Una Versión de ACO para Problemas con Grafos de. muy Gran Extensión. Enrique Alba y Francisco Chicano. Introducción. ACOhg.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Una Versión de ACO para Problemas con Grafos de. muy Gran Extensión. Enrique Alba y Francisco Chicano. Introducción. ACOhg."

Transcripción

1 1/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 Una Versión de ACO para s con Grafos de muy Gran Extensión Enrique Alba y Francisco Chicano

2 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 Los ACOs resuelven problemas planteados como búsqueda de caminos mínimos en grafos Existen problemas en los que el grafo subyacente es desconocido y/o muy extenso α β, β γ α γ Los modelos actuales de ACO no se pueden aplicar a dichos problemas En un grafo muy grande, la construcción de una solución completa puede requerir mucha memoria y tiempo En algunos modelos el número de nodos del grafo se usa para inicializar la matriz de feromonas

3 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 Necesitamos un nuevo modelo para abordar estas dificultades: (ACO for Huge Graphs) Feromona k extiende los modelos actuales con nuevas ideas pero mantiene la forma de construir las soluciones y de actualizar la feromona τ ij Heurística η ij j k i l m N i

4 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Longitud de los Caminos La longitud de los caminos de las hormigas se limita a λ ant Nodo inicial λ ant Qué pasa si? Nodo objetivo Técnica de Expansión: λ ant cambia Tras σ i pasos λ ant = λ ant + δ l

5 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Longitud de los Caminos La longitud de los caminos de las hormigas se limita a λ ant Nodo inicial λ ant Qué pasa si? Nodo objetivo Dos alternativas Técnica de Expansión: λ ant cambia Tras σ i pasos λ ant = λ ant + δ l

6 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Longitud de los Caminos La longitud de los caminos de las hormigas se limita a λ ant Nodo inicial λ ant Qué pasa si? Nodo objetivo Dos alternativas Técnica del Misionero: Técnica de cambio Expansión: de los nodos λ ant cambia iniciales de los caminos Tras σ si pasos Segunda λ ant = λ ant etapa + δ l Tercera etapa

7 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Feromonas El número de rastros de feromona aumenta durante la búsqueda Esto conduce a problemas de memoria Se deben eliminar algunos valores de feromona de la memoria Feromonas Eliminar valores de feromona τ ij por debajo de un umbral τ θ Feromonas Feromonas Pasos En la técnica del misionero, eliminar todos los valores de feromona tras cada etapa Etapa Pasos Pasos

8 8/22 : Función de Fitness La función de fitness debe ser capaz de evaluar soluciones parciales Se penalizan las soluciones parciales y las que contienen ciclos Solución completa Solución parcial sin ciclo Solución parcial con ciclo Penalización total Constante de penalización para soluciones parciales Constante de penalización para soluciones con ciclos Longitud del camino Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007

9 9/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (I) Objetivo: encontrar errores en programas concurrentes SPIN: se especifica una propiedad usando una fórmula LTL f Programa M Fórmula LTL f s5 s1 s0 s2 s3 s0!p q q s1 s2 p!q s4 s1 s2 s0 s3 Autómata de Büchi producto s5 s7 s6 s4 s8 s9

10 10/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (I) Objetivo: encontrar errores en programas concurrentes SPIN: se especifica una propiedad usando una fórmula LTL f Programa M Fórmula LTL f s5 s1 s0 s2 s3 s0!p q q s1 s2 p!q s4 s1 s2 s0 s3 Autómata de Büchi producto s5 s7 s6 s4 s8 s9

11 11/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (I) Objetivo: encontrar errores en programas concurrentes SPIN: se especifica una propiedad usando una fórmula LTL f Programa M Fórmula LTL f s5 s1 s0 s2 s3 s0!p q q s1 s2 p!q s4 s1 s2 s0 s3 Autómata de Büchi producto s5 s7 s6 s4 Usando Nested-DFS s8 s9

