Una Versión de ACO para Problemas con Grafos de. muy Gran Extensión. Enrique Alba y Francisco Chicano. Introducción. ACOhg.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Una Versión de ACO para Problemas con Grafos de. muy Gran Extensión. Enrique Alba y Francisco Chicano. Introducción. ACOhg."

Transcripción

1 1/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 Una Versión de ACO para s con Grafos de muy Gran Extensión Enrique Alba y Francisco Chicano

2 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 Los ACOs resuelven problemas planteados como búsqueda de caminos mínimos en grafos Existen problemas en los que el grafo subyacente es desconocido y/o muy extenso α β, β γ α γ Los modelos actuales de ACO no se pueden aplicar a dichos problemas En un grafo muy grande, la construcción de una solución completa puede requerir mucha memoria y tiempo En algunos modelos el número de nodos del grafo se usa para inicializar la matriz de feromonas

3 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 Necesitamos un nuevo modelo para abordar estas dificultades: (ACO for Huge Graphs) Feromona k extiende los modelos actuales con nuevas ideas pero mantiene la forma de construir las soluciones y de actualizar la feromona τ ij Heurística η ij j k i l m N i

4 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Longitud de los Caminos La longitud de los caminos de las hormigas se limita a λ ant Nodo inicial λ ant Qué pasa si? Nodo objetivo Técnica de Expansión: λ ant cambia Tras σ i pasos λ ant = λ ant + δ l

5 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Longitud de los Caminos La longitud de los caminos de las hormigas se limita a λ ant Nodo inicial λ ant Qué pasa si? Nodo objetivo Dos alternativas Técnica de Expansión: λ ant cambia Tras σ i pasos λ ant = λ ant + δ l

6 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Longitud de los Caminos La longitud de los caminos de las hormigas se limita a λ ant Nodo inicial λ ant Qué pasa si? Nodo objetivo Dos alternativas Técnica del Misionero: Técnica de cambio Expansión: de los nodos λ ant cambia iniciales de los caminos Tras σ si pasos Segunda λ ant = λ ant etapa + δ l Tercera etapa

7 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Feromonas El número de rastros de feromona aumenta durante la búsqueda Esto conduce a problemas de memoria Se deben eliminar algunos valores de feromona de la memoria Feromonas Eliminar valores de feromona τ ij por debajo de un umbral τ θ Feromonas Feromonas Pasos En la técnica del misionero, eliminar todos los valores de feromona tras cada etapa Etapa Pasos Pasos

8 8/22 : Función de Fitness La función de fitness debe ser capaz de evaluar soluciones parciales Se penalizan las soluciones parciales y las que contienen ciclos Solución completa Solución parcial sin ciclo Solución parcial con ciclo Penalización total Constante de penalización para soluciones parciales Constante de penalización para soluciones con ciclos Longitud del camino Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007

9 9/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (I) Objetivo: encontrar errores en programas concurrentes SPIN: se especifica una propiedad usando una fórmula LTL f Programa M Fórmula LTL f s5 s1 s0 s2 s3 s0!p q q s1 s2 p!q s4 s1 s2 s0 s3 Autómata de Büchi producto s5 s7 s6 s4 s8 s9

10 10/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (I) Objetivo: encontrar errores en programas concurrentes SPIN: se especifica una propiedad usando una fórmula LTL f Programa M Fórmula LTL f s5 s1 s0 s2 s3 s0!p q q s1 s2 p!q s4 s1 s2 s0 s3 Autómata de Büchi producto s5 s7 s6 s4 s8 s9

11 11/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (I) Objetivo: encontrar errores en programas concurrentes SPIN: se especifica una propiedad usando una fórmula LTL f Programa M Fórmula LTL f s5 s1 s0 s2 s3 s0!p q q s1 s2 p!q s4 s1 s2 s0 s3 Autómata de Büchi producto s5 s7 s6 s4 Usando Nested-DFS s8 s9

