Programación Lineal y Optimización Tercer Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programación Lineal y Optimización Tercer Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011"

Transcripción

1 Programación Lineal y Optimización Tercer Examen Parcial Respuesta: : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1 (30 puntos) La compañía Xeroch vende copiadoras. Uno de los factores de venta más importante es que la compañía ofrezca un servicio técnico rápido. La compañía vende copiadoras en seis ciudades C 1 a C 6. La siguiente tabla proyecta las ventas anuales por ciudad con y sin representate técnico a una distancia menor que 150 millas. Ventas Representante? C 1 C 2 C 3 C 4 C 5 C 6 sí no Producir cada copiadora tiene un costo de 500 dólares y se vende en 1,000 dólares. El costo anual por un representante de servicio es de 80,000 dólares. La compañía debe decidir en cuáles de las ciudades debe contratar un representante técnico; y ofrecer en el proceso de venta en cada ciudad el hecho de que se tiene o no un representante técnico. Las distancias entre las ciudades están dadas por la siguiente tabla. Hacia De C 1 C 2 C 3 C 4 C 5 C 6 C C C C C C Determine un plan de mínimo costo que le permita a la compañía maximizar sus ganancias anuales. Variables de decisión Como las decisiones que debe tomar la compañía son en qué ciudades debe contratar un representante técnico, entonces definimos las variables de decisión acorde con ello: { 1 si se contrata un represntante para la ciudad i x i = 0 otro caso En lo siguiente diremos que la ciudad i está cubierta si existe un representante técnico a una distancia menor o igual que 150 millas. Con este concepto definiremos unas variables de decisión auxiliares { 1 si la ciudad i está cubierta y i = 0 si no n i = el número de copiadoras vendidas en la ciudad i Como el objetivo de la empresa es maximizar las ganancias, entonces el objetivo es maximizar g donde g = ventas costos = ) i ventas ciudad i (costos producción + costos representación = ( 6 i=1 1, 000 n 6 i i=1 500 n i + ) 6 i=1 80, 000 x i = 6 i=1 (500 n i 80, 000 x i )

2 TC3001, tercer examen parcial semestre enero-mayo Número de copiadoras vendidas por ciudad. Sea A i el número de copiadoras a ser vendido cuando la ciudad i no está cubierta y B i el correspondiente cuando la ciudad sí lo está. Estos son datos tomados de la primera tabla. Por tanto, Cobertura por ciudad. De los datos de la tabla de distancia observamos que: n i = A i (1 y i ) + B i y i para i = 1, 2,..., 6 C 1 se cubre con un representante técnico en C 1, o en C 2, o en C 3, o en C 5. Así: Si x 1 + x 2 + x 3 + x 5 1, entonces y 1 = 1. Y por el contrario, si x 1 + x 2 + x 3 + x 5 0, entonces y 1 = 0 Similarmente: Si x 1 + x 2 + x 3 + x 5 1, entonces y 2 = 1. Y por el contrario, si x 1 + x 2 + x 3 + x 5 0, entonces y 2 = 0. Similarmente: Si x 1 + x 2 + x 3 + x 4 + x 5 1, entonces y 3 = 1. Y por el contrario, si x 1 + x 2 + x 3 + x 4 + x 5 0, entonces y 3 = 0. Similarmente: Si x 1 + x 3 + x 4 1, entonces y 4 = 1. Y por el contrario, si x 1 + x 3 + x 4 0, entonces y 4 = 0. Similarmente: Si x 1 + x 2 + x 3 + x 5 1, entonces y 5 = 1. Y por el contrario, si x 1 + x 2 + x 3 + x 5 0, entonces y 5 = 0. Similarmente: Si x 6 1, entonces y 6 = 1. Y por el contrario, si x 6 0, entonces y 6 = 0. Naturales x i y y i son binarias para i = 1, 2,..., 6 6 (20 puntos)una empresa dispone de 50 unidades de capital mensualmente para la adquisición de materia prima y para la remuneración de la mano de obra. Si x es el número de unidades de capital empleadas para pagar la mano de obra y y es el número de unidades de capital empleadas para pagar la materia prima la función de producción mensual es : P (x, y) = 16 y + 5 x y Determine la cantidad de unidades de capital destinadas al pago de mano de obra que proporciona una producción máxima. Variables de decisión x el total de unidades de capital destinadas a mano de obra mensulales y el total de unidades de capital destinadas a materia prima mensuales Maximizar la producción mensual P (x, y) = 16 y + 5 x y Utilizar no más del capital mensual x + y 50 Naturales: x, y 0. Codificación En LINGO: max=-16*y+5*x*y; x+y = 50; Objective value: Variable Value Y X 26.6 Interpretación El plan financiero de mayo producción consiste en disponer de 26.6 unidades de capital para el pago de mano de obra y de 23.4 unidades de capital para el pago de materia prima.

3 TC3001, tercer examen parcial semestre enero-mayo (30 puntos)una compañía considera la apertura de almacenes en 6 ciudades: C 1 a C 6. Desde los almacenes enviará un producto específico hacia las tres regiones en las cuales ha dividido el país. Cada almacen puede enviar hasta 100 unidades del producto. El costo semanal para mantener el almacen en la ciudad 1 es de 4,000 dólares, en la ciudad 2 es de 5,000 dólares, en la ciudad 3 es de 3,000 dólares, en la ciudad 4 es de 2,000 dólares, en la ciudad 5 es de 3,500 dólares, y en la ciudad 6 es de 4,000 dólares. Semanalmente, la región 1 del país requiere 100 unidades del producto, la región 2 del país requiere 120 unidades del producto y la región 3 del país requiere 140 unidades del producto. En la siguiente tabla se muestran los costos de envios unitarios desde cada ciudad a cada una de las regiones del país. Hacia De Región 1 Región 2 Región 3 C C C C C C Se desea satisfacer las demandas semanales a un costo mínimo y la campañía requiere de un plan de apertura de los almancenes así como de determinar las cantidades de productos de esos almacenes a las regiones del país. Adicionalmente, la compañía impone las siguientes restricciones. Si se abre un almancen en la ciudad C 1 debe abrir otro en C 2. Debe abrir por lo menos un almacen en las ciudades C 2, C 4 y C 6. variables de decisión Notemos que la compañía debe tomar dos decisiones que están relacionadas: en qué ciudad debe abrir un almacen y cómo debe enviar los productos desde sus almacénes a las regiones del país. Esto nos define las variables de decisión: { 1 si abre almacen en la ciudad i x i = 0 otro caso y i,j = el número de productos enviados desde la ciudad i a la región j El objetivo de la compañía es minimizar los costos. Los costos son de dos tipos: Por apertura de sus almacenes y por envio de los productos. Si C es el costo total, la compañía pretende minimizar C donde C = costo total = costo apertura + costo envio = 6 i=1 a i x i i=1 j=1 c i,j y i,j donde a i es el costo por apertura del almacen en la ciudad i dado en el texto, y c i,j es el costo de enviar un artículo desde el almancen de la ciudad i a la región de país j dado por la tabla. Satisfacer las demandas por región del país Productos enviados a la región 1 del país: y 1,1 + y 2,1 + y 3,1 + y 4,1 + y 5,1 + y 6,1 100 Productos enviados a la región 2 del país: y 1,2 + y 2,2 + y 3,2 + y 4,2 + y 5,2 + y 6,2 120 Productos enviados a la región 3 del país: y 1,3 + y 2,3 + y 3,3 + y 4,3 + y 5,3 + y 6,3 140 No exceder las capacidades instaladas

4 TC3001, tercer examen parcial semestre enero-mayo Para cada almancen i (i = 1, 2,..., 6): y i,1 + y i,2 + y i,3 100 x i Si se abre un almacen en C 1, entonces debe abrirse otro en C 2 : x 2 x 1 Debe abrirse al menos un almance en C 2, C 4 y C 6 : x 2 + x 4 + x 6 1. Naturales x i son binarias para i = 1,..., 6 y y i,j son enteras no negativas para i = 1,..., 6 y j = 1, 2, 3. 5 (20 puntos)para determinar los máximos y mínimos de una función f(x 1, x 2, x 3 ) sujeta a las restricciones x i 0 y 2 x 1 + x 2 + x 3 30, se aplicaron las condiciones KKT a la función y se determinaron los siguientes puntos críticos: F = +f + 4 λ i (g i + s 2 i ) i=1 x 1 x 2 x 3 λ 1 λ 2 λ 3 λ 4 f(x 1, x 2, x 3 ) Determine en cuál punto alcanza el máximo y cuál el mínimo. Indique su razonamiento y sus cálculos. Incluimos en las tablas la sustitución de los puntos en cada una de las restricciones: x 1 x 2 x 3 λ 1 λ 2 λ 3 λ 4 g 1 g 2 g 3 g 4 f(x 1, x 2, x 3 ) De esta tabla eliminamos los renglones que no cumplen las restricciones g i 0 y también eliminamos aquéllos donde aparecen multiplicadores positivos y negativos: x 1 x 2 x 3 λ 1 λ 2 λ 3 λ 4 g 1 g 2 g 3 g 4 f(x 1, x 2, x 3 ) Para hacer el análisis de los puntos usamos como referencia los valores de f y los signos de los multiplicadores de Lagrange: El punto P (x 1 = 0, x 2 = 0, x 3 = 0) corresponde a un mínimo. El punto Q(x 1 = 15, x 2 = 0, x 3 = 0) corresponde a un máximo.

5 TC3001, tercer examen parcial semestre enero-mayo (20 puntos)para determinar los máximos y mínimos de una función f(x 1, x 2, x 3 ) sujeta a la restricción x x 2 + x 1 x x 3 + x 1 x 3 + x 2 x 3 = 4 se aplicó la técnica de los multiplicadores y se obtuvo x 3 + λ x 2 + λ 1 + x 2 + x x 3 + λ x 1 + λ 3 + x 1 + x 3 H F = x 2 + λ 2 + x 1 + λ x 1 + x x 2 + x x 1 + x x 1 + x 2 0 También se determinaron los siguientes puntos críticos: x 1 x 2 x 3 λ Determine en cuál punto alcanza el máximo y cuál el mínimo. Indique su razonamiento y sus cálculos. En nuestro problema el número de variables es n = 3 impar y el número de restricciones es m = 1 también es impar.. Por consiguiente, para hacer el análisis de cada punto crítico se debe calcular hasta el determinante de la hessiana orlada n m = 2: P i x 1 x 2 x 3 λ De los criterios de optimización concluimos que el punto P 1 corresponde a un punto máximo (pues n es impar y los determinantes i se alternan en signo iniciando en negativo), mientras que el punto P 2 corresponde a un punto crítico mínimo (pues m es impar y los determinantes i son todos negativos). 4 (20 puntos) Un fabricante vende dos productos a granel. El producto A que se vende en 3 unidades monetarias el kilogramo y el producto B que se vende en 2. El costo total por fabricar x kilogramos de A y y kilogramos de B está dado por la función: C = 2 x y 2 Suponga que sea desea minimizar sus costos totales, con la condición de que los ingresos obtenidos de venta sean de al menos 30 unidades monetarias. Indique en orden la cantidad de kilogramos del producto A y del producto B que debe producir para lograr su meta. Variables de decisión x el total de kilogramos del producto A a fabricar. y el total de kilogramos del producto B a fabricar. Minimizar los costos productivos del plan: C = 2 x y 2 Ingresos de venta por los menos de 30 unidades monetarias: 3 x + 2 y 30 Naturales: x, y 0. Codificación En LINGO: min=2*x*x+3*y*y; 3*x+2*y >= 30;

6 TC3001, tercer examen parcial semestre enero-mayo Objective value: Variable Value X Y Interpretación El plan productivo de mínimo costo corresponderá a producir kilogramos de A y kilogramos de B.

Programación Lineal y Optimización Segundo Examen Parcial:Solución Profr. Eduardo Uresti, Enero-Mayo 2012

Programación Lineal y Optimización Segundo Examen Parcial:Solución Profr. Eduardo Uresti, Enero-Mayo 2012 Matrícula: Nombre: Programación Lineal y Optimización Segundo Examen Parcial: Profr. Eduardo Uresti, Enero-Mayo 2012 SÓLO HAGA 4 PROBLEMAS 1. Suponga que tiene una empresa que produce tres tipos de productos

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Agosto-Diciembre 2011

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Agosto-Diciembre 2011 Matrícula: Nombre: Programación Lineal y Optimización Segundo Examen Parcial Respuesta: : Profr. Eduardo Uresti, Agosto-Diciembre 2011 1. Suponga que tiene una empresa que produce tres tipos de productos

Más detalles

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2010

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2010 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 200 Matrícula: Nombre:. Una pequeña empresa fabrica artículos de dos tipos a partir de tres materias primas,

Más detalles

TC3001: Optimización y Programación Lineal Examen Final Solución Profr. Eduardo Uresti, Agosto-Diciembre 2008

TC3001: Optimización y Programación Lineal Examen Final Solución Profr. Eduardo Uresti, Agosto-Diciembre 2008 TC3001: Optimización y Programación Lineal Examen Final Profr. Eduardo Uresti, Agosto-Diciembre 2008 Matrícula: Nombre: 1. Suponga que se tiene disponible la siguiente información salida de LINDO a un

Más detalles

Optimización. Condiciones de Karush-Kuhn-Tucker ITESM. Condiciones de Karush-Kuhn-Tucker Profr. E. Uresti - p. 1/30. Dr. E Uresti

Optimización. Condiciones de Karush-Kuhn-Tucker ITESM. Condiciones de Karush-Kuhn-Tucker Profr. E. Uresti - p. 1/30. Dr. E Uresti Optimización Condiciones de Karush-Kuhn-Tucker Dr. E Uresti ITESM Condiciones de Karush-Kuhn-Tucker Profr. E. Uresti - p. 1/30 Las condiciones necesarias que deben satisfacer los óptimos de problemas de

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013

Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013 Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013 Matrícula: Nombre: NO HAGA MÁS DE 105 PUNTOS 1. Suponga que tiene una empresa que produce tres tipos de

Más detalles

Matemáticas

Matemáticas a la a la Matemáticas a la En esta lectura daremos una introducción a la modelación de problemas mediante programación lineal; pondremos énfasis en las etapas que componen la modelación. Cerraremos estos

Más detalles

Tema 6. Optimización. x, y 0

Tema 6. Optimización. x, y 0 Tema 6 Optimización 1. Aproximar el mínimo de la función f (x, y =2x 2 + y 2. Utilizar el punto (1,1 como punto inicial. a Utilizarelmétododelgradiente.Realizardositeraciones. (sol: (x 1,y 1 =( 1/9, 4/9,

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Programación Lineal Departamento de Matemáticas ITESM Programación Lineal Ma130 - p. 1/27 ducción En esta lectura daremos una introducción a la modelación de problemas

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Programación Lineal: Modelación Departamento de Matemáticas ITESM Programación Lineal: Modelación Ma130 - p. 1/31 ducción En esta lectura daremos una introducción

Más detalles

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010 Programación Lineal Departamento de Matemáticas, CSI/ITESM 28 de abril de 2010 Índice 16.1.Introducción............................................... 1 16.2.Ejemplo 1................................................

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

INVESTIGACION DE OPERACIONES PROGRAMACION LINEAL ENTERA

INVESTIGACION DE OPERACIONES PROGRAMACION LINEAL ENTERA INVESTIGACION DE OPERACIONES PROGRAMACION LINEAL ENTERA 1. Tipos de Modelo de Programación Lineal Entera. 2. Aplicaciones de las variables binarias (0-1) 1 1. Tipos de Modelo de Programación Lineal Entera

Más detalles

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0 Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le

Más detalles

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS, ADMINISTRATIVAS Y CONTABLES DEPARTAMENTO DE MÉTODOS CUANTITATIVOS Métodos Cuantitativos IV MAXIMOS Y MINIMOS DE FUNCIONES DE DOS

Más detalles

). Derivando e igualando a cero: u (x) = 0. x = 4 y = 4. 2 La segunda derivada: u (x) = u (4) = < 0, luego en 18 el punto (4,4) hay un máximo.

). Derivando e igualando a cero: u (x) = 0. x = 4 y = 4. 2 La segunda derivada: u (x) = u (4) = < 0, luego en 18 el punto (4,4) hay un máximo. TEMA.- OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD El problema consiste en optimizar una función de n variables z = f(x, x,..., x n ) sujeta a las m condiciones: g (x, x,..., x n ) = b g (x, x,..., x n

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: Programación Lineal y Optimización Segundo Examen Parcial Respuesta: : Profr. Eduardo Uresti, Enero-Mayo 2011 1. Suponga que tiene una empresa que produce tres tipos de productos (P

Más detalles

b) Escribir una restricción de forma que los puntos obtenidos en a) no sean solución del problema restringido.

b) Escribir una restricción de forma que los puntos obtenidos en a) no sean solución del problema restringido. 1.- Sea f (x,y) = e x + e y, se pide: a) Existe algún punto óptimo de f?. b) Si se considera la función f sujeta a la restricción x + y = 2, existe algún punto óptimo?. 2.- Sea f (x,y) = x 2 + y 2 : a)

Más detalles

FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA

FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA 05 de Octubre de 2017 FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA APLICACIONES ECONÓMICAS Ingeniería en Informática Ingeniería Industrial Universidad Católica Andrés Bello Programación Entera José Luis

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 12 de septiembre de 2007

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 12 de septiembre de 2007 UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 2 de septiembre de 2007 Problema. (2.5 puntos) Un fabricante de productos informáticos produce 3 modelos de routers

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr.

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr. Optimización Optimización Con Restricciones de Igualdad Dr. E Uresti ITESM Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31 ducción En esta lectura veremos el problema de optimizar

Más detalles

Licenciatura en Administración y Dirección de Empresas

Licenciatura en Administración y Dirección de Empresas Licenciatura en Administración y Dirección de Empresas Programación Matemática de junio de 200 Ejercicio 3 pt. Considera el siguiente problema de programación no lineal:. Se trata de un problema convexo?

Más detalles

PROBLEMAS DE PROGRAMACIÓN ENTERA I

PROBLEMAS DE PROGRAMACIÓN ENTERA I Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1 Un fabricante desea encontrar la producción semanal óptima de los artículos A, B y C para maximizar sus beneficios. Las ganancias por unidad de estos artículos son:

Más detalles

Planteamiento general de problemas de Programación Matemática

Planteamiento general de problemas de Programación Matemática Planteamiento general de problemas de Programación Matemática A) Construye un modelo matemático adecuado para la resolución de cada uno de los siguientes problemas e identifica a qué parte de la programación

Más detalles

Introducción a la Programación Matemática. Yolanda Hinojosa

Introducción a la Programación Matemática. Yolanda Hinojosa Introducción a la Programación Matemática Yolanda Hinojosa Contenido Planteamiento general de un problema de programación matemática. Convexidad. ANEXO: Derivadas Sucesivas. Fórmula de Taylor. Clasificación

Más detalles

COMPLETACION: Escriba la respuesta correcta. PARTE PRACTICA: Desarrolle en forma clara y ordenada cada uno de los siguientes ejercicios.

COMPLETACION: Escriba la respuesta correcta. PARTE PRACTICA: Desarrolle en forma clara y ordenada cada uno de los siguientes ejercicios. Funciones EXAMEN II PARCIAL /7/4 COMPLETACION: Escriba la respuesta correcta. Valor % c/u ) La pendiente de la ecuación x 5y es: ) El vértice de la función x es: x x ) El punto faltante de la función es

Más detalles

Planteamiento de problemas de programación lineal

Planteamiento de problemas de programación lineal Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Protac Programación de máquinas M. En C. Eduardo Bustos Farías 2 M. En C. Eduardo Bustos Farías 3 M. En C. Eduardo

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato 4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación

Más detalles

log TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 12.5% c/u total 100% log x 3 x

log TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 12.5% c/u total 100% log x 3 x METODOS CUANTITATIVOS II EXAMEN PARCIAL III 8/07/09 TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 1.5% c/u total 100% 1.- Dada la función f ( x) x 7 3e haga

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 1 1. Dada la función f(x, y) = 2x 3 + 6xy 2 6x 2 6y 2 a) Hallar los puntos críticos de f. b) Averiguar si los puntos

Más detalles

INF Investigación de Operaciones

INF Investigación de Operaciones INF 3144 - Investigación de Operaciones Rodrigo Olivares Mg. en Ingeniería Informática rodrigo.olivares@uv.cl 26 de mayo de 2017 Rodrigo Olivares (PUCV) INF 3144 - Investigación de Operaciones 26 de mayo

Más detalles

Solemne 1. Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014

Solemne 1. Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014 Curso: CII2750 Optimización Profesores: Paul Bosch, Juan Pablo Cavada Fernando Paredes, Pablo Rey Solemne 1 Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014 Problema 1 Una empresa importadora de

Más detalles

Optimización con Restricciones de Igualdad: Multiplicadores de Lagrange. Departamento de Matemáticas. El problema. La técnica. Ejemplo 1.

Optimización con Restricciones de Igualdad: Multiplicadores de Lagrange. Departamento de Matemáticas. El problema. La técnica. Ejemplo 1. Igualdad: Lagrange Optimización Igualdad: Lagrange Igualdad: Lagrange El Problema Dada una función en varias variables z = f (x 1, x 2,..., x n ) don las variables ben cumplir las restricciones: g 1 (x

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Departamento de Matemáticas, CCIR/ITESM 3 de junio de 2014 Problemas Resueltos 1. El granjero Jones debe determinar cuántos acres de maíz y trigo debe plantar este año.

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal El Problema del Transporte Departamento de Matemáticas ITESM El Problema del Transporte TC3001 - p. 1/25 Veamos ahora el problema del transporte, cuál es su formulación

Más detalles

log TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 12.5% c/u total 100% log x 3 x

log TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 12.5% c/u total 100% log x 3 x UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS ADMINISTRATIVAS Y CONTABLES METODOS CUANTITATIVOS II EXAMEN PARCIAL III 8/07/09 Sección: Nombre: # Cuenta: Catedrático: TIPO PRACTICO:

Más detalles

MATEMÁTICAS II Examen del 2/12/2004 Solución Importante

MATEMÁTICAS II Examen del 2/12/2004 Solución Importante MATEMÁTICAS II Examen del //004 Solución Importante Las calificaciones se harán públicas en la página web de la asignatura y en el tablón de anuncios del Dpto. de Métodos Cuantitativos en Economía y Gestión

Más detalles

Programación Lineal y Optimización Segundo Examen Parcial :Solución Profr. Eduardo Uresti, Verano 2009

Programación Lineal y Optimización Segundo Examen Parcial :Solución Profr. Eduardo Uresti, Verano 2009 Programación Lineal y Optimización Segundo Examen Parcial : Profr. Eduardo Uresti, Verano 2009 Matrícula: Nombre: 1. Suponga que se tiene disponible la siguiente información salida de LINDO a un problema

Más detalles

DERIVADAS: APLICACIONES A LA ECONOMIA

DERIVADAS: APLICACIONES A LA ECONOMIA UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS, ADMINISTRATIVAS Y CONTABLES DEPARTAMENTO DE MÉTODOS CUANTITATIVOS Métodos Cuantitativos IV DERIVADAS: APLICACIONES A LA ECONOMIA

Más detalles

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla COLEGIO SANTÍSIMA TRINIDAD Sevilla Dpto de Matemáticas Curso 2009-10 Boletín de Programación Lineal Matemáticas 2º Bach CC.SS. 1. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas.

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

TEMARIOS DE MATEMATICA PARA REMEDIAL. 3.- EL PUNTO DE INTERSECCION DE LAS RECTAS a,b a,e c,g

TEMARIOS DE MATEMATICA PARA REMEDIAL. 3.- EL PUNTO DE INTERSECCION DE LAS RECTAS a,b a,e c,g TEMARIOS DE MATEMATICA PARA REMEDIAL CURSO: I BACHILLERATO PARRALELO: A-B-C-D DOCENTE: MAURO LARREA M. I SEMANA: FUNCION LINEAL PARA LAS RECTAS SIGUIENTES DETERMINAR: 1.- LOS PARES QUE SON PARALELAS, PERPENDICULARES:

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de

Más detalles

IN34A - Optimización

IN34A - Optimización IN34A - Optimización Modelos de Programación Lineal Leonardo López H. lelopez@ing.uchile.cl Primavera 2008 1 / 24 Contenidos Programación Lineal Continua Problema de Transporte Problema de Localización

Más detalles

Parcial. lim. 4. Dada la función z = f (x, y) = x 2 y 2x 2 4y 2 determinar los puntos críticos y clasificarlos como máximos, mínimos o puntos silla

Parcial. lim. 4. Dada la función z = f (x, y) = x 2 y 2x 2 4y 2 determinar los puntos críticos y clasificarlos como máximos, mínimos o puntos silla 1. (a) Halle el límite, si existe, o muestre que no existe lim (x,y) (2,2) x 3 + x 2 y 2xy 2 3x 3 + xy 2 3x 2 y y 3 (b) Utilizar la regla de la cadena para calcular z s ó z t si z = xe y + ye x, x = e

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II Encuentre la ecuación de la recta que pasa por los siguientes puntos

Más detalles

Problemas del tema 3

Problemas del tema 3 Problemas del tema 3 y 1. Sea f(, y) = e + e, se pide: a) Eiste algún punto óptimo de f?. b) Si se considera la función f sujeta a la restricción + y =, eiste algún punto óptimo?.. Sea f(, y) = + y : a)

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Problemas resueltos con el método gráfico 4 de junio de 2014 1. Resuelva el siguiente PL por el método gráfico Max z = x 1 + x 2 x 1 + x 2 4 x 1 x 2 5 En la figura 1

Más detalles

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

Más detalles

Xochilth Castillo Palacios

Xochilth Castillo Palacios Xochilth Castillo Palacios PROBLEMAS: 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35,

Más detalles

Problema 1. Oferta /15/ /20/0 5 40/30/0. Demanda 45/30/10/0 20/0 30/0 30/

Problema 1. Oferta /15/ /20/0 5 40/30/0. Demanda 45/30/10/0 20/0 30/0 30/ Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

TIPO SELECCIÓN ÚNICA: Encierre con un círculo la respuesta correcra. 1. La función. , 0) 3. La función. tiene asíntotas verticales en:

TIPO SELECCIÓN ÚNICA: Encierre con un círculo la respuesta correcra. 1. La función. , 0) 3. La función. tiene asíntotas verticales en: REPOSICION DEL EXAMEN I PARCIAL 13/11/17 TIPO SELECCIÓN ÚNICA: Encierre con un círculo la respuesta correcra. Valor: 5% c/u 1. La función 2 tiene intercepto en x en: a) 2,0 b),0 c) 2,0 y 2,0 d),0 y,0 2.

Más detalles

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 9 de Septiembre de 7 Soluciones. ( puntos Tu empresa proporciona automóviles a algunos de sus

Más detalles

Programación Lineal: Modelos PLE

Programación Lineal: Modelos PLE Programación Lineal: Modelos PLE CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas Programación Lineal: Modelos PLE euresti@itesm.mx 1 / 35 Introduccion Introduccion En esta lectura se verán cómo

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Departamento de Matemáticas, CCIR/ITESM 31 de agosto de 2010 SOLUCIÓN 1. El granjero Jones debe determinar cuántos acres de maíz y trigo debe plantar este año. Un acre

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Problemas de PL con varias variables Análisis de Sensibilidad

Problemas de PL con varias variables Análisis de Sensibilidad UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Asignatura: Investigación de Operaciones I Problemas de PL con varias variables Análisis de Sensibilidad M.C. Ing. Julio Rito Vargas Avilés 1 P.

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Min. 2x + 4y + 11z Coste s.a x + 2y + 5z 300 horas en la primera fase 3x + 2y + 2z 200 horas en la segunda fase x, y, z 0

Min. 2x + 4y + 11z Coste s.a x + 2y + 5z 300 horas en la primera fase 3x + 2y + 2z 200 horas en la segunda fase x, y, z 0 MATEMÁTICAS II Grupo GF 10-6-16 1Ca APELLIDOS: NOMBRE: NOTA: No se admitirán respuestas basadas en la resolución gráfica (salvo que se indique explícitamente en el enunciado) ni ninguna forma de resolución

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN

TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN Preparación y Requisitos Objetivos Distinguir extremos locales de globales Utilizar las condiciones necesarias y/o suficientes para calcular los extremos de funciones

Más detalles

Optimización. Optimización Sin Restricciones ITESM. Optimización Sin Restricciones Profr. E. Uresti - p. 1/38. Dr. E Uresti

Optimización. Optimización Sin Restricciones ITESM. Optimización Sin Restricciones Profr. E. Uresti - p. 1/38. Dr. E Uresti Optimización Optimización Sin Restricciones Dr. E Uresti ITESM Optimización Sin Restricciones Profr. E. Uresti - p. 1/38 En esta sección se verá un método analítico para optimizar una función real en el

Más detalles

MECU 3031 PROGRAMACION LINEAL

MECU 3031 PROGRAMACION LINEAL MECU 3031 PROGRAMACION LINEAL La Programación Lineal La programación lineal es una técnica matemática. Se usa para determinar la solución de problemas que se plantean muy comúnmente en disciplinas como

Más detalles

INVESTIGACION DE OPERACIONES (HAMDY A. TAHA) PROBLEMAS DE PLANTEAMIENTO DEL CAPITULO II

INVESTIGACION DE OPERACIONES (HAMDY A. TAHA) PROBLEMAS DE PLANTEAMIENTO DEL CAPITULO II INVESTIGACION DE OPERACIONES (HAMDY A. TAHA) PROBLEMAS DE PLANTEAMIENTO DEL CAPITULO II (TAHA) 2.2-1 Se procesan tres productos a través de tres opciones diferentes. Los tiempos en minutos requeridos por

Más detalles

Esterilización 1 4. Envase 3 2

Esterilización 1 4. Envase 3 2 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado

Más detalles

Análisis de sensibilidad. M. En C. Eduardo Bustos Farias

Análisis de sensibilidad. M. En C. Eduardo Bustos Farias Análisis de sensibilidad M. En C. Eduardo Bustos Farias Análisis de sensibilidad para la solución óptima. Es sensible la solución óptima a cambios en los parámetros de entrada? Posibles razones para responder

Más detalles

Licenciatura en Administración y Dirección de Empresas

Licenciatura en Administración y Dirección de Empresas Licenciatura en Administración y Dirección de Empresas Programación Matemática 19 de junio de 006 Ejercicio 1 3 pt. Considera la función fx, y = x y en la región factible R = {x, y R : x 1 + y 1; y x 1

Más detalles

encuentre la matriz A. Valor 10% 4.- Dada la Matriz A 1 2 Valor 10% 5.- Resuelva la siguiente ecuación matricial.

encuentre la matriz A. Valor 10% 4.- Dada la Matriz A 1 2 Valor 10% 5.- Resuelva la siguiente ecuación matricial. UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS, CONTABLES Y ADMINISTRATIVAS METODOS CUANTITATIVOS II PRIMER EXAMEN PARCIAL 5/1/9 Valor del examen 1% NOTA Nombre: Número Cuenta:

Más detalles

ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL

ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO TEMA: ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL 1) Un taller fabrica y vende dos tipos de alfombras, de seda y de lana. Para la elaboración de una unidad se necesita

Más detalles

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 6 Aplicaciones de la derivada José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Buscando soluciones óptimas con Excel. Ampliación de Informática

Buscando soluciones óptimas con Excel. Ampliación de Informática Buscando soluciones óptimas con Excel Ampliación de Informática Buscando soluciones óptimas Muchos problemas en ingeniería tienen soluciones múltiples, seleccionar de todas las soluciones posibles la óptima

Más detalles

UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I. Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012

UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I. Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012 UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012 Problemas de PL con varias variables Análisis de Sensibilidad Problema 1: Ken & Larry

Más detalles

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés.

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. Universidad Nacional de Ingeniería Sede: UNI-Norte II Semestre 2008 Investigación de Operaciones I El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. martes, 21 de octubre de 2008 El Problema

Más detalles

UNIDAD 5. Problema de Transporte

UNIDAD 5. Problema de Transporte UNIDAD 5 Problema de Transporte En matemáticas y economía, un problema de transporte es un caso particular de problema de programación lineal en el cual se debe minimizar el coste del abastecimiento a

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Método Simplex: Minimización 3 de enero de Método Simplex: Minimización () Optimización y Programación Lineal 3 de enero de / 4 Minimización Minimización En la definición

Más detalles

COMPLETACION: Escriba la respuesta correcta.

COMPLETACION: Escriba la respuesta correcta. EXAMEN II PARCIAL 13/7/14 COMPLETACION: Escriba la respuesta correcta. Valor 3% c/u 1) La pendiente de la ecuación 3x 5y es: ) El vértice de la función x 3 es: x x 3 3) El punto faltante de la función

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA Recinto Universitario Augusto C. Sandino.

UNIVERSIDAD NACIONAL DE INGENIERÍA Recinto Universitario Augusto C. Sandino. UNIVERSIDAD NACIONAL DE INGENIERÍA Recinto Universitario Augusto C. Sandino. Problemas de Costo Minimo Trabajo presentado por: Victor Celis Hecht Ortega Gelmer Castillo Davila Christian Palacios Preza

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Correspondencias en la numeración de los ejercicios. Edición 2006 Edición 2004 Edición 2006 Edición 2004

Correspondencias en la numeración de los ejercicios. Edición 2006 Edición 2004 Edición 2006 Edición 2004 David Pujolar (2006): Fundamentos de Programación Lineal y Optimización en Redes. Ejercicios resueltos de Investigación Operativa asistidos por ordenador ; Universitat Autònoma de Barcelona. ISBN: 84-490-2359-9.

Más detalles

Primer examen parcial MECU 3031

Primer examen parcial MECU 3031 Primer examen parcial MECU 3031 Prof. Héctor D. Torres Aponte 23 de febrero de 2012 Instrucciones Este examen consta de 9 preguntas para un total de 112 puntos. Todos los problemas son basados en el material

Más detalles

Métodos Numéricos/ Matemáticas Aplicadas y Computacionales Capítulo 4 Aplicaciones de la optimización

Métodos Numéricos/ Matemáticas Aplicadas y Computacionales Capítulo 4 Aplicaciones de la optimización Métodos Numéricos/ Matemáticas Aplicadas y Computacionales Capítulo 4 Aplicaciones de la optimización Alberto Coronado Matutti, DEng Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Sumario

Más detalles

LP Problems. M. En C. Eduardo Bustos Farías

LP Problems. M. En C. Eduardo Bustos Farías LP Problems M. En C. Eduardo Bustos Farías 2 Solution Decision Variables 4 Objective function 5 Constraints onstraint 3. Amount of raw material purchased determines the amount of Brute and hanelle that

Más detalles

Investigación de Operaciones 1

Investigación de Operaciones 1 Investigación de Operaciones 1 Clase 4 Pablo Andrés Maya Mayo, 2014 Pablo Andrés Maya () Investigación de Operaciones 1 Mayo, 2014 1 / 10 Problema de portafolio La Universidad dispone de un presupuesto

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

FORMULACION DE PROBLEMAS LINEALES.

FORMULACION DE PROBLEMAS LINEALES. FORMULACION DE PROBLEMAS LINEALES. La programación lineal son modelos destinados a la asignación eficiente de los recursos limitados en actividades conocidas con el objetivo de satisfacer las metas deseadas

Más detalles

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2 Bloque 6. Programación Lineal Ejercicios resueltos 6.-1 Resolver las siguientes inecuaciones: x y a) x+ 2y 6; b) 2x y< 5; c) 3x+ 2y + 5 2 a) Se representa gráficamente la recta que define la igualdad,

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

5 de mayo de Evaluación 1 PETROLEO MUNDIAL C.A. El Constructor. Gasolina. Fábrica de calzados. calzados. Analisis de Sensibilidad

5 de mayo de Evaluación 1 PETROLEO MUNDIAL C.A. El Constructor. Gasolina. Fábrica de calzados. calzados. Analisis de Sensibilidad - INSTITUTO TECNOLOGICO METROPOLITANO INGENIERIA DE PRODUCCCION Investigacion de operaciones I sensibilidad-teoria de la Wbaldo Londoño 5 de mayo de 206 Contenido - 2 3 4 5 6 7-8 - La empresa puede comprar

Más detalles

Universidad Nacional De Ingeniería

Universidad Nacional De Ingeniería Universidad Nacional De Ingeniería UNI-RUACS Investigación de Operaciones I Elaborado por: Rosa Emilia Miranda López Karla Vanessa Guevara ElingJunieth Salguera Docente. IngMario Pastrana Moreno Grupo:

Más detalles

1Elección de las incógnitas. x = nº de lotes de A y = nº de lotes de B 2Función objetivo f(x, y) = 20x + 40y 3Restricciones. Página 1.

1Elección de las incógnitas. x = nº de lotes de A y = nº de lotes de B 2Función objetivo f(x, y) = 20x + 40y 3Restricciones. Página 1. EJERCICIOS RESUELTOS 1) Entre impresoras y escáneres de segunda mano se tiene establecido que un pequeño comercio venda como máximo 100 unidades al mes. Dispone de 60 impresoras, lo que le reporta un beneficio

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

OPTIMIZACIÓN CLÁSICA. En el problema de optimización

OPTIMIZACIÓN CLÁSICA. En el problema de optimización OPTIMIZACIÓN CLÁSICA Definición En el problema de optimización ( ) ópt f (x 1,..., x n ), (x 1,..., x n ) F D el conjunto F recibe el nombre de conjunto factible y la función f el de función objetivo.

Más detalles