Problemas del tema 3. Sistemas lineales e invariantes en el tiempo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas del tema 3. Sistemas lineales e invariantes en el tiempo"

Transcripción

1 Ingeniería Informática Medios de ransmisión (M) Problemas del tema Sistemas lineales e invariantes en el tiempo Curso 8-9 7//8

2 Enunciados. Considere el sistema de la figura Retardo de segundo ( ) x(t) ( ) + y(t) Figura : ( ) a) Encuentre la relación entre x(t) e y(t) b) Es un sistema lineal? c) Es un sistema invariante? d) Calcule la salida para la señal de entrada x(t) de la figura x(t) - - Figura :. Calcule la convolución y(t) = x(t) h(t) de las siguientes señales: a) x(t) = h(t) = u(t). b) x(t) = u(t) u(t t ) y h(t) = u(t) u(t t ) donde t > t >. c) x(t) = u(t ) y h(t) = u(t). t d) x(t) = e at u(t) y h(t) = e bt u(t) con a b. e) x(t) = h(t) = e at u(t). f ) x(t) = t k u(t) y h(t) = u(t) siendo k entero y k >. g) x(t) = u(t + ) u(t ) y h(t) = δ(t + ) + δ(t ).

3 x(t) h(t) Figura : h) x(t) y h(t) como en la figura. Calcule la salida y(t) de un sistema LI caracterizado por h(t) cuando a su entrada se aplica x(t): a) x(t) = e t u(t) y h(t) = u(t ) b) x(t) = u(t) u(t ) + u(t 5) y h(t) = e t u(t ) 4. Un pulso rectangular x(t) = u(t) u(t ) de duración es la entrada a un sistema LI de respuesta al impulso h(t) = e at u(t), siendo a >. Calcule la salida. 5. Estudie las propiedades de linealidad e invarianza del sistema dado por el esquema de la figura 4 h(t) y(t) cos ω t Figura 4: 6. Determine y dibuje la salida y(t) de cada uno de los siguientes sistemas cuanda la entrada es el siguiente tren de impulsos x(t) = k= k= a) h(t) = u(t) u(t ) para =,, δ(t k) b) h(t) = [sen πt][u(t) u(t )] para =, c) h(t) = δ(t) δ(t ) 7. Determine si los siguientes sistemas LI son estables y/o causales a) h(t) = e t u(t ) b) h(t) = e t u( t) c) h(t) = e t u(t + )

4 d) h(t) = e t u( t) e) h(t) = e 4 t f ) h(t) = te t u(t) g) h(t) = ( e t e (t )/) u(t) 8. Para cada uno de las siguientes relaciones entrada/salida de sistemas LI, determine la respuesta al impulso. Indique si los sistemas son estables y/o causales. a) y(t) = b) y(t) = t c) y(n) =, d) y(n) = n k= x(τ)dτ. e τ x(t τ )dτ. x(n k). k= k n x(k + ). 9. Considere que la salida de un sistema LI y(t) es la convolución entre la se nal de entrada x(t) y la respuesta al impulso h(t). Obtenga en función de y(t) las siguientes se nales a) h(t) x(t t ) b) x(t) h(t t ) c) x(t t ) h(t t ) d) Calcule δ(t ) δ(t ). Considere un sistema LI cuya respuesta al impulso viene dada por h(t) = e (t ) u(t ) () a) Determine la respuesta de este sistema cuando la entrada x(t) es la se nal de la figura 5 x(t) - Figura 5: b) Considere la interconexión de sistemas mostrada en la figura 6 donde h(t) es la respuesta al impulso del enunciado. Calcule la salida y(t) cuando la entrada es la se nal del apartado (b). Hágalo de dos formas: 4

5 d (t-) h(t) x(t) - + y(t) h(t) Figura 6: ) Calculando la respuesta al impulso del sistema global y a continuación usando la integral de convolución para calcular la salida. ) Utilizando el resultado del apartado (a) junto con las propiedades de la convolución para calcular y(t) sin necesidad de evaluar la integral de convolución.. (Septiembre 95) Considere dos señales de duración limitada. La primera de ellas, x (t), comienza en t y acaba en t. La segunda, x (t), comienza en t y acaba en t 4. Si se convolucionan estas dos señales, se obtiene una tercera x (t) = x (t) x (t), también de duración limitada, que comienza en t 5 y acaba en t 6. a) Determine los valores de t 5 y t 6 en función de t, t, t y t 4. b) Haga la convolución entre las siguientes dos señales y compruebe el resultado del apartado anterior. x (t) x (t) 4 Figura 7:. Los siguientes pares entrada-salida han sido observados durante la operación de un sistema invariante en el tiempo x (t) = δ(t) + δ(t ) x (t) = δ(t ) x (t) = δ(t 4) y (t) = δ(t ) + δ(t ) y (t) = δ(t ) + δ(t ) y (t) = δ(t + ) + δ(t) + δ(t ) Se puede obtener alguna conclusión acerca de la linealidad del sistema?. Los siguientes pares entrada-salida han sido observados durante la operación de 5

