Ejemplo: ubicación de estación de bomberos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejemplo: ubicación de estación de bomberos"

Transcripción

1 Jueves, 11 de abril Más aplicaciones de la programación entera. Técnicas de plano de corte para obtener mejores cotas. Ejemplo: ubicación de estación de bomberos Considere la ubicación de estaciones de bomberos en diferentes distritos. Objetivo: ubique las estaciones de tal manera que cada distrito cuente con una estación, o con una adyacente, con la intención de minimizar costes. Entregas: material de clase Ejemplo para el problema de la estación de bomberos Sea x j = 1 si una estación está ubicada en el distrito j. x j = 0 en caso contrario. Sea c j = coste de crear una estación en el distrito j. Con sus compañeros, formule el problema de la estación de bomberos. 3 Problema de cobertura de conjuntos Conjunto S= {1,, m} de elementos a cubrir distritos que han de tener una estación o estar cerca de un distrito con una. n subconjuntos de S para cada posible ubicación j de una estación, el subconjunto es distrito j más la lista de distritos adyacentes a j. a ij = 1 si distrito i es adyacente a distrito j o si i = j. Minimizar sujeto a cx j j j a x j ij j 1 por cada i es binario por cada j x j Las restricciones de la cobertura son comunes Rutas de flotas de compañías aéreas Asignación de aviones a etapas de vuelo. Deben incluirse todos los vuelos. Asignación de tripulaciones a aeronaves Cada avión debe tener una tripulación. Ubicación de almacenes Cada minorista debe tener asignado un almacén. 5 Conjunto independiente (empaquetamiento) Cuál es el máximo número de distritos sin que dos de ellos tengan una frontera común? Con su compañero, formule el problema del conjunto independiente. Enumere todas las restricciones que contengan el valor x 10. 6

2 Las restricciones del empaquetamiento de conj. son comunes en fabricación y logística. Recortar formas en un panel de metal. Fabricar muchos elementos a la vez que comparten recursos ( qué se puede hacer simultáneamente?). Repaso desde la última clase Presupuesto = 1.000$ Inversión Líquido necesario 5$ $ $ 3$ $ 6$ (miles) VAN añadido (miles) 16$ 22$ 12$ 8$ 11$ 19$ x j binario para j = 1 a 6 8 Branch & Bound 1 x 1 = 0 x 1 = x 2 = 0 x 2 = 1 x 2 = 0 x 2 = 1 La solución incumbente tiene valor x 3 = 0 x 3 = 1 x 3 = 0 x 3 = 1 x 3 = 0 x 3 = Inf Inf 16 1 Inf Inf 9 Cotas en la programación lineal Hemos hallado una solución incumbente con valor 3. El valor de la mejor solución PL está entre y 5. Había un modo de establecer directamente una cota superior entre 3 y? Tal vez pudimos crear un programa lineal mejor. Cuanto más cerca se encuentre el PL del PE, mejor. Nota: no todas las formulaciones PL son iguales en términos de cercanía. 10 Utilización de planos de corte Solución (entera) óptima y P Ejemplo. Minimizar x + 10y sujeto a x, y están en P x, y enteros x Solución fraccionada (no factible) óptima Utilización de planos de corte y P x Ejemplo. Minimizar x + 10y sujeto a x, y están en P x, y enteros Idea: añadir restricciones que eliminen las soluciones no enteras en la PL sin eliminar las soluciones enteras. añadir y 1 añadir y x 1