12 12/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (II) Las propiedades de seguridad son aquéllas que pueden expresarse con una fórmula LTL de la forma: f = p donde p es una fórmula pasada (sólo con operadores pasados) Encontrar una traza de error encontrar un estado de aceptación s1 s7 s8 s2 s0 s6 s9 Autómata producto s3 s4 s5 Propiedades de Seguridad Interbloqueos Invariantes Asertos Pueden usarse algoritmos clásicos de exploración de grafos: ej., DFS y BFS

13 13/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 (y III) Número de estados muy grande incluso para pequeños programas s0 s1 s2 s3 s5 Memoria s7 s6 s4 s8 s9 El programa usado en los experimentos modela el problema de los filósofos de Edsger Dijkstra n filósofos 3 n estados 20 filósofos 1039 GB para almacenar los estados

14 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : Comparación Comparamos MMAShg con los algoritmos exhaustivos DFS y BFS Programa Aspectos DFS BFS MMAShg Longitud phi8 Mem. (KB) Tiempo (ms) phi12 phi16 phi20 Longitud Mem. (KB) Tiempo (ms) Longitud Mem. (KB) Tiempo (ms) Longitud NO RESUELTOS Mem. (KB) Tiempo (ms) MMAShg es claramente mejor para los programas abordados

15 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : vs. GA GA es la única metaheurística aplicada previamente al problema Usamos phi17 y needham (protocolo Needham-Schroeder) para la comparación (Godefroid & Khurshid, 2002) Los resultados muestran que tiene mayor eficacia y eficiencia que GA (incluso teniendo en cuenta la diferencia entre las máquinas)

16 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 : vs. GA GA es la única metaheurística aplicada previamente al problema Usamos phi17 y needham (protocolo Needham-Schroeder) para la comparación (Godefroid & Khurshid, 2002) 1.36 Los resultados muestran que tiene mayor eficacia y eficiencia que GA (incluso teniendo en cuenta la diferencia entre las máquinas) 1.11 * 4.84

17 17/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 : Influencia de λ ant Analizamos la influencia de λ ant en los resultados La tasa de éxito aumenta con λ ant La longitud media de los contraejemplos crece con λ ant La memoria y el tiempo de cómputo disminuyen con λ ant

18 18/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 : Influencia de λ ant Analizamos la influencia de λ ant en los resultados La tasa de éxito aumenta con λ ant La longitud media de los contraejemplos crece con λ ant La memoria y el tiempo de cómputo disminuyen con λ ant

19 19/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 : Influencia de λ ant Analizamos la influencia de λ ant en los resultados La tasa de éxito aumenta con λ ant La longitud media de los contraejemplos crece con λ ant La memoria y el tiempo de cómputo disminuyen con λ ant

20 20/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 : Influencia de λ ant Analizamos la influencia de λ ant en los resultados La tasa de éxito aumenta con λ ant La longitud media de los contraejemplos crece con λ ant La memoria y el tiempo de cómputo disminuyen con λ ant

21 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 Conclusiones es capaz de superar las limitaciones de los modelos actuales de ACO cuando se enfrentan a problemas con grafos subyacentes desconocidos o de gran extensión supera a algoritmos exhaustivos del dominio de la comprobación de modelos Asimismo obtiene mejores resultados que el GA usado en el pasado para este problema Estudiar el modelo en profundidad, explorando todas las alternativas mencionadas Trasladar las ideas usadas en a otras metaheurísticas para extender el conjunto de problemas al que se pueden aplicar Profundizar en el uso de para la aplicación de encontrar errores en programas concurrentes

22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de /22 Fin Gracias por su atención!!! Preguntas?

Búsqueda de errores en programas usando Java PathFinder y ACOhg

Búsqueda de errores en programas usando Java PathFinder y ACOhg VI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB'09) Búsqueda de errores en programas usando Java PathFinder y ACOhg Francisco Chicano y Enrique Alba Resumen Model

Más detalles

Autómatas Deterministas. Ivan Olmos Pineda

Autómatas Deterministas. Ivan Olmos Pineda Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.