6 un sistema lineal x (t) = δ(t + ) + δ(t) + δ(t ) x (t) = δ(t + ) δ(t) δ(t ) x (t) = δ(t) + δ(t ) y (t) = δ(t + ) + δ(t) δ(t ) + δ(t ) y (t) = δ(t + ) + δ(t) + δ(t ) y (t) = δ(t) + δ(t ) + δ(t ) Se puede obtener alguna conclusión acerca de la invarianza en el tiempo del sistema? 4. Si y(t) = x(t) h(t) demuestre que y(t)dt = x(t)dt h(t)dt () 5. (Marzo 96) Considere un sistema LI que cuando la entrada es x (t) = δ(t) δ(t ) la salida es y (t) = e t u(t) y cuando la entrada es x (t) = δ(t) + δ(t ) la salida es y (t) = e t u(t). a) Calcule x (t) x (t). b) Calcule la respuesta al impulso del sistema. c) Calcule la respuesta en frecuencia del sistema. 6. Considere las señales x(t) = u(t ) u(t 5) y h(t) = e t u(t). a) Calcule y(t) = x(t) h(t) b) Calcule g(t) = (dx(t)/dt) h(t) c) Cual es la relación que existe entre g(t) y y(t)? 7. Demuestre que la operación de convolución es conmutativa, i.e., x(t) h(t) = h(t) x(t) 8. La respuesta al escalón s(t) de un sistema LI es la salida que se obtiene cuando la entrada es un escalón unidad. Demuestre que la respuesta al impulso h(t) es la derivada de la respuesta al escaln, i.e., h(t) = ds(t) dt 6

7 Soluciones. a) y(t) = x(t) x(t ) b) No lineal. c) Invariante. d) d). a) y(t) = t u(t) t < t < t < t b) y(t) = t t < t < t t + t t t < t < t + t t > t + t c) y(t) = ln(t)u(t ) d) y(t) = b a (e at e bt )u(t) e) y(t) = te at u(t) f ) y(t) = tk+ k+ u(t) g) y(t) = x(t + ) + x(t ) g) 7

8 5 4 h) h). a) y(t) = ( e (t ) )u(t ) t < b) y(t) = (e e t ) < t < e (t ) e e t < t < 6 e (t ) e (t 5) e t t > 6 t < 4. y(t) = ( a e at ) < t < a (e a(t ) e at ) t > y(t) [En la gráfica, =;a=] 5. Lineal, no invariante. a) [=] a) [=] 6. a) a) [=] 8

9 b) [=] b) b) [=] c) c) 7. a) Estable, causal. b) No estable, no causal. c) Estable, no causal. d) Estable, no causal. e) Estable, no causal. f ) Estable, causal. g) No estable, causal. 8. a) h(t) = u( t) No estable, no causal. b) h(t) = e t u(t ) No estable, causal. {, n c) h(n) = Estable, no causal. resto d) h(n) = (n+) u(n + ) Estable, no causal. 9. a) y(t t ) b) y(t t ) c) y(t t ) d) δ(t ) t <. a) y a (t) = e (t ) < t < 4 e (t 4) e (t ) t > 4 9

10 b) ) h(t) = e (t ) u(t ) e (t ) u(t ), de modo que t < e (t ) < t < y(t) = e (t ) e (t ) < t < 4 e (t 4) + e (t ) e (t ) 4 < t < 5 e (t 4) e (t ) + e (t ) e (t 5) t > 5 ) y(t) = y a (t) y a (t ). a) t 5 = t + t y t 6 = t + t 4 t < t < t < 4 b) y(t) = 4 < t < 6 t < t < 7 t >. No es lineal.. No es invariante. 7. a) x (t) x (t) =δ(t) δ(t ) b) h(t) = (e t + e t )u(t) c) H(jw) = ( +jw + 8. a) y(t) = +jw ) t < e (t ) < t < 5 e (t 5) e (t ) t > 5 b) g(t) = e (t ) u(t ) e (t 5) u(t 5) c) g(t) = y(t) dt

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2)

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2) SISTEMAS LINEALES Tema. Sistemas Lineales e Invariantes en el Tiempo (Sesión ) 4 de octubre de 00 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos

Más detalles

Tema 2. Introducción a las señales y los sistemas (Sesión 1)

Tema 2. Introducción a las señales y los sistemas (Sesión 1) SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas (Sesión ) 7 de octubre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos de impulsos