3 Utilización de planos de corte Solución (entera) óptima y x Ejemplo. Minimizar x + 10y sujeto a x, y estan en P x, y enteros P Si añadimos justo las desigualdades correctas, entonces cada esquina de la PL será un valor entero, y la PE se puede resolver resolviendo la PL Esto se denomina PL mínima, o cierre convexo de las soluciones de PE. Más sobre restricciones Las restricciones más ajustadas posibles son muy útiles, y se llaman facets. Supongamos que estamos maximizando, y z PL es la opción para la relajación PL, y z PE is la opción para la PE. Entonces z PE z PL Desearíamos que z PE esté cerca de z PL. Esto es GENIAL para el método branch & bound. Añadir varias desigualdades válidas puede ser muy útil. No tiene efecto sobre z PE Puede reducir z PL significativamente. Estas restricciones no se suelen dar en problemas mayores 1 Método de plano de corte puro De dónde vienen estos cortes? En lugar de partir la región factible, el método de plano de corte (puro) trabaja con un solo programa lineal (PL) Añade planos de corte (desigualdades válidas de programación lineal) a esta PL iterativamente. En cada iteración la región factible se reduce hasta que se halla un entero óptimo resolviendo la programación lineal. En la práctica, se utiliza también como parte del método branch & bound. La idea esencia es hallar cortes o desigualdades válidos. 15 Dos enfoques: En problemas específicamente. Ilustrado por los problemas del viajante de comercio y de la mochila. Basado en PL, se da en programas enteros generales. Planos de corte Gomory. 16 Problemas El problema del análisis de inversiones (mochila). x j binario para j = 1 a 6 1 La relajación PL El problema del análisis de inversiones (mochila) La solución óptima: x 1 = 1, x 2 = 3/, x 3 = 0 x = 0, x 5 = 0, x 6 = 1 Podemos hallar una desigualdad válida (corte) que elimine esta solución? 18

4 La relajación PL El problema del análisis de inversiones (mochila) La solución óptima: x 1 = 1, x 2 = 3/, x 3 = 0 x = 0, x 5 = 0, x 6 = 1 z = 3/ Después de un corte La solución óptima: x 1 = 0, x 2 = 1, x 3 = 1/ x = 0, x 5 = 0, x 6 = 1 z = 5x 1 + x 2 + 6x x 2 + x 3 + 6x 6 1?? 20 Tras dos cortes x 2 + x 3 + x 6 2 La solución óptima: x 1 = 1/3, x 2 = 1, x 3 = 1/3 x = 0, x 5 = 0, x 6 = 1 z = 5x 1 + x 2 + x 3 + 6x 6 1?? Obtención del corte válido Es fácil maximizar x 1 + x 2 + x 3 + x 6 s.a. 5x 1 + x 2 + x 3 + 6x 6 1 x j binario para j = 1, 2, 3, 6. Poner los presupuestos más pequeños en la mochila hasta que no quepan más En este caso, se ponen los presupuestos 1 y 3, y no hay espacio para los presupuestos 2 ó 6. Por tanto x 1 + x 2 + x 3 + x Tras tres cortes x 2 + x 3 + x 6 2 x 1 + x 2 + x 3 + x 6 2 Eliminación de restricciones superfluas x 1 + x 2 + x 3 + x 6 2 La solución óptima: x 1 = 0, x 2 = 1, x 3 = 0, x = 0, x 5 = 1/, x 6 = 1 z = 3 3/ Nota: los nuevos cortes dominan a los otros. 23 Así, z* 3 2

5 Resumen del problema de la mochila Pudimos hallar algunas desigualdades válidas que mostraban que z* 3. Este es el valor objetivo óptimo. Tuvimos que hacer 3 cortes. De haber sido más listos sólo hubiéramos necesitado 1. Utilizamos un enfoque sencillo para hallar los cortes Con este enfoque no se hallan todos los cortes. Recuerde, hicieron falta 25 nodos de un árbol branch & bound. De hecho, los investigadores consideran que el método de plano de corte es necesario para resolver grandes programas (a menudo como modo de El problema del viajante de comercio (TSP) Cuál es el tour de distancia mínima que visita todos los puntos? obtener mejores cotas) Comentarios sobre el TSP Se trata de un problema muy bien estudiado Se suele utilizar para ensayar nuevas ideas algorítmicas NP-completo (es intrínsecamente difícil en cierto sentido técnico) Las instancias grandes se han resuelto óptimamente (ciudades de 5000 habitantes y más) Las instancias muy grandes se han resuelto de modo aproximado (ciudades de 10 millones con un margen de error de un par de puntos de %) Lo formularemos añadiendo restricciones que parezcan cortes 2 El TSP casi como una PE Sea x e = 1 si el arco e está en el tour x e = 0 de lo contrario Sea A(i) = arcos incidentes al nodo i Minimizar Σ e c e x e sujeto a Σ e A(i) x e = 2 x e es binario Son estas restricciones suficiente? 28 2 Subtours 9 3 Las soluciones enteras con exactamente dos puntos incidentes con cada nodo es la unión de los tours. Por qué? Objetivo: añadir restricciones que eliminen estos Subtours Sea S = {2, 3,,, 9}. cualquier tour tiene como máx. arcos en S. Esto garantiza que el conjunto S no tendrá un subtour que atraviese los cinco nodos. subtours pero que no eliminen el tour del TSP Para cada subconj. S de ciudades, añada la restricción de que el número de arcos en S sea como máx. S - 1.