12 12/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (II) Las propiedades de seguridad son aquéllas que pueden expresarse con una fórmula LTL de la forma: f = p donde p es una fórmula pasada (sólo con operadores pasados) Encontrar una traza de error encontrar un estado de aceptación s1 s7 s8 s2 s0 s6 s9 Autómata producto s3 s4 s5 Propiedades de Seguridad Interbloqueos Invariantes Asertos Pueden usarse algoritmos clásicos de exploración de grafos: ej., DFS y BFS

13 13/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (y III) Número de estados muy grande incluso para pequeños programas s0 s1 s2 s3 s5 Memoria s7 s6 s4 s8 s9 El programa usado en los experimentos modela el problema de los filósofos de Edsger Dijkstra n filósofos 3 n estados 20 filósofos 1039 GB para almacenar los estados

14 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Comparación Comparamos MMAShg con los algoritmos exhaustivos DFS y BFS Programa Aspectos DFS BFS MMAShg Longitud phi8 Mem. (KB) Tiempo (ms) phi12 phi16 phi20 Longitud Mem. (KB) Tiempo (ms) Longitud Mem. (KB) Tiempo (ms) Longitud NO RESUELTOS Mem. (KB) Tiempo (ms) MMAShg es claramente mejor para los programas abordados

15 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : vs. GA GA es la única metaheurística aplicada previamente al problema Usamos phi17 y needham (protocolo Needham-Schroeder) para la comparación (Godefroid & Khurshid, 2002) Los resultados muestran que tiene mayor eficacia y eficiencia que GA (incluso teniendo en cuenta la diferencia entre las máquinas)

16 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : vs. GA GA es la única metaheurística aplicada previamente al problema Usamos phi17 y needham (protocolo Needham-Schroeder) para la comparación (Godefroid & Khurshid, 2002) 1.36 Los resultados muestran que tiene mayor eficacia y eficiencia que GA (incluso teniendo en cuenta la diferencia entre las máquinas) 1.11 * 4.84

17 17/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 : Influencia de λ ant Analizamos la influencia de λ ant en los resultados La tasa de éxito aumenta con λ ant La longitud media de los contraejemplos crece con λ ant La memoria y el tiempo de cómputo disminuyen con λ ant

18 18/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 : Influencia de λ ant Analizamos la influencia de λ ant en los resultados La tasa de éxito aumenta con λ ant La longitud media de los contraejemplos crece con λ ant La memoria y el tiempo de cómputo disminuyen con λ ant

19 19/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 : Influencia de λ ant Analizamos la influencia de λ ant en los resultados La tasa de éxito aumenta con λ ant La longitud media de los contraejemplos crece con λ ant La memoria y el tiempo de cómputo disminuyen con λ ant

20 20/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 : Influencia de λ ant Analizamos la influencia de λ ant en los resultados La tasa de éxito aumenta con λ ant La longitud media de los contraejemplos crece con λ ant La memoria y el tiempo de cómputo disminuyen con λ ant

21 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 Conclusiones es capaz de superar las limitaciones de los modelos actuales de ACO cuando se enfrentan a problemas con grafos subyacentes desconocidos o de gran extensión supera a algoritmos exhaustivos del dominio de la comprobación de modelos Asimismo obtiene mejores resultados que el GA usado en el pasado para este problema Estudiar el modelo en profundidad, explorando todas las alternativas mencionadas Trasladar las ideas usadas en a otras metaheurísticas para extender el conjunto de problemas al que se pueden aplicar Profundizar en el uso de para la aplicación de encontrar errores en programas concurrentes

22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 Fin Gracias por su atención!!! Preguntas?