Más detalles

Introducción a los códigos compresores

Introducción a los códigos compresores Introducción a los códigos compresores Parte I de la Lección 2, Compresores sin pérdidas, de CTI Ramiro Moreno Chiral Dpt. Matemàtica (UdL) Febrero de 2010 Ramiro Moreno (Matemàtica, UdL) Introducción

Más detalles

JUEGOS. Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil

JUEGOS. Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil JUEGOS Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil I Oponente: Jugador: intenta mover a un estado que es el peor para Etiquetar cada nivel del espacio de búsqueda

Más detalles

El Juego como Problema de Búsqueda

El Juego como Problema de Búsqueda El Juego como Problema de Búsqueda En este algoritmo identificamos dos jugadores: max y min. El objetivo es encontrar la mejor movida para max. Supondremos que max mueve inicialmente y que luego se turnan

Más detalles

Algoritmos basados en hormigas

Algoritmos basados en hormigas Algoritmos basados en hormigas Inteligencia Artificial Avanzada 1er. Semestre 2008 1 Aspectos Generales La metáfora de los insectos sociales para resolver problemas ha sido un tema importante a partir

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Framework basado en Colonias de Hormigas artificiales para la resolución de problemas de optimización

Framework basado en Colonias de Hormigas artificiales para la resolución de problemas de optimización Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Laboratorio de Inteligencia Artificial Framework basado en Colonias de Hormigas artificiales para la resolución de problemas

Más detalles

Inteligencia de enjambres

Inteligencia de enjambres Inteligencia de enjambres Diego Milone Inteligencia Computacional Departamento de Informática FICH-UNL Autómata de estados finitos Definición A =< X, Y, E, D > Autómata de estados finitos Definición A

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

Transferencia de conocimiento para el aprendizaje de Redes Bayesianas de Nodos Temporales

Transferencia de conocimiento para el aprendizaje de Redes Bayesianas de Nodos Temporales Transferencia de conocimiento para el aprendizaje de Redes Bayesianas de Nodos Temporales Lindsey Fiedler Cameras, Dr. L. Enrique Sucar Dr. Eduardo F. Morales INAOE Junio, 2013 Contenido Motivación Aprendizaje

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

Primer Parcial de Programación 3 (1/10/2009)

Primer Parcial de Programación 3 (1/10/2009) Primer Parcial de Programación (/0/009) Instituto de Computación, Facultad de Ingeniería Este parcial dura horas y contiene carillas. El total de puntos es 0. En los enunciados llamamos C* a la extensión

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

Tensores cartesianos.

Tensores cartesianos. Tensores cartesianos. Transformación de coordenadas. Consideremos dos sistemas de coordenadas cartesianas ortogonales en el plano, identificados como σ y σ. Supongamos que ambos tienen un origen común,

Más detalles

CI-6675 Algoritmos y Estructuras Optimizadas para Videojuegos

CI-6675 Algoritmos y Estructuras Optimizadas para Videojuegos Especialización en Creación y Programación de Videojuegos CI-6675 Algoritmos y Estructuras Optimizadas para Videojuegos Agenda de hoy Juegos Combinatorios Información en un Juego La suma de un Juego s

Más detalles

Búsqueda con adversario

Búsqueda con adversario Introducción Búsqueda con adversario Uso: Decidir mejor jugada en cada momento para cierto tipo de juegos Hay diferentes tipos de juegos según sus características: Numero de jugadores, toda la información

Más detalles

El Dr. Enrique Alba Torres, Titular de Universidad del Departamento de Lenguajes y Ciencias de la Computación de la Universidad de Málaga,

El Dr. Enrique Alba Torres, Titular de Universidad del Departamento de Lenguajes y Ciencias de la Computación de la Universidad de Málaga, TESIS DOCTORAL Metaheurísticas e Ingeniería del Software Autor José Francisco Chicano García Director Dr. Enrique Alba Torres Departamento Lenguajes y Ciencias de la Computación UNIVERSIDAD DE MÁLAGA Julio

Más detalles

Inversas de las matrices triangulares superiores

Inversas de las matrices triangulares superiores Inversas de las matrices triangulares superiores Ejercicios Objetivos. Demostrar que la inversa a una matriz triangular superior también es triangular superior. Requisitos. Algoritmo de inversión de una

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3.

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3. Unidad 13. Movimientos en el plano. Frisos y mosaicos a las Enseñanzas plicadas 3 Traslaciones Página 17 1. El mosaico de la derecha se llama multihueso. H 1, H, H 3 y H 4 son huesos. Se pueden estudiar

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

El Autómata con Pila

El Autómata con Pila El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Metaheurísticas. Seminario 4. Problemas de optimización con técnicas basadas en adaptación social

Metaheurísticas. Seminario 4. Problemas de optimización con técnicas basadas en adaptación social Metaheurísticas Seminario 4. Problemas de optimización con técnicas basadas en adaptación social 1. Diseño de Componentes para Resolver un Problema con un Algoritmo de Optimización Basada en Colonias de

Más detalles

Optimización basada en Colonia de Hormigas

Optimización basada en Colonia de Hormigas Capítulo 11 Optimización basada en Colonia de Hormigas 11.1 Introducción Optimización de colonia de hormigas (ant colony optimization o ACO) está inspirado en el rastro y seguimiento de feromonas realizado

Más detalles

A B MIN C D E F MAX x E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO

A B MIN C D E F MAX x E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO UNIVERSIDAD DE MÁLAGA Dpto. Lenguajes y Ciencias de la Computación RELACIÓN DE PROBLEMAS. TEMA IV. PROBLEMAS DE JUEGOS.

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales PROLEMS RESUELTOS ÁLGER LINEL Tema. Transformaciones Lineales SUTEM: MTRICES SOCIDS UN TRNSFORMCIÓN Problema : Sean P P los espacios vectoriales de lo polinomios de grado menor o igual a dos menor o igual

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Secciones 1. Introducción. 2. Coordenadas y Transformaciones Homogéneas. 3. Problema Cinemático Directo. Método de

Más detalles

Inteligencia colectiva.

Inteligencia colectiva. Métodos evolutivos.. A. Jiménez, A. Murillo, E. Piza, M. Villalobos, J. Trejos. April 27, 2010 Descripción Métodos evolutivos 1 Métodos evolutivos Algoritmos genéticos 2 Colonias de hormigas Problema de

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

Autor: Diego Niquefa Solución: Diego Niquefa

Autor: Diego Niquefa Solución: Diego Niquefa Selfies Autor: Diego Niquefa Solución: Diego Niquefa Primero note que en el caso en donde sólo hay una atracción basta hacer un BFS desde la posición de origen de Mario y ver cuál es la ruta mínima para

Más detalles

El TAD Grafo. El TAD Grafo

El TAD Grafo. El TAD Grafo ! Esta representación resulta útil cuando el número de vértices se conoce previamente y permanecerá fijo durante la resolución del problema, pero resulta ineficiente si necesitamos añadir o eliminar vértices

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

Genética de polinomios sobre cuerpos locales

Genética de polinomios sobre cuerpos locales Genética de polinomios sobre cuerpos locales Hayden Stainsby Universitat Autònoma de Barcelona STNB 30 de enero de 2014 Resumen 1 Tipos 2 Tipos sobre (K, v) (K, v) cuerpo valorado discreto, O anillo de

Más detalles

Deep Learning y Big Data

Deep Learning y Big Data y Eduardo Morales, Enrique Sucar INAOE (INAOE) 1 / 40 Contenido 1 2 (INAOE) 2 / 40 El poder tener una computadora que modele el mundo lo suficientemente bien como para exhibir inteligencia ha sido el foco

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

3. Determinantes. Propiedades. Depto. de Álgebra, curso

3. Determinantes. Propiedades. Depto. de Álgebra, curso Depto de Álgebra curso 06-07 3 Determinantes Propiedades Ejercicio 3 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 0 0 α A = 5 4 0 A = 6 A 3 = 0 β

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas Tema 3.1: Autómatas Finitos Deterministas Luis Peña luis.pena@urjc.es http://www.ia.urjc.es/cms/es/docencia/ic-msal Sumario Tema 3.1: Autómatas Finitos Deterministas. 1. Concepto de AFD 2. Equivalencia

Más detalles

WAN y Enrutamiento WAN

WAN y Enrutamiento WAN WAN y Enrutamiento WAN El asunto clave que separa a las tecnologías WAN de las LAN es la capacidad de crecimiento, no tanto la distancia entre computadoras Para crecer, la WAN consta de dispositivos electrónicos

Más detalles

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Ricardo Köller Jemio Departamento de Ciencias Exactas e Ingeniería, Universidad

Más detalles

Algoritmos sobre Grafos

Algoritmos sobre Grafos Sexta Sesión 27 de febrero de 2010 Contenido Deniciones 1 Deniciones 2 3 4 Deniciones sobre Grafos Par de una lista de nodos y una lista de enlaces, denidos a su vez como pares del conjunto de nodos.

Más detalles

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui TEMA I.13 Ondas Estacionarias Longitudinales Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

Memoria del Programa Oficial de Postgrado Tecnologías Informáticas

Memoria del Programa Oficial de Postgrado Tecnologías Informáticas Memoria del Programa Oficial de Postgrado Tecnologías Informáticas Máster en Ingeniería del Software e Inteligencia Artificial 2006/2007 José Manuel García Nieto email: jnieto@lcc.uma.es www.garcianieto.net

Más detalles

Factorización de matrices

Factorización de matrices CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

Inicio. Cálculos previos GRASP. Resultados. Fin. Figura 5.1: Diagrama de flujo del algoritmo.

Inicio. Cálculos previos GRASP. Resultados. Fin. Figura 5.1: Diagrama de flujo del algoritmo. 5. DISEÑO FUNCIONAL En este apartado vamos a detallar los diagramas funcionales que han constituido la base para la posterior implantación informática de la metaheurística. 5.1. Diseño funcional del algoritmo

Más detalles

INTRODUCCIÓN A. Autor: José Antonio Glez. Reboredo

INTRODUCCIÓN A. Autor: José Antonio Glez. Reboredo INTRODUCCIÓN A Autor: José Antonio Glez. Reboredo 1. MÉTODOS FORMALES... 3 1.1. INTRODUCCIÓN... 3 1.2. ESPECIFICACIÓN... 4 1.3. VERIFICACIÓN... 5 1.3.1. COMPROBACIÓN DE MODELOS... 5 1.3.2. PRUEBA DE TEOREMAS...

Más detalles

SGUICES029MT22-A16V1. SOLUCIONARIO Teorema de Thales y división de segmentos

SGUICES029MT22-A16V1. SOLUCIONARIO Teorema de Thales y división de segmentos SGUIS09MT-1V1 SOLUIONRIO Teorema de Thales y división de segmentos 1 TL ORRIÓN GUÍ PRÁTI TORM THLS Y IVISIÓN SGMNTOS Ítem lternativa 1 omprensión 5 7 8 9 10 11 1 1 1 S 15 1 S 17 18 S 19 0 S 1 S S 5 S 1.

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

Módulo: Modelos de programación para Big Data

Módulo: Modelos de programación para Big Data Program. paralela/distribuida Módulo: Modelos de programación para Big Data (título original: Entornos de programación paralela basados en modelos/paradigmas) Fernando Pérez Costoya Introducción Big Data

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA P P 1 0 A P 1 P (x (x 2 ) (0) (1) (x 1 )

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

C a l ses P P y y NP C a l se P C a l se N P N P [No N n o -De D te t rmin i i n s i ti t c i Polynomial-tim i e]

C a l ses P P y y NP C a l se P C a l se N P N P [No N n o -De D te t rmin i i n s i ti t c i Polynomial-tim i e] Análisis y Diseño de Algoritmos Introducción Análisis y Diseño de Algoritmos Concepto de algoritmo Resolución de problemas Clasificación de problemas Algorítmica Análisis de la eficiencia de los algoritmos

Más detalles

Series de números complejos

Series de números complejos Análisis III B - Turno mañana - Series 1 Series de números complejos 1 Definiciones y propiedades Consideremos una sucesión cualquiera de números complejos (z n ) n1. Para cada n N, sabemos lo que quiere

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Teorema de Tales. tercero. 60 secundaria