6 Formulación del TSP como una PE Más sobre el TSP Minimizar Σ e c e x e sujeto a Σ e inc a i x e = 2 Σ e en S x e S - 1 Son estas restricciones del subtour restricciones suficiente? x e es binario Sí. Sin embargo, hay muchas exponencialmente. Las restricciones de eliminación del subtour son buenas en el sentido de que para problemas prácticos la cota de la PL suele ser 1% - 2% de la distancia óptima del tour del TSP Se pueden añadir restricciones aún más complejas. (Y sirve de ayuda) Pero funciona bien de todos modos Cortes de Gomory: un método para generar cortes con tablas PL Considere la siguiente restricción en un programa entero Cortes de Gomory En qué nos basamos para obtener el corte de Gomory? 1 3/5 1/5 3 2/5 = 9 /5 Céntrese en las fracciones. 3/5 x 1 + 1/5 x 2 +2/5 x = entero + /5 3/5 x 1 + 1/5 x 2 + 2/5 x /5 1 3/5 1/5 3 2/5 = 9 /5 Una sola restricción con un lado dcho. fraccional Todos los coeficientes de la restricción eran positivos Todas las variables deben ser enteras 3 x 1 + x x Qué hacer si los coeficientes son negativos? 1 3/5-3/5-3 -2/5 = -1 1/5 En general Sea fr(a) la parte fraccional positiva de un; Reescriba para que los coeficientes de las partes fraccionales sean positivos. 1 3/5-5 +2/ /5 = -2 +/5 3/5 x 1 + 2/5 x 2 +3/5 x = entero + /5. 1 3/5-3/5-3 -2/5 = -1 1/5 3/5 2/5 0 +3/5 +/5 fr(a) = a - a fr(2 3/5) = 2 3/5 2 = 3/5 fr(-2 3/5) = - 2 3/5 (-3) = 2/5 3/5 x 1 + 2/5 x 2 +3/5 x /5. a i1 a i2 a i3 a i = b i 3 x x x. 35 fr( a i1 )fr( a i2 ) fr( a i3 ) fr( a i ) fr( b i ) 36

7 Cómo generar planos de corte? En general Tras pivotar, halle una variablebásica que sea fraccional. Escriba un corte de Gomory. (Es una restricción desigual que da lugar a una variable adicional). Nota: los únicos coeficientes que son fraccionales corresponden a variables no básicas ( por qué?). El corte de Gomory hace la solución básica factible anterior no factible. ( Por qué?). Resuelva la PL con la nueva restricción y Resumen programación entera Mejora radicalmente la capacidad de crear modelos. Indivisibilidades económicas. Restricciones lógicas. Modelación alineal. No tan fácil de modelar. No tan fácil de resolver. repita Resumen de técnicas de solución de PE Branch & Bound muy general y adaptable. utilizado en la práctica (p. ej. Solver). Enumeración implícita técnica branch & bound para PE binaria. Planos de corte modo inteligente de mejorar la acotación. área activa para la investigación, teórica y aplicada. 39

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Programación entera: Ejemplos, resolución gráfica, relajaciones lineales. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Programación entera: Ejemplos, resolución gráfica, relajaciones lineales. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Programación entera: Ejemplos, resolución gráfica, relajaciones lineales Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Programación entera: definición, motivación,