Búsqueda de errores en programas usando Java PathFinder y ACOhg

Búsqueda de errores en programas usando Java PathFinder y ACOhg VI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB'09) Búsqueda de errores en programas usando Java PathFinder y ACOhg Francisco Chicano y Enrique Alba Resumen Model

Más detalles

Grafos Eulerianos y Hamiltonianos. Algoritmos y Estructuras de Datos III

Grafos Eulerianos y Hamiltonianos. Algoritmos y Estructuras de Datos III Grafos Eulerianos y Hamiltonianos Algoritmos y Estructuras de Datos III Grafos eulerianos Definiciones: Un circuito C en un grafo (o multigrafo) G es un circuito euleriano si C pasa por todos las aristas

Más detalles

Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III

Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III Metaheurísticas y heurísticas Algoritmos y Estructuras de Datos III Metaheurísticas Heurísticas clásicas. Metaheurísticas o heurísticas modernas. Cuándo usarlas? Problemas para los cuales no se conocen

Más detalles

Dimensionamiento y Planificación de Redes

Dimensionamiento y Planificación de Redes Dimensionamiento y Planificación de Redes Tema 2. Algoritmos Sobre Grafos Calvo Departamento de Ingeniería de Comunicaciones Este tema se publica bajo Licencia: Crea:ve Commons BY- NC- SA 4.0 Búsqueda

Más detalles

Particionamiento Numérico CIMPA-UCR. usando Metaheurísticas de Optimización

Particionamiento Numérico CIMPA-UCR. usando Metaheurísticas de Optimización Particionamiento Numérico usando Metaheurísticas de Optimización 1 Métodos de vecindarios 1.1 Sobrecalentamiento simulado 1.2 Búsqueda tabú Optimizacion Combinatoria F: S R S: espacio de estados (soluciones

Más detalles

Autómatas Deterministas. Ivan Olmos Pineda

Autómatas Deterministas. Ivan Olmos Pineda Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.

Más detalles

Algoritmos basados en hormigas

Algoritmos basados en hormigas Algoritmos basados en hormigas Inteligencia Artificial Avanzada 1er. Semestre 2008 1 Aspectos Generales La metáfora de los insectos sociales para resolver problemas ha sido un tema importante a partir

Más detalles

El Juego como Problema de Búsqueda

El Juego como Problema de Búsqueda El Juego como Problema de Búsqueda En este algoritmo identificamos dos jugadores: max y min. El objetivo es encontrar la mejor movida para max. Supondremos que max mueve inicialmente y que luego se turnan

Más detalles

Introducción a los códigos compresores

Introducción a los códigos compresores Introducción a los códigos compresores Parte I de la Lección 2, Compresores sin pérdidas, de CTI Ramiro Moreno Chiral Dpt. Matemàtica (UdL) Febrero de 2010 Ramiro Moreno (Matemàtica, UdL) Introducción

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Resolviendo Modelos de Mapas

Resolviendo Modelos de Mapas Resolviendo Modelos de Mapas SMMC Prof. Teddy Alfaro Resolviendo Mapas o Grafos Entre las técnicas completas más utilizadas para resolver la ruta más corta se encuentran BFS Backtracking Dijkstra A* Uso

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

Estructuras de Datos Orientadas a Objetos. Pseudocódigo y aplicaciones en C#.NET. Capítulo 9.- Grafos

Estructuras de Datos Orientadas a Objetos. Pseudocódigo y aplicaciones en C#.NET. Capítulo 9.- Grafos Capítulo 9.- Grafos Cuestionario 9.1 Se pueden representar los nodos de un grafo como un conjunto de elementos 9.2 Se pueden representar los arcos de un grafo como un conjunto de tuplas 9.3 Los grafos

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

JUEGOS. Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil

JUEGOS. Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil JUEGOS Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil I Oponente: Jugador: intenta mover a un estado que es el peor para Etiquetar cada nivel del espacio de búsqueda

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Algoritmo de retropropagación Back propagation Es utilizado para entrenar redes neuronales multicapa. Exige que la función de activación de las neuronas sea derivable y creciente. Las funciones comúnmente

Más detalles

Formulación de Galerkin El método de los elementos finitos

Formulación de Galerkin El método de los elementos finitos Clase No. 28: MAT 251 Formulación de Galerkin El método de los elementos finitos Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

Teoría del valor extremo como criterio de parada en la optimización heurística de bóvedas de hormigón estructural