Teorema de Tales. tercero. 60 secundaria Teorema de Tales 60 secundaria 9 D A B Una aplicación de Teoremas de Tales C Existen dos teoremas en relación a la geometría clásica que reciben el nombre de Teorema de Tales, ambos atribuidos al matemático

Más detalles

Solución a Problemas de tipo Dirichlet usando Análisis

Solución a Problemas de tipo Dirichlet usando Análisis Solución a Problemas de tipo Dirichlet usando Análisis Armónico Marysol Navarro Burruel UNISON 17 Abril, 2013 Marysol Navarro Burruel (UNISON) Análisis Armónico y problemas de tipo Dirichlet 17 Abril,

Más detalles

ROS: Servicio de Optimización en Internet

ROS: Servicio de Optimización en Internet 1/20 : Servicio de Optimización en Internet Enrique Alba, José Nieto y Francisco Chicano 2/20 Optimización Combinatoria Un problema de optimización combinatoria está formado por: Variables: x 1, x 2,...,

Más detalles

UNIDAD 6: SISTEMAS DE ECUACIONES

UNIDAD 6: SISTEMAS DE ECUACIONES UNIDAD 6: SISTEMAS DE ECUACIONES Continuamos con el estudio de la asignatura; ya hemos abordado cinco capítulos del programa de estudio: Los números reales, ecuaciones, desigualdades y algunas de las funciones

Más detalles

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III Complejidad - Problemas NP-Completos Algoritmos y Estructuras de Datos III Teoría de Complejidad Un algoritmo eficiente es un algoritmo de complejidad polinomial. Un problema está bien resuelto si se conocen

Más detalles

2.3 Velocidad de fase y grupo

2.3 Velocidad de fase y grupo 2.3 Velocidad de fase y grupo La velocidad c en las secciones anteriores es la velocidad de fase de las ondas superficiales (c = ω/k). Es la velocidad con que una fase se propaga. En general, las velocidades

Más detalles

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP).

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP). PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP. Optimización con restricciones La presencia de restricciones reduce la región en la cual buscamos el óptimo. Los criterios

Más detalles

Modelos de Redes: Problemas de la Ruta más m s corta. M. En C. Eduardo Bustos Farías

Modelos de Redes: Problemas de la Ruta más m s corta. M. En C. Eduardo Bustos Farías Modelos de Redes: Problemas de la Ruta más m s corta M. En C. Eduardo Bustos Farías as Problemas de la Ruta más m s corta 2 Problemas de la Ruta más m s corta Se trata de encontrar la ruta de menor distancia,

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

El juego de caracteres de LATEX.

El juego de caracteres de LATEX. Capítulo 3 El juego de caracteres de LATEX. 3.1. Algunos caracteres especiales. En L A TEX hay algunos caracteres que están reservados para algunas funciones especiales y que, por tanto, no aparecerán

Más detalles

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

El Autómata con Pila: Transiciones

El Autómata con Pila: Transiciones El Autómata con Pila: Transiciones El Espacio de Configuraciones Universidad de Cantabria Esquema Introducción 1 Introducción 2 3 Transiciones Necesitamos ahora definir, paso por paso, como se comporta

Más detalles

2.3 Análisis de alternativas e identificación de soluciones

2.3 Análisis de alternativas e identificación de soluciones 2.3 Análisis de alternativas e identificación de soluciones Análisis de alternativas y solución de proyectos Correspondería, fundamentalmente, a la etapa 2: 2. Identificar y definir la mejor solución para

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Econometria de Datos en Paneles

Econometria de Datos en Paneles Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )

Más detalles

Capítulo 24. Emisión y absorción de la luz. Láser

Capítulo 24. Emisión y absorción de la luz. Láser Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E

Más detalles

Estadística Espacial en Ecología del Paisaje

Estadística Espacial en Ecología del Paisaje Estadística Espacial en Ecología del Paisaje Introducción H. Jaime Hernández P. Facultad de Ciencias Forestales U. de Chile Tipos de datos en análisis espacial Patrones espaciales puntuales Muestras geoestadísticas

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Tema 5: Elementos de geometría diferencial

Tema 5: Elementos de geometría diferencial Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.

Más detalles