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración 5053 Martes, 9 de abril Ramificación y acotamiento () Entregas: material de clase Resumen de técnicas para resolver problemas de programación entera Técnicas de enumeración Enumeración completa hace una

Más detalles

Problemas de programación entera: El método Ramifica y Acota. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Problemas de programación entera: El método Ramifica y Acota. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Problemas de programación entera: El método Ramifica y Acota Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema La estrategia Divide y vencerás Árboles de enumeración

Más detalles

CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA

CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA Programación Lineal Entera Es una técnica que permite modelar y resolver problemas cuya característica principal es que el conjunto de soluciones factibles es discreto.

Más detalles

Algoritmos de Planos de Corte

Algoritmos de Planos de Corte Algoritmos de Planos de Corte Problema: max {cx / x X} con X = {x / Ax b, x Z n + } Proposición: conv (X) es un poliedro que puede entonces escribirse como conv (X) = {x / Ax b, x 0} Lo mismo ocurre para

Más detalles

El problema del agente viajero

El problema del agente viajero CO- (F0) //00 El problema del agente viajero Un vendedor tiene que visitar n + ciudades, cada una exactamente una vez. La distancia entre cada par de ciudades viene dada por d ij (en general d ij d ji

Más detalles

PROGRAMACIÓN LINEAL ENTERA

PROGRAMACIÓN LINEAL ENTERA PROGRAMACIÓN LINEAL ENTERA MÉTODOS DE RESOLUCIÓN Redondeo: DESACONSEJABLE: Por producir malas soluciones Por producir soluciones infactibles Ejemplo PLA Max F(X) = 4x 1 + 3x 2 s.a. 2x 1 + x 2 2 3x 1 +

Más detalles

Un programa entero de dos variables. 15.053 Jueves, 4 de abril. La región factible. Por qué programación entera? Variables 0-1

Un programa entero de dos variables. 15.053 Jueves, 4 de abril. La región factible. Por qué programación entera? Variables 0-1 15.053 Jueves, 4 de abril Un programa entero de dos variables Introducción a la programación entera Modelos de programación entera Handouts: material de clase maximizar 3x + 4y sujeto a 5x + 8y 24 x, y

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Parte de Algoritmos de la asignatura de Programación Master de Bioinformática. Búsqueda exhaustiva

Parte de Algoritmos de la asignatura de Programación Master de Bioinformática. Búsqueda exhaustiva Parte de Algoritmos de la asignatura de Programación Master de Bioinformática Búsqueda exhaustiva Web asignatura: http://dis.um.es/~domingo/algbio.html E-mail profesor: domingo@um.es Transparencias preparadas

Más detalles

Programación lineal entera (PLE)

Programación lineal entera (PLE) Programación lineal entera (PLE) Qué es un problema de programación lineal entera?: sujeto a Max c x Ax b x Z + Qué es un problema de programación lineal entera mixta (PLEM)? Algunas variables son continuas

Más detalles

Programación lineal entera

Programación lineal entera Capítulo 2 Programación lineal entera 2.1. Definición En las últimas décadas, el uso de modelos de programación lineal entera mixta para resolver problemas de Optimización Combinatoria se ha incrementado

Más detalles

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO La mayor parte de los PE se resuelven en la práctica mediante la técnica de ramificación y acotamiento. En este método se encuentra la solución

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

Programación Lineal Entera. Programación Entera

Programación Lineal Entera. Programación Entera Programación Lineal Entera PE Programación Entera Modelo matemático, es el problema de programación lineal Restricción adicional de variables con valores enteros. Programación entera mita Algunas variables

Más detalles

UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA. de programación lineal entera. lineal entera.

UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA. de programación lineal entera. lineal entera. UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA de programación lineal entera. lineal entera. Investigación de operaciones Introducción En la unidad aprendimos a resolver modelos de P. L. por el método símple y el

Más detalles

Distribución Física y Transporte. Diseño de Rutas para Los Vehículos (Shortes Path) Giancarlo Salazar P

Distribución Física y Transporte. Diseño de Rutas para Los Vehículos (Shortes Path) Giancarlo Salazar P Distribución Física y Transporte Diseño de Rutas para Los Vehículos (Shortes Path) Giancarlo Salazar P Un problema frecuente en el diseño de rutas, es reducir los costos de transporte y mejorar el servicio

Más detalles

Segmentación automática para el Censo Nacional 2010 por medio de programación lineal entera

Segmentación automática para el Censo Nacional 2010 por medio de programación lineal entera Segmentación automática para el Censo Nacional 2010 por medio de programación lineal entera Flavia Bonomo, Diego Delle Donne Guillermo Durán, Javier Marenco Departamentos de Computación y Matemática, FCEyN,

Más detalles

1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila 0/1 para los siguientes casos:

1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila 0/1 para los siguientes casos: PROGRAMACIÓN DINÁMICA RELACIÓN DE EJERCICIOS Y PROBLEMAS 1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila /1 para los siguientes casos: a. Mochila de capacidad W=15:

Más detalles

Ejercicios de Programación Entera

Ejercicios de Programación Entera Ejercicios de Programación Entera Investigación Operativa Ingeniería Informática, UC3M Curso 08/09. En una ciudad se intenta disminuir la contaminación reduciendo la circulación interurbana. Un primer

Más detalles

Teniendo en cuenta los valores de las variables se tienen 3 tipos de modelos lineales enteros:

Teniendo en cuenta los valores de las variables se tienen 3 tipos de modelos lineales enteros: Tema 5 Programación entera En este tema introducimos problemas lineales en los que algunas o todas las variables están restringidas a tomar valores enteros. Para resolver este tipo de problemas se han

Más detalles

PROGRAMACIÓN LINEAL ENTERA

PROGRAMACIÓN LINEAL ENTERA PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,

Más detalles

PLE: Optimización Combinatoria

PLE: Optimización Combinatoria PLE: Optimización Combinatoria CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas () PLE: Optimización Combinatoria euresti@itesm.mx 1 / 14 Introducción Para valorar el poder expresivo de los modelos

Más detalles

Tema 6: Programación entera: Bifurcación y planos de corte.

Tema 6: Programación entera: Bifurcación y planos de corte. Tema 6: Programación entera: Bifurcación y planos de corte. Obetivos del tema. Índice Problemas de programación lineal entera. Método de bifurcación y acotación para un PPLE Mixta. Técnicas de preprocesamiento

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY 25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación

Más detalles

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice

Más detalles

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/ CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el

Más detalles

Grafos Eulerianos y Hamiltonianos. Algoritmos y Estructuras de Datos III

Grafos Eulerianos y Hamiltonianos. Algoritmos y Estructuras de Datos III Grafos Eulerianos y Hamiltonianos Algoritmos y Estructuras de Datos III Grafos eulerianos Definiciones: Un circuito C en un grafo (o multigrafo) G es un circuito euleriano si C pasa por todos las aristas

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 16 de febrero de 2006

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 16 de febrero de 2006 UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 6 de febrero de 26 Problema. (2 puntos Un técnico de sistemas del laboratorio de cálculo de la Escuela Politécnica

Más detalles

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Marcel Goic F.

Más detalles

Para conocer la conveniencia de la aplicación SOLVER de EXCEL Microsoft, se utilizará un ejemplo práctico:

Para conocer la conveniencia de la aplicación SOLVER de EXCEL Microsoft, se utilizará un ejemplo práctico: INSTRUCTIVO PARA USO DEL SOLVER DE EXCEL Documento Original: Ing. Mario René Galindo Modificado por: Ing. Golfredo Molina (mayo, 2009) La utilización de software para resolver problemas de programación

Más detalles

Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III

Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III Metaheurísticas y heurísticas Algoritmos y Estructuras de Datos III Metaheurísticas Heurísticas clásicas. Metaheurísticas o heurísticas modernas. Cuándo usarlas? Problemas para los cuales no se conocen

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I)

Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I) Ingeniería de Telecomunicación Planificación Avanzada de Redes de Comunicaciones Curso 2006-2007 Pablo Pavón Mariño Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I) Objetivos