Teoría del valor extremo como criterio de parada en la optimización heurística de bóvedas de hormigón estructural VII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados MAEB 2010 Valencia, 8-10 Septiembre 2010 Teoría del valor extremo como criterio de parada en la optimización heurística

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

Teoría de Modelos Finitos: Motivación

Teoría de Modelos Finitos: Motivación Teoría de Modelos Finitos: Motivación IIC3260 IIC3260 Teoría de Modelos Finitos: Motivación 1 / 29 Poder expresivo de una lógica: Caso finito Desde ahora en adelante nos vamos a concentrar en las estructuras

Más detalles

El problema del agente viajero

El problema del agente viajero CO- (F0) //00 El problema del agente viajero Un vendedor tiene que visitar n + ciudades, cada una exactamente una vez. La distancia entre cada par de ciudades viene dada por d ij (en general d ij d ji

Más detalles

UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR

UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR INTEGRANTES: Caricari Cala Aquilardo Villarroel Fernandez Fructuoso DOCENTE: Lic. Garcia

Más detalles

Curso de Inteligencia Artificial

Curso de Inteligencia Artificial Curso de Inteligencia Artificial Modelos Ocultos de Markov Gibran Fuentes Pineda IIMAS, UNAM Redes Bayesianas Representación gráfica de relaciones probabilísticas Relaciones causales entre variables aleatorias

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

Inteligencia Artificial II Unidad Plan 2010-Ingeniería en Sistemas Computacionales

Inteligencia Artificial II Unidad Plan 2010-Ingeniería en Sistemas Computacionales Inteligencia Artificial II Unidad Plan 2010-Ingeniería en Sistemas Computacionales Rafael Vázquez Pérez Unidad II:Técnicas de Búsqueda. 2.1. Solución de problemas con búsqueda. 2.2. Espacios de estados.

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ MALLAS CON FUENTES DEPENDIENTES E INDEPENDIENTES DE TENSIÓN Y CORRIENTE Ejercicio 33. Análisis de mallas, fuentes dependientes e independientes de tensión y corrientes a) Mediante

Más detalles

Definición Una hipótesis es una afirmación acerca de un parámetro.

Definición Una hipótesis es una afirmación acerca de un parámetro. Capítulo 8 Prueba de hipótesis Existen dos áreas de interés en el proceso de inferencia estadística: la estimación puntual y las pruebas de hipótesis. En este capítulo se presentan algunos métodos para

Más detalles

Problemas computacionales, intratabilidad y problemas NP completos. Febrero Facultad de Ingeniería. Universidad del Valle

Problemas computacionales, intratabilidad y problemas NP completos. Febrero Facultad de Ingeniería. Universidad del Valle Complejidad Complejidad, in NP completos Facultad de Ingeniería. Universidad del Valle Febrero 2017 Contenido Complejidad 1 2 3 Complejidad computacional Complejidad Introducción En ciencias de la computación

Más detalles

Identificación mediante el método de los mínimos cuadrados

Identificación mediante el método de los mínimos cuadrados Ingeniería de Control Identificación mediante el método de los mínimos cuadrados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos relevantes aprendidos previamente:

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

25 EJERCICIOS de RADICALES 4º ESO opc. A

25 EJERCICIOS de RADICALES 4º ESO opc. A EJERCICIOS de RADICALES º ESO opc. A RECORDAR: Definición de raíz n-ésima: Consecuencia: n n n a, y también ( ) n n n a Equivalencia con una potencia de eponente fraccionario: Simplificación de radicales/índice

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

Inteligencia de enjambres

Inteligencia de enjambres Inteligencia de enjambres Diego Milone Inteligencia Computacional Departamento de Informática FICH-UNL Autómata de estados finitos Definición A =< X, Y, E, D > Autómata de estados finitos Definición A

Más detalles

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

Transferencia de conocimiento para el aprendizaje de Redes Bayesianas de Nodos Temporales

Transferencia de conocimiento para el aprendizaje de Redes Bayesianas de Nodos Temporales Transferencia de conocimiento para el aprendizaje de Redes Bayesianas de Nodos Temporales Lindsey Fiedler Cameras, Dr. L. Enrique Sucar Dr. Eduardo F. Morales INAOE Junio, 2013 Contenido Motivación Aprendizaje

Más detalles

Búsqueda en línea y Búsqueda multiagente

Búsqueda en línea y Búsqueda multiagente Búsqueda en línea y Búsqueda multiagente Ingeniería Informática, 4º Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani 1 Tema 2: Agentes basados en Búsqueda Resumen: 2. Agentes basados

Más detalles

CONCLUSIONES 5. CONCLUSIONES.