Más detalles

Sistemas Lineales. Examen de Junio SOluciones

Sistemas Lineales. Examen de Junio SOluciones . Considere la señal xt) sinπt) Sistemas Lineales Examen de Junio 22. SOluciones a) Obtenga su transformada de Fourier, X), y represéntela para 7π. b) Calcule la potencia y la energía de xt). c) Considere

Más detalles

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice:

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice: Indice: 1. Clasificación de Sistemas en tiempo continuo Lineales y no Lineales Invariante y Variantes en el tiempo Causal y no Causal Estable e Inestables Con y sin Memoria 2. La Convolución La Integral

Más detalles

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática 6.003: Señales y sistemas Otoño 2003 Examen final Martes 16 de diciembre de 2003 Instrucciones: El examen consta

Más detalles

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya II Semestre, 005 Examen Final Total de Puntos: 80 Puntos

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III

SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III Problema 1: Dado el siguiente sistema: a) Determine x1(n) cuando x(n) = u(n) - u(n-4) b) Determine x2(n+1) cuando x(n) = Cos0.5nπ 2º Se define z(n)=

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS.CAPITULO III. Problema 1: Un sistema LIT cuando se alimenta con la señal sgn(t), definida como:

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS.CAPITULO III. Problema 1: Un sistema LIT cuando se alimenta con la señal sgn(t), definida como: SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS.CAPITULO III Problema : Un sistema LIT cuando se alimenta con la señal sgn(t), definida como: sgn(t) = t 0 t 0 produce la siguiente salida: Determine la salida cuando

Más detalles

Tema 1. Introducción a las señales y los sistemas (Sesión 2)

Tema 1. Introducción a las señales y los sistemas (Sesión 2) SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas (Sesión ) 7 de septiembre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Definiciones. Clasificación de señales. Transformaciones

Más detalles

Sistemas Lineales. Problemas de Muestreo (V2.0)

Sistemas Lineales. Problemas de Muestreo (V2.0) Sistemas Lineales Problemas de Muestreo (V2.0). Una señal continua x(t) se obtiene a la salida de un filtro pasobajo ideal con frecuencia de corte c = 000π. Si el muestreo con tren de impulsos se realiza

Más detalles

Señales y Sistemas Capítulo 2: Señales

Señales y Sistemas Capítulo 2: Señales y Sistemas Capítulo 2: Señales Sebastián E. Godoy (segodoy@udec.cl) Departamento de Ingeniería Eléctrica Universidad de Concepción, Concepción, Chile Marzo 2015 Marzo 2015 1 / 41 Tabla de Contenidos Señales

Más detalles

Sistemas Lineales e Invariantes en el Tiempo (LTI)

Sistemas Lineales e Invariantes en el Tiempo (LTI) Sistemas Lineales e Invariantes en el Tiempo (LTI) Dr. Ing. Leonardo Rey Vega Señales y Sistemas (66.74 y 86.05) Facultad de Ingeniería Universidad de Buenos Aires Agosto 2013 Señales y Sistemas (66.74

Más detalles

Preguntas IE TEC. Total de Puntos: 54 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 54 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-4701 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 006 Examen de Reposición Total de Puntos:

Más detalles

Sistemas continuos. Francisco Carlos Calderón PUJ 2010

Sistemas continuos. Francisco Carlos Calderón PUJ 2010 Sistemas continuos Francisco Carlos Calderón PUJ 2010 Objetivos Definir las propiedades básicas de los sistemas continuos Analizar la respuesta en el tiempo de un SLIT continuo Definición y clasificación

Más detalles

Problemas Tema 1: Señales

Problemas Tema 1: Señales Curso Académico 009 00 Problemas Tema : Señales PROBLEMA. Una señal continua (t) se muestra en siguiente figura. Dibuje y marque cuidadosamente cada una de las siguientes señales [Prob.. del Oppenheim]:

Más detalles

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo.

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. 205-206 Tema 3. Análisis de Fourier de tiempo continuo 205-206 / 23 Índice Introducción 2 Respuesta de sistemas LTI a exponenciales

Más detalles

Formulario. sinc(x) = sin(πx) πx Relación entre senoidales y exponenciales complejas

Formulario. sinc(x) = sin(πx) πx Relación entre senoidales y exponenciales complejas 1 1.1. Repaso matemático Formulario z = x + jy = x 2 + y 2 e jθ = me jθ = m(cos(θ) + j sin(θ)); θ = arctan x y b a e f f = e f(b) e f(a) sinc(x) = sin(πx) πx N 1 n=0 α n = N α = 1 1 α N 1 α α 1 b a δ(x)f(x)dx

Más detalles

Sistemas Lineales. Tema 7. Problemas

Sistemas Lineales. Tema 7. Problemas Sistemas Lineales ema 7. Problemas. Se sabe que una señal de valor real x(t) ha sido determinada sólo por sus muestras cuando la frecuencia de muestreo es s = 0 4 π. Para qué valores de se garantiza que

