Ejemplos 1. Determine cuáles de los siguientes conjuntos corresponden a conjuntos vacíos. a) El conjunto de los números naturales mayores que 3 y menores que 6. b) El conjunto

Más detalles

Optimización. Búsqueda en una Dimensión ITESM. Búsqueda en una Dimensión Profr. E. Uresti - p. 1/19. Dr. E Uresti

Optimización. Búsqueda en una Dimensión ITESM. Búsqueda en una Dimensión Profr. E. Uresti - p. 1/19. Dr. E Uresti Optimización Búsqueda en una Dimensión Dr. E Uresti ITESM Búsqueda en una Dimensión Profr. E. Uresti - p. 1/19 Algunos de los métodos numéricos de búsqueda de óptimos de una función en varias variables

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

CAPITULO VI 6- PRESUPUESTO DE COSTOS E INGRESOS. 6.1- COSTOS 6.1.1- Costos de Producción. 6.1.1.1 Costo de Fabricar. 6.1.1.2- Costos de Administrar

CAPITULO VI 6- PRESUPUESTO DE COSTOS E INGRESOS. 6.1- COSTOS 6.1.1- Costos de Producción. 6.1.1.1 Costo de Fabricar. 6.1.1.2- Costos de Administrar CAPITULO VI 6- PRESUPUESTO DE COSTOS E INGRESOS En este capitulo se presenta la estructura de los costos de producción, clasificados como: costo de fabricación, costo de administración, costo de vender

Más detalles

CUENTAS POR COBRAR - EVALUACIÓN OBJETIVA. Qué elementos debe contener una evaluación objetiva del crédito que se otorga los clientes de las empresas?

CUENTAS POR COBRAR - EVALUACIÓN OBJETIVA. Qué elementos debe contener una evaluación objetiva del crédito que se otorga los clientes de las empresas? CUENTAS POR COBRAR - EVALUACIÓN OBJETIVA Qué elementos debe contener una evaluación objetiva del crédito que se otorga los clientes de las empresas? Al hacer un eficiente trabajo en la evaluación del crédito

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

Optimización Sin Restricciones

Optimización Sin Restricciones Optimización Sin Restricciones Departamento de Matemáticas, CSI/ITESM 1 de mayo de 2009 Índice 14.1. Introducción............................................... 1 14.2. Óptimos de una Función........................................

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II EXAMEN DE SELECTIVIDAD JUNIO 2015. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A Problema 1. Se dispone de 200 hectáreas de terreno en las que se desea cultivar patatas y zanahorias. Cada hectárea

Más detalles

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr Nombre: UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS METODOS CUANTITATIVOS II EXAMEN PARCIAL I /3/7 Sección # Cuenta: Catedrático: Desarrolle en forma clara y ordenada lo que a continuación se le pide:.-

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Breve introducción a la Investigación de Operaciones

Breve introducción a la Investigación de Operaciones Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de

Más detalles

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados.

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001

Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001 TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT001 Semana Nº: 3-4 Actividad Nº 5 Lugar Sala de clases Otro Lugar

Más detalles

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No : Valores y vectores propios a algunos problemas de la tarea (al 9 de junio de 04. Para la matriz A A Indique cuáles vectores son vectores propios: ( ( ( v, v, v 3 3 Recordemos

Más detalles

Curso de Inducción de Matemáticas

Curso de Inducción de Matemáticas Curso de Inducción de Matemáticas CAPÍTULO 1 Funciones y sus gráficas M.I. ISIDRO I. LÁZARO CASTILLO Programa del Curso 1. Funciones y sus gráficas. 2. Límites. 3. Cálculo Analítico de Límites. 4. Derivación.

Más detalles

Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange.

Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange. Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo III Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange. Introducción. En este laboratorio

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Programación Entera. P.E pura: Todas las variables de decisión tienen valores enteros.

Programación Entera. P.E pura: Todas las variables de decisión tienen valores enteros. Clase # 7 Programación Entera. Programación entera es programación lineal con la restricción adicional de que los valores de las variables de decisión sean enteros. P.E pura: Todas las variables de decisión

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS Ejemplo: Un minorista recibe un cargamento de 10.000 Kg. De arroz que se consumirán en un período de 5 meses a una razón constante de 2.000 kg. Por mes.

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Finanzas. Sesión 6 Tema 15: Punto de Equilibrio. Escuela Profesional de Ingeniería de Sistemas e Informática

Finanzas. Sesión 6 Tema 15: Punto de Equilibrio. Escuela Profesional de Ingeniería de Sistemas e Informática Finanzas Sesión 6 Tema 15: Punto de Equilibrio Escuela Profesional de Ingeniería de Sistemas e Informática Punto de equilibrio El Punto de Equilibrio de un bien o servicio, está dado por el volumen de

Más detalles

Método Gráfico. Dr. Mauricio Cabrera

Método Gráfico. Dr. Mauricio Cabrera Método Gráfico Dr. Mauricio Cabrera Problema Introductorio La Wyndor Glass Co. Produce artículos de vidrio de alta calidad, incluidas ventanas y puertas de vidrio que incluyen trabajo manual y la mejor

Más detalles

Herramientas para definir y optimizar los costos de su empresa

Herramientas para definir y optimizar los costos de su empresa Herramientas para definir y optimizar los costos de su empresa 1. Definición El costo es el valor monetario de los elementos que requiere el ejercicio de una actividad económica destinada a la producción

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL. 1. (JUN 02) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulo 16 del texto) Cálculo de Varias Variables 1.1 Funciones de varias variables. 1.2 Derivadas parciales.

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

Gestión de Inventarios. Introducción

Gestión de Inventarios. Introducción Gestión de Inventarios Introducción Stocks, existencias, inventarios Se entiende por stock a un conjunto de artículos que se tienen almacenados para su venta o utilización posterior La gestión de stocks

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

Tema 7: EL MERCADO DE FACTORES

Tema 7: EL MERCADO DE FACTORES Tema 7: E MERCADO DE FACTORES Introducción. 1. El mercado de trabajo en competencia perfecta 1. a demanda de trabajo 2. a oferta de trabajo 3. El equilibrio 4. s mínimos Conceptos básicos BIBIOGRAFÍA:

Más detalles

PLE: Ramificación y Acotamiento

PLE: Ramificación y Acotamiento PLE: Ramificación y Acotamiento CCIR / Depto Matemáticas TC3001 CCIR / Depto Matemáticas PLE: Ramificación y Acotamiento TC3001 1 / 45 La compañía TELFA fabrica mesa y sillas. Una mesa requiere 1 hora

Más detalles

Aplicaciones de la línea recta

Aplicaciones de la línea recta 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

5.- Problemas de programación no lineal.

5.- Problemas de programación no lineal. Programación Matemática para Economistas 7 5.- Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación

Más detalles

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003 SOLUCIÓN PRÁCTIC Nº 0 Programación Lineal MTEMÁTICS º VETERINRI Curso 00-00 Supongamos que se quiere elaborar una ración que satisfaga unas condiciones mínimas de contenidos vitamínicos diarios por ejemplo

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

CUENTAS POR COBRAR - EVALUACIÓN OBJETIVA

CUENTAS POR COBRAR - EVALUACIÓN OBJETIVA 1 CUENTAS POR COBRAR - EVALUACIÓN OBJETIVA Qué elementos debe contener una evaluación objetiva del crédito que se otorga los clientes de las empresas? Al hacer un eficiente trabajo en la evaluación del

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Universidad de Managua Al más alto nivel

Universidad de Managua Al más alto nivel Universidad de Managua Al más alto nivel Profesor: MSc. Julio Rito Vargas Avilés. Curso de Programación Lineal MÉTODO GRÁFICO PARA PROBLEMAS DE PROGRAMACIÓN LINEAL Estudiantes: Facultad de Ciencias Económicas

Más detalles

Introducción a la Programación Dinámica. El Problema de la Mochila

Introducción a la Programación Dinámica. El Problema de la Mochila Tema 1 Introducción a la Programación Dinámica. El Problema de la Mochila La programación dinámica no es un algoritmo. Es más bien un principio general aplicable a diversos problemas de optimización que

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS 1. Los 400 alumnos de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses de 40 plazas y 10

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

PLANEACIÓN AGREGADA VARIABLES Y CONSIDERACIONES DE UN PLAN AGREGADO

PLANEACIÓN AGREGADA VARIABLES Y CONSIDERACIONES DE UN PLAN AGREGADO PLANEACIÓN AGREGADA -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

2.3 Clasificación de modelos matemáticos.

2.3 Clasificación de modelos matemáticos. 2.3 Clasificación de modelos matemáticos. Qué es un modelo? Un modelo es una representación ideal de un sistema y la forma en que este opera. El objetivo es analizar el comportamiento del sistema o bien

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte 9 INECUACIONES 2ª Parte INECUACIONES INTRODUCCIÓN Los objetivos de esta segunda parte del tema serán la resolución de inecuaciones con GeoGebra y la aplicación que tiene este software para la representación

Más detalles

Examen parcial de Microeconomía Intermedia. Grupo 3.

Examen parcial de Microeconomía Intermedia. Grupo 3. Examen parcial de Microeconomía Intermedia. Grupo 3. Octubrede01. Nombre: 1. Sabemos que un consumidor con preferencias regulares y con dotaciones iniciales de los dos bienes existentes en la economía

Más detalles

z(x) = x 1. Solucion optima. x 2

z(x) = x 1. Solucion optima. x 2 CAPÍTULO FORMULACIÓN DE PROBLEMAS LINEALES Programación Lineal (PL) es un modelo de optimización de un problema de la vida real, en el cual una función objetivo es optimizada sujeta a un conjunto de restricciones.

Más detalles

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250 Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

VERSIÓN 0. Una proposición equivalente a la proposición compuesta: Tengo un celular nuevo, siempre que disfruto la Navidad y tengo una mascota, es:

VERSIÓN 0. Una proposición equivalente a la proposición compuesta: Tengo un celular nuevo, siempre que disfruto la Navidad y tengo una mascota, es: ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS EXAMEN DE UBICACIÓN DE MATEMÁTICAS LICENCIATURA EN REDES Y SISTEMAS OPERATIVOS GUAYAQUIL, DICIEMBRE 27 DE 2010 Nombre: VERSIÓN

Más detalles