CONCLUSIONES 5. CONCLUSIONES. 5. CONCLUSIONES. Entre los sistemas de referencia empleados para el cálculo de las fuerzas elásticas, para un elemento finito de dos nodos que utiliza la teoría de Euler- Bernoulli [11], basándose en las

Más detalles

Primera aproximación al aprendizaje automático.

Primera aproximación al aprendizaje automático. APRENDIZAJE Introducción al aprendizaje algorítmico José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Aprender: Tomar algo en la memoria [...] Adquirir

Más detalles

2007 Carmen Moreno Valencia

2007 Carmen Moreno Valencia Tema VIII. Grafos Grafos 1 2007 Carmen Moreno Valencia 1. Grafos, digrafos y multigrafos 2. Grafos eulerianos 3. Matrices de adyacencia e incidencia 4. Exploración de grafos pesados 1. Grafos, digrafos

Más detalles

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular:

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular: Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Máquinas Secuenciales, Autómatas y Lenguajes Hoja de Problemas: Propiedades Lenguajes Regulares Nivel del ejercicio : ( ) básico, ( ) medio,

Más detalles

Tema: Algoritmos para la ruta más corta en un Grafo.

Tema: Algoritmos para la ruta más corta en un Grafo. Programación IV. Guía 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Algoritmos para la ruta más corta en un Grafo. Objetivos Específicos Definir el concepto de camino

Más detalles

5.- Construcción de la Matriz Admitancia de Barra del Sistema

5.- Construcción de la Matriz Admitancia de Barra del Sistema MATRIZ ADMITANCIA DE BARRA 5.- Construcción de la Matri Admitancia de Barra del Sistema Encontradas las matrices de admitancia de barra elementales, estas se pueden combinar para formar la matri Admitancia

Más detalles

Análisis Geostadístico. de datos funcionales

Análisis Geostadístico. de datos funcionales á í á - á é í : í é : á ó í ( ). é í á ó,,,., í é.,, é ó., í á. í., ó, ó. é ó., á, ó.., ó - ()., é á í. é á., á. ó, ó á. é ó é. í á ó. : ; ; ó ; ; ; ó. ó í............................... á..............................................................

Más detalles

Analizador Sintáctico Ascendente

Analizador Sintáctico Ascendente Analizador Sintáctico Ascente Un Analizador Sintáctico (A. St.) Ascente construye el árbol desde las hojas hacia la raíz. Funciona por reducción-desplazamiento, lo cual quiere decir que, siempre que puede,

Más detalles

Estado 3.2 (coste = 9)

Estado 3.2 (coste = 9) Búsqueda heurística Fernando Berzal, berzal@acm.org Búsqueda heurística Búsqueda primero el mejor p.ej. búsqueda de coste uniforme [UCS] Heurísticas Búsqueda greedy El algoritmo A* Heurísticas admisibles

Más detalles

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16 Clase No 13: Factorización QR MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 03102011 1 / 16 Factorización QR Sea A R m n con m n La factorización QR de A es A = QR = [Q 1 Q 2 ] R1 = Q 0 1 R

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Problemas teóricos El los siguientes problemas se denota por L(V ) conjunto de los operadores lineales en un espacio vectorial V (en otras palabras, de las transformaciones lineales

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

Clases de complejidad computacional: P y NP

Clases de complejidad computacional: P y NP 1er cuatrimestre 2006 La teoría de Se aplica a problemas de decisión, o sea problemas que tienen como respuesta SI o NO (aunque es sencillo ver que sus implicancias pueden extenderse a problemas de optimización).