Más detalles

UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA

UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA CURSO: SEÑALES Y SISTEMAS UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA P. 1. DEFINICIONES SEÑAL: Matemáticamente es una variable que contiene información y representa

Más detalles

Sistemas Lineales. Sistemas

Sistemas Lineales. Sistemas Sistemas Lineales Sistemas Un sistema opera con señales en una ó más entradas para producir señales en una ó más salidas. Los representamos mediante diagrama en bloques Señal de entrada ó excitación Señal

Más detalles

Señales y sistemas. Segundo curso de Ingeniería de Telecomunicación Universidad de Cantabria 4 de febrero de 2002

Señales y sistemas. Segundo curso de Ingeniería de Telecomunicación Universidad de Cantabria 4 de febrero de 2002 Señales y sistemas. Segundo curso de Ingeniería de Telecomunicación Universidad de Cantabria 4 de febrero de 2002 1. Suponga un sistema LTI cuya entrada x(t) y salida y(t) están relacionadas mediante la

Más detalles

Tema 2. Análisis de Sistemas en Tiempo Continuo

Tema 2. Análisis de Sistemas en Tiempo Continuo Por definición la convolución es el producto integral de dos funciones desde hasta +. Para hallar la convolución de dos funciones gráficamente, se debe dejar una de ellas fija, transponer la otra y desplazarla

Más detalles

SEÑALES Y SISTEMAS Clase 11

SEÑALES Y SISTEMAS Clase 11 SEÑALES Y SISTEMAS Clase 11 Carlos H. Muravchik 12 de Abril de 218 1 / 36 Habíamos visto: Sistemas Lineales. Convolución. Y se vienen: Repaso: Convolución - Propiedades. Estabilidad. Representacion de

Más detalles

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Objetivo Exponer las relaciones de la transformada de Laplace con las ecuaciones diferenciales y lineales de orden n junto con

Más detalles

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata

Más detalles

3.7. Ejercicios: Sistemas discretos

3.7. Ejercicios: Sistemas discretos 3.7. Ejercicios: Sistemas discretos 57 3.7. Ejercicios: Sistemas discretos Ejercicio 1. Calcule la salida y[n] de cada uno de los siguientes sistemas para la entrada x[n] que se muestra en la figura. (1)

Más detalles

Sistemas Discretos LTI

Sistemas Discretos LTI Sistemas Discretos LTI MSc. Bioing Rubén Acevedo racevedo@bioingenieria.edu.ar Bioingeniería I Carrera: Bioingeniería Facultad de Ingeniería - UNER 06 de Abril de 2009 Bioingeniería I Sistemas discretos

Más detalles

Convolución. Convolución en el caso continuo. Convolución caso continuo

Convolución. Convolución en el caso continuo. Convolución caso continuo Convolución caso continuo Convolución Convolución en el caso continuo La convolución es la función que se obtiene de una cuenta de dos funciones, cada quien le da la interpretación que desee. Sólo que

Más detalles

Concepto y Definición de Convolución

Concepto y Definición de Convolución Convolución Concepto y Definición de Convolución Propiedades Correlación y Autocorrelación Convolución Discreta 1 Concepto y Definición de Convolución Mediante la convolución calcularemos la respuesta

Más detalles

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace SISTEMAS LINEALES Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace 2 de octubre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones

Más detalles

Transformadas de Laplace y Z de funciones causales: tablas y propiedades

Transformadas de Laplace y Z de funciones causales: tablas y propiedades Transformadas de Laplace y Z de funciones causales: tablas y propiedades Félix Monasterio-Huelin 8 de febrero de 206 Índice Índice Índice de Figuras Índice de Tablas. Introducción a las transformadas de

Más detalles

Práctica 3. Sistemas Lineales Invariantes con el Tiempo

Práctica 3. Sistemas Lineales Invariantes con el Tiempo Universidad Carlos III de Madrid Departamento de Teoría de la Señal y Comunicaciones LABORATORIO DE SISTEMAS Y CIRCUITOS CURSO 2003/2004 Práctica 3. Sistemas Lineales Invariantes con el Tiempo 12 de diciembre

Más detalles

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo Propiedades de los Sistemas Lineales e Invariantes en el Tiempo La respuesta al impulso de un sistema LTIC (h(t)), representa una descripción completa de las características del sistema. Es decir la caracterización

Más detalles

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue:

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue: SISTEMAS LINEALES INVARIANTES EN EL TIEMPO (SISTEMAS LTI) Un sistema lineal invariante en el tiempo, el cual será referido en adelante por la abreviatura en inglés de Linear Time Invariant Systems como

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z ALUMNOS: CRUZ NAVARRO JESUS ALBARRÁN DÍAZ KARLA GRUPO: 4 SEMESTRE:

Más detalles

Álgebra Lineal Análisis vectorial Cálculo Ecuaciones diferenciales Matemáticas

Más detalles

Convolucion discreta

Convolucion discreta Procesamiento Digital de Señales Licenciatura en Bioinformática FI-UNER discreta 15 de setiembre de 2011 Procesamiento Digital de Señales discreta Septiembre de 2011 1 / 42 Organización 1 Convolución 2

Más detalles

Procesado con Sistemas Lineales Invariantes en el Tiempo

Procesado con Sistemas Lineales Invariantes en el Tiempo Procesado con Sistemas Lineales Invariantes en el Tiempo March 9, 2009 Sistemas Lineales Invariantes en el Tiempo (LTI). Caracterización de los sistemas LTI discretos Cualquier señal discreta x[n] puede

Más detalles

Tema 1. Introducción a las señales y los sistemas

Tema 1. Introducción a las señales y los sistemas SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas de septiembre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Definiciones. Clasificación de señales. Transformaciones de la

Más detalles

TEMA2: Fundamentos de Señales y Sistemas

TEMA2: Fundamentos de Señales y Sistemas TEMA2: Fundamentos de Señales y Sistemas Contenidos del tema: Modelos de sistemas lineales en tiempo continuo: Dominio del tiempo Dominio de la frecuencia, polos y ceros. Representación de señales continuas:

Más detalles

Convolucion discreta

Convolucion discreta Procesamiento Digital Señales Licenciatura en Bioinformática FI-UNER discreta Setiembre 2010 Procesamiento Digital Señales discreta Septiembre 2010 1 / 42 Organización 1 2 3 Procesamiento Digital Señales

Más detalles

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero. IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 0 Examen Final Total de Puntos: 9 Puntos obtenidos:

Más detalles

CAPITULO 9. TRANSFORMADA DE FOURIER Transformada de Fourier

CAPITULO 9. TRANSFORMADA DE FOURIER Transformada de Fourier CAPITULO 9. TRANSORMADA DE OURIER 9.. Transformada de ourier Sea una función definida en un intervalo finito y desarrollable en serie de ourier, por tanto, la podemos representar como una superposición

Más detalles

Sistemas Lineales. Examen de Septiembre Soluciones

Sistemas Lineales. Examen de Septiembre Soluciones Sistemas Lineales Examen de Septiembre 25. Soluciones. (2.5 pt.) La señal y(t) [sinc( t)] 4 puede escribirse como y(t) [sinc( t)] 4 [ ] sin(o πt) 4 o πt [ sin(o πt) ] 4 4 πt 4 [y (t)] 4 4 y (t) y (t) y

Más detalles

Primera parte (3 puntos, 25 minutos):

Primera parte (3 puntos, 25 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 18/01/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos Tema 5. Régimen Permanente Senoidal Sistemas y Circuitos 5. Respuesta SLT a exponenciales complejas Analicemos la respuesta de los SLT ante exponenciales complejas Tiempo continuo: xt () e st s σ + jω

Más detalles

Primera parte (2.5 puntos, 20 minutos):

Primera parte (2.5 puntos, 20 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 24/06/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

Primera parte (2.5 puntos, 20 minutos):

Primera parte (2.5 puntos, 20 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 24/06/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

Tema 5. La Transformada Z. Indice:

Tema 5. La Transformada Z. Indice: Indice: La Transformada Z Convergencia de la Transformada Z Propiedades de La Transformada Z La Transformada Z inversa Método de la División Directa Método de Descomposición en Fracciones Parciales. Prof.

Más detalles

Señales y Sistemas de Tiempo Discreto

Señales y Sistemas de Tiempo Discreto Capítulo Señales y Sistemas de Tiempo Discreto Una señal es cualquier magnitud que sufre variaciones que contienen información de cualquier tipo, matemáticamente se representan por funciones de una o más

Más detalles

Teoría de la Comunicación. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [ 2, 2], calcule las probabilidades

Teoría de la Comunicación. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [ 2, 2], calcule las probabilidades .6. Ejercicios Ejercicio.1 Se tiene una variable aleatoria X. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [, ], calcule las probabilidades i) P (X >1) ii) P (X > 1)

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS.CAPITULO IV. PROBLEMA 1: Se tienen 3 señales cuyas representaciones en serie de Fourier son las siguientes:

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS.CAPITULO IV. PROBLEMA 1: Se tienen 3 señales cuyas representaciones en serie de Fourier son las siguientes: SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS.CAPITULO IV PROBLEMA 1: Se tienen 3 señales cuyas representaciones en serie de Fourier son las siguientes: Determine si cada una de ellas es real y par. Si el coeficiente

Más detalles

Propiedades de los sistemas (con ecuaciones)

Propiedades de los sistemas (con ecuaciones) Propiedades de los sistemas (con ecuaciones) Linealidad: Para verificar si un sistema es lineal requerimos que le sistema sea homogéneo y aditivo es decir, cumplir con la superposición. Método: Dada una

Más detalles

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace SISTEMAS LINEALES Tema. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace de octubre de 00 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Autofunciones de

Más detalles

Señales y Sistemas II

Señales y Sistemas II 1 Señales y Sistemas II Módulo I: Señales y Sistemas Discretos Contenido de este módulo 2 1.- Tipos de señales y operaciones básicas 2.- Tipos de sistemas y sus propiedades 3.- Respuesta impulsiva y convolución

Más detalles

Transformada Z. Diego Milone. Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL

Transformada Z. Diego Milone. Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL Transformada Z Diego Milone Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL 26 de abril de 2012 Organización de la clase Introducción Revisión: transformada de Laplace Motivación de la

Más detalles

SEÑALES Y SISTEMAS Clase 10

SEÑALES Y SISTEMAS Clase 10 SEÑALES Y SISTEMAS Clase 1 Carlos H. Muravchi 9 de Abril de 18 1 / 6 Habíamos visto: Sistemas en general Generalidades. Propiedades. Invariancia. Linealidad. Y se vienen hoy: Sistemas grales: Causalidad.

Más detalles

Análisis de Sistemas y Señales: Transformadas de Laplace, Z y Fourier. ÍNDICE. Transformadas de Laplace. 3. Transformada de Fourier.

Análisis de Sistemas y Señales: Transformadas de Laplace, Z y Fourier. ÍNDICE. Transformadas de Laplace. 3. Transformada de Fourier. Análisis de Sistemas y Señales Transformadas: Laplace, Z y Fourier. F L Z Alumnos: Anzures Robles Jorge Garcíaa Luciano Laura Quezada Borja Arnulfo Rojas Arteaga I. Karina Román Guadarrama José Roque Grupo:

Más detalles

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero. IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-0 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 0 Examen Final Total de Puntos: 99 Puntos obtenidos:

Más detalles

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo.

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. 2015-2016 Tema 3. Análisis de Fourier de tiempo continuo 2015-2016 1 / 32 Índice 1 de señales de tiempo continuo Ejemplos de transformadas

Más detalles

Señales y sistemas, 2 o Curso (tiempo: 4h) Apellidos: Nombre:

Señales y sistemas, 2 o Curso (tiempo: 4h) Apellidos: Nombre: E.T.S.I.I. y de Telecomunicación, UC Ingeniería de Telecomunicación 28 de enero de 2004 Apellidos: Nombre: DNI: Firma: Señales y sistemas, 2 o Curso (tiempo: 4h) P1 P2 P3 P4 P5 T 1. Calcular la respuesta

Más detalles

Sistemas Lineales e Invariantes PRÁCTICA 2

Sistemas Lineales e Invariantes PRÁCTICA 2 Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas

Más detalles

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal Señales y Sistemas Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas Señales El procesamiento de señales es el objeto de la asignatura, así que no vendría mal comentar

Más detalles

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero. IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 0 Examen Final Total de Puntos: 85 Puntos obtenidos:

Más detalles

Segunda parte (2h 30 ):

Segunda parte (2h 30 ): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL SEPTIEMBRE 2008 05/09/2008 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES

Más detalles

3.- Herramientas matemáticas para el procesamiento de señales.

3.- Herramientas matemáticas para el procesamiento de señales. 3.- Herramientas matemáticas para el procesamiento de señales. La mejor manera de caracterizar un sistema consiste en probar de qué manera responde a señales de entrada, es decir, cómo transforma las señales

Más detalles

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo II Transformada de Laplace

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo II Transformada de Laplace Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo II Transformada de Laplace D.U. Campos-Delgado Facultad de Ciencias UASLP Agosto-Diciembre/218 1 CONTENIDO Definición

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

SISTEMAS LINEALES. Tema 5. Muestreo

SISTEMAS LINEALES. Tema 5. Muestreo SISTEMAS LINEALES Tema. Muestreo 2 de noviembre de 2010 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Definición de muestreo Muestreo ideal Teorema de Nyquist Muestreo Instantáneo Muestreo de

Más detalles

1. Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema:

1. Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: 1. Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: Si la entrada corresponde a escalón unitario, determine: En base a la gráfica: a) Tiempo de establecimiento para un error

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

Preguntas de 33 Problema 1 de 17 Problema 2 de 18 Problema 3 de 15 Problema 4 de 15

Preguntas de 33 Problema 1 de 17 Problema 2 de 18 Problema 3 de 15 Problema 4 de 15 IE TEC Carné: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-47 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya II Semestre, 7 Examen Final Total de Puntos: 98 Puntos obtenidos:

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

Práctica 3: Convolución

Práctica 3: Convolución Práctica 3: Convolución Grupo Puesto Apellidos, nombre SOLUCIÓN Fecha Apellidos, nombre SOLUCIÓN El objetivo de esta práctica es familiarizar al alumno con la suma de convolución, fundamental en el estudio

Más detalles

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace CAPITULO 8. LA TRANSFORMADA DE LAPLACE 8.1. La transformada de Laplace Definición 1.Sea f (t) una función definida para t 0. Se define la transformada de Laplace de f (t) de la forma, - s es un parámetro

Más detalles

MODELACION EN VARIABLES DE ESTADO

MODELACION EN VARIABLES DE ESTADO CAPÍTULO VIII INGENIERÍA DE SISTEMAS I MODELACION EN VARIABLES DE ESTADO 8.1. DEFINICIONES Estado: El estado de un sistema dinámico es el conjunto más pequeño de variables de modo que el conocimiento de

Más detalles

Problemas de Estructuras de Filtros Digitales.

Problemas de Estructuras de Filtros Digitales. Problemas de Estructuras de Filtros Digitales. Estructuras de Filtros Digitales 1.- En la figura siguiente se representa una realización en la forma acoplada de una función del sistema que presenta una

Más detalles

Transmisión digital por canales con ruido

Transmisión digital por canales con ruido Ingeniería Informática Medios de Transmisión (MT) Problemas del tema 8 Transmisión digital por canales con ruido Curso 008-09 18/1/008 Enunciados 1. Un sistema de transmisión binario con se nalización

Más detalles

Comportamiento dinámico: Estabilidad

Comportamiento dinámico: Estabilidad Lección 5 Comportamiento dinámico: Estabilidad Estabilidad Dos tipos de estabilidad: ẋ(t) = f(t, x(t), u(t)) Estabilidad interna: ẋ(t) = f(t, x(t)) Estabilidad externa o Estabilidad Entrada-Salida : {

Más detalles

EJERCICIOS ANALITICOS. a a f ( ) R τ de x ( t ) y x ( t ) mostrados en la Figura. Figura 2. Densidad Espectral de Energía de g(t) - ( t)

EJERCICIOS ANALITICOS. a a f ( ) R τ de x ( t ) y x ( t ) mostrados en la Figura. Figura 2. Densidad Espectral de Energía de g(t) - ( t) PONTIFICIA UNIVERSIDAD JAVERIANA- FACULTAD DE INGENIERÍA. DEPARTAMENTO DE ELECTRÓNICA. - SECCIÓN DE COMUNICACIONES. FUNDAMENTOS DE COMUNICACIONES. TALLER NO. 1 TRANSFORMADA DE FOURIER APLICADA A TELE COMUNICACIONES

Más detalles

Principio de Superposición

Principio de Superposición 1 Sistemas en tiempo continuo discreto Un sistema en tiempo continuo discreto e puede ver como una transformación que se aplica a una señal de entrada en tiempo continuo discreto y produce una señal de

Más detalles

PROBLEMAS PROPUESTOS. TEMAS 1 A 4 SOLUCIONES

PROBLEMAS PROPUESTOS. TEMAS 1 A 4 SOLUCIONES Grado en Ingeniería Mecánica Teoría de Sistemas PROBLEMAS PROPUESTOS. TEMAS A 4 SOLUCIONES PROBLEMA. Cálculo de transformada de Laplace a) Por aplicación de la definición de la transformada. Aplicando

Más detalles

SEÑALES, SISTEMAS Y CONVOLUCION SEÑALES

SEÑALES, SISTEMAS Y CONVOLUCION SEÑALES SEÑALES, SISTEMAS Y CONVOLUCION SEÑALES Las señales se procesan para extraer información útil (Procesamiento de Señales) En este curso trataremos señales unidimensionales que poseen como variable independiente

Más detalles

Tema 2: Sistemas LTI

Tema 2: Sistemas LTI c Luis Vielva, Grupo de Tratamiento Avanzado de Señal. Dpt. Ingeniería de Comunicaciones. Universidad de Cantabria. Señales y sistemas. Tema 2: Sistemas LTI. OpenCourseWare p. 1/57 Tema 2: Sistemas LTI

Más detalles

Comunicaciones Digitales - Capítulo 3 - Ejercicios

Comunicaciones Digitales - Capítulo 3 - Ejercicios CAPÍTULO 4. COMUNICACIONES DIGITALES. PROBLEMAS 1 Comunicaciones Digitales - Capítulo 3 - Ejercicios 1. Ejercicio 6.9 del libro: A. Artés, et al.: Comunicaciones Digitales. Pearson Educación, 007.. Ejercicio

Más detalles

Sistemas lineales invariantes en el tiempo

Sistemas lineales invariantes en el tiempo Sistemas lineales invariantes en el tiempo Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede Rocha

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-118-2-V-2--217 CURSO: SEMESTRE: Segundo CÓDIGO DEL CURSO: 118 TIPO DE EXAMEN: Segundo parcial FECHA DE EXAMEN:

Más detalles

TALLER. Señales y Sistemas. December 9, 2015

TALLER. Señales y Sistemas. December 9, 2015 TALLER Señales y Sistemas December 9, 201 Autores: Basulto Luis V-20.210.88 Daboin Yeitson V-21.28.79 Mendoza Ruben V-24.71.028 Ortega Raymar V-24.104.1 CONTENTS 1 Caracterización de Sistemas 2 1.1 Linealidad.........................................

Más detalles

SEÑALES Y SISTEMAS Clase 13

SEÑALES Y SISTEMAS Clase 13 SEÑALES Y SISTEMAS Clase 13 Carlos H. Muravchik 19 de Abril de 2018 1 / 27 Habíamos visto: 1. Sistemas lineales con entradas aleatorias. 2. Introducción a la Transformada de Fourier Y se vienen: Repaso

Más detalles

INGENIERÍA EN MECATRÓNICA PROCESAMIENTO DIGITAL DE SEÑALES CUP-17 RP-CUP 17/REV:00

INGENIERÍA EN MECATRÓNICA PROCESAMIENTO DIGITAL DE SEÑALES CUP-17 RP-CUP 17/REV:00 MANUAL DE LA ASIGNATURA INGENIERÍA EN MECATRÓNICA PROCESAMIENTO DIGITAL DE SEÑALES F-RP RP-CUP CUP-17 17/REV:00 DIRECTORIO Secretario de Educación Pública Dr. Reyes Taméz Guerra. Subsecretario de Educación

Más detalles

Tema IV. Transformada de Fourier. Contenido. Desarrollo de la Transformada de Fourier en Tiempo Continuo. Propiedades de las transformadas de Fourier

Tema IV. Transformada de Fourier. Contenido. Desarrollo de la Transformada de Fourier en Tiempo Continuo. Propiedades de las transformadas de Fourier Tema IV Transformada de Fourier Contenido Desarrollo de la Transformada de Fourier en Tiempo Continuo Transformadas coseno y seno de Fourier Propiedades de las transformadas de Fourier Transformada de

Más detalles

Señales y Sistemas. Análisis de Señales. Dimas Mavares T. UNEXPO. 24 de Agosto de 2009

Señales y Sistemas. Análisis de Señales. Dimas Mavares T. UNEXPO. 24 de Agosto de 2009 Análisis de Señales UNEXPO 24 de Agosto de 2009 Señales exponenciales y senoidales Exponenciales reales: x(t)=ce at, x[n]=ce an Exponencial compleja y senoidal: x(t)=ce jbt, x[n]=ce jbn Exponencial compleja:

Más detalles

Transformada Z. Temas a tratar. Papel de la TZ. Objetivos. Notas históricas. Repaso conceptos generales

Transformada Z. Temas a tratar. Papel de la TZ. Objetivos. Notas históricas. Repaso conceptos generales Temas a tratar Transformada Z Definición. Relación entre TL y TZ. Relación entre TF y TZ. Mapeos s-. Representación de sistemas de tiempo discreto. Función de transferencia en. Respuesta en frecuencia

Más detalles

Ayudantía Análisis de Señales. Transformada Z

Ayudantía Análisis de Señales. Transformada Z Pontificia Universidad Católica de Chile Escuela de Ingeniería Ayudantía Análisis de Señales Fabián Cádi Transformada Z Consideremos un sistema discreto lineal e invariante, representado por una respuesta

Más detalles

Análisis de Sistemas y Señales

Análisis de Sistemas y Señales UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA Análisis de Sistemas y Señales Tarea 6 Integrantes: Arguello González Omar Tonatiuh Martínez Hernández Valentín Rodríguez Páez Jonás Isaías

Más detalles

Procesamiento Digital de Señales CE16.10L2. Tema 3. Operaciones en señales en tiempo discreto

Procesamiento Digital de Señales CE16.10L2. Tema 3. Operaciones en señales en tiempo discreto Procesamiento Digital de Señales CE16.10L2 Tema 3. Operaciones en señales en tiempo discreto Operaciones básicas con señales Operación Producto (modulación): Operación de Suma: Operación de Multiplicación:

Más detalles

Señales y Sistemas Capítulo 3: Sistemas

Señales y Sistemas Capítulo 3: Sistemas Señales y Sistemas Capítulo 3: Sistemas Sebastián E. Godoy (segodoy@udec.cl) Departamento de Ingeniería Eléctrica Universidad de Concepción, Concepción, Chile June 2, 2015 June 2, 2015 1 / 122 Tabla de

Más detalles