Más detalles

Introducción a la programación lineal y entera Una simple presentación

Introducción a la programación lineal y entera Una simple presentación Introducción a la programación lineal y entera Una simple presentación Miguel Mata Pérez miguel.matapr@uanl.edu.mx Versión 0.1, 30 de septiembre de 2014 Resumen: Este trabajo es una presentación de la

Más detalles

Introducción a la IO Formulaciones de programación lineal Resolución por ordenador (Excel)

Introducción a la IO Formulaciones de programación lineal Resolución por ordenador (Excel) Introducción a la IO Formulaciones de programación lineal Resolución por ordenador (Excel) Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Investigación operativa

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

PLE: Ramificación y Acotamiento

PLE: Ramificación y Acotamiento PLE: Ramificación y Acotamiento CCIR / Depto Matemáticas TC3001 CCIR / Depto Matemáticas PLE: Ramificación y Acotamiento TC3001 1 / 45 La compañía TELFA fabrica mesa y sillas. Una mesa requiere 1 hora

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

Optimización lineal entera mixta

Optimización lineal entera mixta Optimización lineal entera mita Andrés Ramos Universidad Pontificia Comillas http://www.iit.upcomillas.es/aramos/ Andres.Ramos@upcomillas.es CONTENIDO INTRODUCCIÓN MÉTODOS DE SOLUCIÓN MÉTODO DE RAMIFICACIÓN

Más detalles

ALGORÍTMICA

ALGORÍTMICA ALGORÍTMICA 2012-2013 Parte I. Introducción a las Metaheurísticas Tema 1. Metaheurísticas: Introducción y Clasificación Parte II. Métodos Basados en Trayectorias y Entornos Tema 2. Algoritmos de Búsqueda

Más detalles

Parcial. Martes 12 de marzo de (sin textos)

Parcial. Martes 12 de marzo de (sin textos) 5.53 Parcial Martes 2 de marzo de 2 (sin textos). Responda a todas las preguntas en los cuadernillos de examen. 2. Controle el tiempo. Si un problema (o uno de sus apartados) le lleva mucho tiempo, le

Más detalles

El problema de ruteo de vehículos

El problema de ruteo de vehículos El problema de ruteo de vehículos Irma Delia García Calvillo Universidad Autónoma de Coahuila FC-UNAM, Agosto 2010 I. García () El problema de ruteo de vehículos FC-UNAM, Agosto 2010 1 / 33 Introducción

Más detalles

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

Modelos de Redes: Árbol. M. En C. Eduardo Bustos Farías

Modelos de Redes: Árbol. M. En C. Eduardo Bustos Farías Modelos de Redes: Árbol de expansión n mínimam M. En C. Eduardo Bustos Farías as Objetivos Conceptos y definiciones de redes. Importancia de los modelos de redes Modelos de programación n lineal, representación

Más detalles

de febrero de Ejemplo de los vasos. Nuevos cambios en el lado derecho. FAQ. Sí, conozco la teoría, pero me puede poner un ejemplo?

de febrero de Ejemplo de los vasos. Nuevos cambios en el lado derecho. FAQ. Sí, conozco la teoría, pero me puede poner un ejemplo? 15.053 26 de febrero de nálisis de sensibilidad La clase sigue un esquema de FQs (preguntas frecuentes) Los distintos puntos se explican a través de un mismo ejemplo sobre fabricación de vasos de cristal.

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una función sujeta a un sistema

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

2) Existen limitaciones o restricciones sobre las variables de la función objetivo.