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. octubre 2013 En esta Presentación... En esta Presentación veremos: Rectas En esta Presentación... En esta Presentación veremos:

Más detalles

CI-6675 Algoritmos y Estructuras Optimizadas para Videojuegos

CI-6675 Algoritmos y Estructuras Optimizadas para Videojuegos Especialización en Creación y Programación de Videojuegos CI-6675 Algoritmos y Estructuras Optimizadas para Videojuegos Agenda de hoy Juegos Combinatorios Información en un Juego La suma de un Juego s

Más detalles

PROBABILIDADES Trabajo Práctico 5. 0 si x<0. x3 si 0 x<2 1 si x 2

PROBABILIDADES Trabajo Práctico 5. 0 si x<0. x3 si 0 x<2 1 si x 2 PROBABILIDADES Trabajo Práctico 5 1. Sea X una variable aleatoria con función de distribución acumulada a) Calcular, usando F X, P (X 1) P (0.5 X 1) P (X >1.5) b) Hallar la mediana de esta distribución.

Más detalles

Método de potencia directo e inverso

Método de potencia directo e inverso Clase No. 12: Método de potencia directo e inverso MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.09.2011 1 / 20 Método de la potencia Este método puede encontrar el eigenvalor más grande

Más detalles

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Qué es un computador? Todos lo sabemos!!!

Más detalles

Diseños de No- inferioridad

Diseños de No- inferioridad Diseños de No- inferioridad Ferran.Torres@uab.es 1 OBJETIVOS DEL ENSAYO CLÍNICO Demostración n de la eficacia y/o seguridad de un tratamiento (per se). ENSAYOS FRENTE A PLACEBO Evaluación n comparativa

Más detalles

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez Análisis y Complejidad de Algoritmos Arboles Binarios Arturo Díaz Pérez Arboles Definiciones Recorridos Arboles Binarios Profundidad y Número de Nodos Arboles-1 Arbol Un árbol es una colección de elementos,

Más detalles

Análisis matemático de la función de Nelson y Siegel

Análisis matemático de la función de Nelson y Siegel Anexos Anexo 1 Análisis matemático de la función de Nelson y Siegel La función que define el tipo forward según el modelo propuesto por Nelson y Siegel (1987) es la siguiente: con m 0 y τ 0. 1 > m m m

Más detalles

Framework basado en Colonias de Hormigas artificiales para la resolución de problemas de optimización

Framework basado en Colonias de Hormigas artificiales para la resolución de problemas de optimización Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Laboratorio de Inteligencia Artificial Framework basado en Colonias de Hormigas artificiales para la resolución de problemas

Más detalles

Primer Parcial de Programación 3 (1/10/2009)

Primer Parcial de Programación 3 (1/10/2009) Primer Parcial de Programación (/0/009) Instituto de Computación, Facultad de Ingeniería Este parcial dura horas y contiene carillas. El total de puntos es 0. En los enunciados llamamos C* a la extensión

Más detalles

Algoritmos y Estructuras de Datos III

Algoritmos y Estructuras de Datos III Árboles Algoritmos y Estructuras de Datos III Árboles Definición: Un árbol es un grafo conexo sin circuitos simples. Árboles Teorema: Dado un grafo G = (V, X ) son equivalentes: 1. G es un árbol. 2. G

Más detalles

Inversas de las matrices triangulares superiores

Inversas de las matrices triangulares superiores Inversas de las matrices triangulares superiores Ejercicios Objetivos. Demostrar que la inversa a una matriz triangular superior también es triangular superior. Requisitos. Algoritmo de inversión de una

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

Agentes Lógicos Univer Univ sidad Po sidad P litécnica de Pueb o la litécnica de Pueb D r. J Jesús A A ntonio G G á onz l ál ez B Ber l na

Agentes Lógicos Univer Univ sidad Po sidad P litécnica de Pueb o la litécnica de Pueb D r. J Jesús A A ntonio G G á onz l ál ez B Ber l na Agentes Lógicos Universidad Politécnica de Puebla Dr. Jesús Antonio González Bernal Elementos de un Agente Basado en Conocimiento Estado actual del mundo Cómo inferir propiedades del mundo no-vistas a

Más detalles

Metaheurísticas. Seminario 4. Problemas de optimización con técnicas basadas en adaptación social

Metaheurísticas. Seminario 4. Problemas de optimización con técnicas basadas en adaptación social Metaheurísticas Seminario 4. Problemas de optimización con técnicas basadas en adaptación social 1. Diseño de Componentes para Resolver un Problema con un Algoritmo de Optimización Basada en Colonias de

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos econométricos dinámicos uniecuacionales

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos econométricos dinámicos uniecuacionales ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelos econométricos dinámicos uniecuacionales Introducción: Hemos estudiado modelos de tipo: y t = φ 0 + p i=1 φ iy t i + q j=0 θ jɛ t j y t = β x t +

Más detalles

Fiabilidad y variabilidad

Fiabilidad y variabilidad Fiabilidad y variabilidad El coeficiente de fiabilidad de un test se ve afectado por la variabilidad de la muestra. Un test tiende a manifestar un coeficiente de fiabilidad mayor cuanto mayor sea su variabilidad.

Más detalles

Búsqueda con adversario

Búsqueda con adversario Introducción Búsqueda con adversario Uso: Decidir mejor jugada en cada momento para cierto tipo de juegos Hay diferentes tipos de juegos según sus características: Numero de jugadores, toda la información

Más detalles

Algoritmos de Planos de Corte

Algoritmos de Planos de Corte Algoritmos de Planos de Corte Problema: max {cx / x X} con X = {x / Ax b, x Z n + } Proposición: conv (X) es un poliedro que puede entonces escribirse como conv (X) = {x / Ax b, x 0} Lo mismo ocurre para

Más detalles

El TAD Grafo. El TAD Grafo

El TAD Grafo. El TAD Grafo Objetivos! Estudiar la especificación del TAD Grafo! Presentar diferentes alternativas de implementación! Conocer los algoritmos más importantes de manipulación de grafos Contenidos.1 Conceptos. Especificación

Más detalles

Optimización de Colonia de Hormigas para resolver el problema de Distribución en Planta

Optimización de Colonia de Hormigas para resolver el problema de Distribución en Planta Optimización de Colonia de Hormigas para resolver el problema de Distribución en Planta Luis Felipe Romero Dessens, José Alberto González Anaya y Luis Manuel Lozano Cota Universidad de Sonora, Departamento

Más detalles

INVESTIGACIÓN DE MERCADOS

INVESTIGACIÓN DE MERCADOS INVESTIGACIÓN DE MERCADOS Enfoque para América Latina CAPÍTULO 1 Investigación de mercados Enfoque para América Latina OBJETIVOS - Introducirnos a la investigación de mercados - Una valiosa herramienta

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3.

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3. Unidad 13. Movimientos en el plano. Frisos y mosaicos a las Enseñanzas plicadas 3 Traslaciones Página 17 1. El mosaico de la derecha se llama multihueso. H 1, H, H 3 y H 4 son huesos. Se pueden estudiar

Más detalles

ALGORÍTMICA

ALGORÍTMICA ALGORÍTMICA 2012 2013 Parte I. Introducción a las Metaheurísticas Tema 1. Metaheurísticas: Introducción y Clasificación Parte II. Métodos Basados en Trayectorias y Entornos Tema 2. Algoritmos de Búsqueda

Más detalles

En la terminal de micros de Retiro se cuenta con un sistema con el siguiente esquema de base de datos:

En la terminal de micros de Retiro se cuenta con un sistema con el siguiente esquema de base de datos: Ejercicio Integrador de Procesamiento y Optimización de Consultas En la terminal de micros de Retiro se cuenta con un sistema con el siguiente esquema de base de datos: Micro(numMicro, marca, numempresa)

Más detalles

En el grafo de la figura P3.1 se elige el árbol formado por las ramas {1, 2, 3}. C 3. Figura P3.1

En el grafo de la figura P3.1 se elige el árbol formado por las ramas {1, 2, 3}. C 3. Figura P3.1 Problemas resueltos. Problema. En el grafo de la figura P. se elige el árbol formado por las ramas {,, }. B Figura P. a) Determinar Q la matriz de incidencia de los elementos en los conjuntos de corte

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Métodos Constructivos. Empiezan desde una solución vacía (a veces pequeña)

Métodos Constructivos. Empiezan desde una solución vacía (a veces pequeña) Métodos Constructivos Empiezan desde una solución vacía (a veces pequeña) En repetidas ocasiones, extienden la solución actual hasta que una solución completa se construye. Utiliza una heurística para

Más detalles

Introducción. Algoritmos y Complejidad. Algoritmos y Algoritmia. Introducción. Problemas e instancias. Pablo R. Fillottrani

Introducción. Algoritmos y Complejidad. Algoritmos y Algoritmia. Introducción. Problemas e instancias. Pablo R. Fillottrani Introducción Introducción Pablo R. Fillottrani Depto. Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Algoritmos y Algoritmia Problemas e instancias Primer Cuatrimestre 2014 Algoritmos

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Modelos Gráficos Probabilistas L. Enrique Sucar INAOE. Sesión 10: Redes Bayesianas Inferencia. 1era parte. [Neapolitan 90]

Modelos Gráficos Probabilistas L. Enrique Sucar INAOE. Sesión 10: Redes Bayesianas Inferencia. 1era parte. [Neapolitan 90] Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 10: Redes Bayesianas Inferencia 1era parte [Neapolitan 90] Inferencia en Redes Bayesianas Introducción Clases de algoritmos 1era Parte Propagación

Más detalles

TEMA 5 El tipo grafo. Tipo grafo

TEMA 5 El tipo grafo. Tipo grafo TEMA 5 El tipo grafo PROGRAMACIÓN Y ESTRUCTURAS DE DATOS Tipo grafo 1. Concepto de grafo y terminología 2. Especificación algebraica. Representación de grafos.1. Recorrido en profundidad o DFS.2. Recorrido

Más detalles

Capítulo 8. Árboles. Continuar

Capítulo 8. Árboles. Continuar Capítulo 8. Árboles Continuar Introducción Uno de los problemas principales para el tratamiento de los grafos es que no guardan una estructura establecida y que no respetan reglas, ya que la relación entre

Más detalles

Unidad 2: Problemas de camino mínimo

Unidad 2: Problemas de camino mínimo Representación Recorrido de grafos Camino mínimo Unidad 2: Problemas de camino mínimo Representación Matriz de adyacencia Matriz de incidencia Listas de vecinos Recorrido de grafos Estructuras de datos

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Secciones 1. Introducción. 2. Coordenadas y Transformaciones Homogéneas. 3. Problema Cinemático Directo. Método de

Más detalles

Factorización de matrices

Factorización de matrices CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

A B MIN C D E F MAX x E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO

A B MIN C D E F MAX x E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO UNIVERSIDAD DE MÁLAGA Dpto. Lenguajes y Ciencias de la Computación RELACIÓN DE PROBLEMAS. TEMA IV. PROBLEMAS DE JUEGOS.

Más detalles

Procesado de cadenas de caracteres

Procesado de cadenas de caracteres Procesado de cadenas de caracteres 1) Algoritmo Trivial 2) Algoritmo Rabin-Karp. 3) Algoritmo Knuth-Morris-Pratt 4) Algoritmo Boyer-Moore 5) Busqueda de expresiones regulares Problema: Encontrar todas

Más detalles

Optimización basada en Colonia de Hormigas

Optimización basada en Colonia de Hormigas Capítulo 11 Optimización basada en Colonia de Hormigas 11.1 Introducción Optimización de colonia de hormigas (ant colony optimization o ACO) está inspirado en el rastro y seguimiento de feromonas realizado

Más detalles