2) Existen limitaciones o restricciones sobre las variables de la función objetivo. 1 Introducción La programación lineal es un método de resolución de problemas que se ha desarrollado para ayudar a profesionales de distintos ambitos a tomar mejores decisiones Desde su aparición a finales

Más detalles

IN34A - Optimización

IN34A - Optimización IN34A - Optimización Modelos de Programación Lineal Leonardo López H. lelopez@ing.uchile.cl Primavera 2008 1 / 24 Contenidos Programación Lineal Continua Problema de Transporte Problema de Localización

Más detalles

UNIDAD 5. Problema de Transporte

UNIDAD 5. Problema de Transporte UNIDAD 5 Problema de Transporte En matemáticas y economía, un problema de transporte es un caso particular de problema de programación lineal en el cual se debe minimizar el coste del abastecimiento a

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Uso del programa SOLVER de MS Excel

Uso del programa SOLVER de MS Excel Uso del programa SOLVER de MS Excel 2 USO DEL PROGRAMA SOLVER DE EXCEL (Microsoft) Para conocer la aplicación del método SOLVER de EXCEL (Microsoft), se utilizará un ejemplo práctico: Max Sujeto a: Z=

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones. A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

Introducción a las RdP. Optimización basada en redes de Petri. Redes de Petri. Son objeto de estudio: RdP. Ejemplos:

Introducción a las RdP. Optimización basada en redes de Petri. Redes de Petri. Son objeto de estudio: RdP. Ejemplos: Seminario sobre toma de decisiones en logística y cadenas de suministro Introducción a las RdP Optimización basada en redes de Petri https://belenus.unirioja.es/~emjimene/optimizacion/transparencias.pdf

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

PRÁCTICA 5: Optimización de modelos lineales (continuos

PRÁCTICA 5: Optimización de modelos lineales (continuos Grado en Administración de Empresas Departamento de Estadística Asignatura: Optimización y Simulación para la Empresa Curso: 2011/2012 PRÁCTICA 5: Optimización de modelos lineales (continuos y discretos)

Más detalles

Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización.

Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. PROGRAMACION LINEAL [Introducción] Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. Sirve para asignar

Más detalles

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Modelos de Redes: Problema del flujo máximom. M. En C. Eduardo Bustos Farías

Modelos de Redes: Problema del flujo máximom. M. En C. Eduardo Bustos Farías Modelos de Redes: Problema del flujo máimom M. En C. Eduardo Bustos Farías as Problema del flujo máimom Problema del flujo máimom Este modelo se utiliza para reducir los embotellamientos entre ciertos

Más detalles

1. ARTÍCULOS DE INVESTIGACIÓN OPERATIVA

1. ARTÍCULOS DE INVESTIGACIÓN OPERATIVA 1. ARTÍCULOS DE INVESTIGACIÓN OPERATIVA LA COMBINATORIA POLIÉDRICA Y LOS PROBLEMAS DE RUTAS DE VEHÍCULOS Angel Corberán 1 y José María Sanchis 2 1 Universitat de València. 2 Universidad Politécnica de

Más detalles

Optimización de Procesos

Optimización de Procesos Optimización de Procesos Tier II: Casos de Estudio Sección 1: Software de Optimización Lingo Software de Optimización Muchos de los métodos de optimización previamente vistos pueden ser tediosos y requieren

Más detalles

Investigación Operativa I. Programación Lineal. Informática de Gestión

Investigación Operativa I. Programación Lineal.  Informática de Gestión Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una

Más detalles

Investigación de Operaciones I Certamen # 2

Investigación de Operaciones I Certamen # 2 Investigación de Operaciones I Certamen # 2 Profesores: Carlos Castro & María Cristina Riff 2 de noviembre de 2001 1. Un estudiante mantiene almacenadas copias de sus cinco archivos de trabajo en diez

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

puede no servir si hay arcos con costo negativo. Justifique.

puede no servir si hay arcos con costo negativo. Justifique. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A Optimización Profesores: Guillermo Durán Daniel Espinoza Auxiliares: André Carboni Leonardo López

Más detalles

Dimensionamiento y Planificación de Redes

Dimensionamiento y Planificación de Redes Dimensionamiento y Planificación de Redes Tema 2. Algoritmos Sobre Grafos Calvo Departamento de Ingeniería de Comunicaciones Este tema se publica bajo Licencia: Crea:ve Commons BY- NC- SA 4.0 Búsqueda

Más detalles

Clase #1 INTRODUCCIÓN: INVESTIGACIÓN DE OPERACIONES (I.O.) Y MODELAMIENTO MATEMATICO

Clase #1 INTRODUCCIÓN: INVESTIGACIÓN DE OPERACIONES (I.O.) Y MODELAMIENTO MATEMATICO Clase #1 INTRODUCCIÓN: INVESTIGACIÓN DE OPERACIONES (I.O.) Y MODELAMIENTO MATEMATICO CONTENIDO 1. Objetivos del curso 2. Programa Resumido 3. Evaluaciones 4. Bibliografía 5. Orígenes de la I. O. 6. Casos

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1 M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser

Más detalles

x x 2 s s= (x 1, x 2 ) ... ? (sin explorar) M= (x 1, x 2, x 3, x 4,..., x n ) valor(m) =?

x x 2 s s= (x 1, x 2 ) ... ? (sin explorar) M= (x 1, x 2, x 3, x 4,..., x n ) valor(m) =? Exploración de grafos Grafos Recorridos sobre grafos Búsqueda primero en profundidad Búsqueda primero en anchura Backtracking ( vuelta atrás ) Descripción general Espacio de soluciones Implementación Ejemplos

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución.

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución. I.E.S. CASTILLO DE LUNA Programación lineal En un problema de programación lineal con dos variables x; y, se trata de optimizar (hacer máximo o mínimo, según los casos) una función, llamada función objetivo

Más detalles

Resumen parcial de la última lección Jueves, 28 de febrero. Los precios sombra se pueden hallar examinando las tablas iniciales y finales

Resumen parcial de la última lección Jueves, 28 de febrero. Los precios sombra se pueden hallar examinando las tablas iniciales y finales 5.53 Jueves, 8 de ferero Análisis de sensiilidad () Otros aspectos del pricing out Efectos sore talas finales Entregas: material de clase Resumen parcial de la última lección El precio somra es la variación

Más detalles

: ING4520 Programación Matemática Semestre II : Juan Pérez Retamales : Francisco Vergara Matías Mujica Manuel Pavez

: ING4520 Programación Matemática Semestre II : Juan Pérez Retamales : Francisco Vergara Matías Mujica Manuel Pavez Curso Profesor Auiliares : ING0 Programación Matemática Semestre 0 - II : Juan Pérez Retamales : Francisco Vergara Matías Mujica Manuel Pavez PAUTA PREGUNTA - PRUEBA Pregunta (Total:.0 puntos) Las posiciones

Más detalles

MODELOS DE PROGRAMACIÓN LINEAL I. Juan Antonio Torrecilla García

MODELOS DE PROGRAMACIÓN LINEAL I. Juan Antonio Torrecilla García MODELOS DE PROGRAMACIÓN LINEAL I 2.1. Construcción del Modelo P.L. 2.2. Solución Gráfica. 2.3. El Método SIMPLEX. 2.1. Construcción del Modelo P.L. MODELADO: EJEMPLO Una empresa fabrica dos tipos de cinturones

Más detalles

Algebra Matricial y Teoría de Grafos

Algebra Matricial y Teoría de Grafos Algebra Matricial y Teoría de Grafos Unidad 3: Nociones de teoría de grafos Luis M. Torres Escuela Politécnica del Litoral Quito, Enero 2008 Maestría en Control de Operaciones y Gestión Logística p.1 Contenido

Más detalles

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios Ubicación dentro del Programa Unidad III UNIDAD II: PROGRAMACIÓN LINEAL 1. Característica. Formulación matemática de un problema de programación lineal. Planteo e interpretación de un sistema de inecuaciones.

Más detalles

Algoritmos genéticos

Algoritmos genéticos Algoritmos genéticos Introducción 2 Esquema básico 3 El problema de la mochila 7 Asignación de recursos 0 El problema del viajante 3 Variantes del esquema básico 5 Por qué funciona? 9 Observaciones finales

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de

Más detalles

A5 Introducción a la optimización en redes

A5 Introducción a la optimización en redes 48 Materials David Pujolar Morales A5 Introducción a la optimización en redes Definición 1. Grafo finito. Sea un V un conjunto no vacío con un número finito de elementos y E una familia finita de pares

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles