7. PROGRAMACION LINEAL
|
|
- Esteban Castilla González
- hace 1 años
- Vistas:
Transcripción
1 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES Problemas Infactibles Problemas no Acotados Problemas con Restricciones Redundantes Problemas con Múltiples Soluciones 7.5. METODO SIMPLEX PARA LA RESOLUCION DE PROBLEMAS LINEALES
2 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRAMACION LINEAL La programación lineal es una técnica matemática que permite la asignación de recursos de la mejor manera posible. Esto implica la determinación de los valores óptimos de un conjunto de variables que deben satisfacer un cierto número de limitaciones sobre los valores que pueden tomar, con el fin de obtener el mayor o menor grado de satisfacción posible. Esta técnica se utiliza para solucionar problemas principalmente de la economía y de la industria que se pueden encontrar en ámbitos tan dispares como inversiones, control de la producción, distribución de productos, control de la contaminación, FORMULACION DE UN PROBLEMA LINEAL Partiendo de una situación real se crea un modelo para su resolución matemática. Este proceso de formulación del modelo de un problema es muy importante ya que dependiendo del modelo que se construya se obtendrá una solución u otra del problema. Para ver los pasos que hay que seguir en la construcción de un modelo de un problema lineal vamos a utilizar el siguiente ejemplo: Una fábrica produce a partir de cuatro sustancias: M, N, P y Q dos productos denominados A y B. Para producir estos dos productos no hay ninguna limitación de las sustancias M y N pero la fábrica solo dispone de 50 unidades de sustancia P y de 25 unidades de sustancia Q. A continuación se recogen en la siguiente tabla las cantidades necesarias de cada una de estas sustancias para la fabricación de los dos productos así como el precio de venta de cada unidad de producto vendida a la semana y el precio de coste de los mismos: Producto A Producto B Disponibilidad Sustancia P Sustancia Q Precio de Venta en euros Precio de Coste en euros El problema del gerente de esta fábrica radica en determinar qué cantidad de cada producto debe fabricar de manera que el beneficio semanal sea el máximo. Antes de plantear el modelo de este problema lineal hay que determinar tres elementos:
3 1) Variables de decisión: son las incógnitas de nuestro problema. Habitualmente se les denomina x, y, z,. o,,, En este problema las variables de decisión son: x: Número de unidades de la sustancia A a fabricar en una semana y: Número de unidades de la sustancia B a fabricar en la semana 2) Restricciones: son las limitaciones que hay que imponer a las variables de decisión. En este problema no hay limitación de las sustancias M y N pero si de las sustancias P e Q de manera que para cada una de ellas se debe cumplir que a) Sustancia P: b) Sustancia Q: Además de estas restricciones hay que considerar que no se pueden fabricar unidades negativas de un producto por lo que añadiremos las siguientes restricciones: 0 e 0 que se denominan restricciones de no negatividad. 3) Función Objetivo: se trata de indicar como es matemáticamente el objetivo del problema, que es o maximizar o minimizar una función. En este problema hay que conseguir que el beneficio semanal sea el máximo por lo tanto la función objetivo será de maximización. a) Beneficio semanal del producto A: euros b) Beneficio semanal del producto A: euros Por tanto la función objetivo es á Con estos tres elementos definimos ya podemos escribir el modelo de nuestro problema lineal: á,
4 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL El procedimiento gráfico solamente lo utilizaremos para la resolución de problemas lineales con dos variables de decisión. Este procedimiento tiene las siguientes fases: 1) Dibujar un sistema de coordenadas cartesianas en el que las variables de decisión están representadas por los ejes. 2) Dibujar las restricciones del problema incluyendo las de no negatividad. La intersección de todas las restricciones determina lo que se denomina región factible. Si la región factible de un problema es vacía, se dice que dicho problema es infactible. 3) De todos los puntos de la región factible (puntos que satisfacen todas las restricciones), se determinan los vértices ya que en uno de ellos será la solución del problema. 4) Se evalúa la función objetivo en todos los vértices de la región factible y se elige como solución óptima aquel vértice que maximice o minimice (según sea el caso) el valor de la función objetivo. Otra forma de calcular la solución óptima de un problema es realizar los pasos 1, 2 y 3 y variar el paso 4 de la siguiente manera: Se representan en el sistema de coordenadas cartesianas las denominadas líneas de isobeneficio (si el problema lineal consiste en maximizar) o las líneas de isocoste (si el problema lineal consiste en minimizar). Estas líneas son líneas paralelas a la función objetivo que indican valores de z iguales a cantidades arbitrarias. Si el problema tiene como objetivo maximizar se desplazan las líneas de isobeneficio alejándose del origen de coordenadas y si tiene como objetivo minimizar se desplazan las líneas de isocoste acercándose al origen de coordenadas de manera que aquel punto en el que la línea de isobeneficio o isocoste sea tangente a la región factible es la solución del problema lineal (punto óptimo).
5 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES Problemas Infactibles Se trata de problemas en los que no se puede determinar la región factible, es decir no hay ningún punto que satisface todas las restricciones. Este caso suele presentarse cuando nos hemos equivocado al formular el problema lineal , 0 Como se ve en la figura las restricciones y no tienen ningún punto en común por lo que el problema no tiene solución Problemas no Acotados Este caso se presenta cuando no es posible elegir un punto de la región factible como punto óptimo ya que siempre es posible encontrar otro punto que mejore el valor de la función objetivo obtenido con el punto anterior.
6 3 2 0, 0 En el ejemplo se ve como la región factible es ilimitada y como el problema es de maximización, dado un punto de la región factible siempre es posible encontrar otro cuyo valor de z sea mayor y por tanto no es posible determinar la solución del problema Problemas con restricciones redundantes Este caso se presenta cuando el problema tiene restricciones que no intervienen en la determinación de la región factible. Una restricción redundante no influye en la solución de un problema pero si puede dificultar su resolución ya que aumenta el tamaño del mismo , 0
7 En el ejemplo observamos que la región factible queda determinada únicamente por las restricciones y, no interviniendo en su determinación la restricción. Por tanto es una restricción redundante Problemas con Múltiples Soluciones Este caso se presenta cuando una de las restricciones es paralela a la función objetivo , 0
8 En ejemplo se observa que es paralela a la función objetivo por lo que al trazar la línea de isobeneficio y acercarla al origen de coordenadas, vemos que es tangente a la región factible en el punto A y en el punto B y por ello en los infinitos puntos del segmento AB. Por ello el problema tiene infinitas soluciones óptimas.
9 De los casos anteriormente descritos se puede deducir que un problema lineal puede tener 0 soluciones (si el problema es infactible), 1 solución o infinitas soluciones. Lo que no es posible es que el problema tenga un número finito de soluciones diferentes de METODO SIMPLEX PARA LA RESOLUCION DE PROBLEMAS LINEAL El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. El método consiste en, partiendo del valor de la función objetivo en un vértice cualquiera, buscar sucesivamente otro vértice que mejore al anterior (el valor de la función objetiva sea mayor en el caso de maximizar o menor en el caso de minimizar). Antes de aplicar el algoritmo del simplex, es necesario realizar los siguientes pasos, suponiendo que el problema es de maximización para transformar el problema a su forma estándar: 1) Conversión del lado derecho de una restricción Utilizando las propiedades de las desigualdades, se convierten todos los lados derechos de las restricciones en positivos. 2) Conversión de desigualdades en igualdades a) Si la restricción es, se añade en la restricción sumando una variable de holgura que se suele denominar,, que representa la cantidad de recurso que no se utiliza de esa restricción. b) Si la restricción es, se añade en la restricción restando una variable de holgura que representa la cantidad de recurso que no se utiliza de esa restricción y una variable artificial que se suele denominar,, que no tiene interpretación se utiliza por conveniencia matemática. c) Si la restricción es, se introduce en la restricción sumando una variable artificial 3) Variación en la función objetivo Las variables de holgura se representan en la función objetivo con un coeficiente 0 y las artificiales con un coeficiente muy grande negativo que se suele representar por -M. á,
10 Convertimos el problema a su forma estándar: a) Todas las restricciones tienen el lado derecho positivo b) Para convertir las restricciones en igualdades se introduce sumando (son restricciones de menor o igual) una variable de holgura a cada una de ellas obteniendo las siguientes restricciones: c) La función objetivo queda á A continuación escribimos la primera tabla del simplex donde en las columnas aparecen todas las variables del problema y, en las filas, los coeficientes de las igualdades obtenidas, una fila para cada restricción y la última fila con los coeficientes de la función objetivo: Tabla inicial: Iteración nº 1 Base Variable de decisión Variable de holgura Valores solución x y Z Ahora hay que escoger la variable en la base y la variable que sale de la base: 1) Para escoger la variable que entra en la base, nos fijamos en la última fila, la de los coeficientes de la función objetivo y escogemos la variable con el coeficiente negativo mayor (en valor absoluto), que corresponde a la variable x ya que su valor es - 3. Si existiesen dos o más coeficientes iguales que cumplan la condición anterior, entonces se elige uno cualquiera de ellos. Si en la última fila no existiese ningún coeficiente negativo, significa que se ha alcanzado la solución óptima. Por tanto, lo que va a determinar el final del proceso de aplicación del método del simplex, es que en la última fila no haya elementos negativos. A la columna de la variable que entra en la base se llama columna pivote.
11 2) Para encontrar la variable que tiene que salir de la base, se divide cada término de la última columna (valores solución) por el término correspondiente de la columna pivote, siempre que estos últimos sean mayores que cero. 9 ; 21; 8 Si hubiese algún elemento menor o igual que cero no se hace dicho cociente. En el caso de que todos los elementos fuesen menores o iguales a cero, entonces tendríamos una solución no acotada y no se puede seguir. El término de la columna pivote que en la división anterior dé lugar al menor cociente positivo, indica la fila de la variable de holgura que sale de la base, en este caso. Esta fila se llama fila pivote. Si al calcular los cocientes, dos o más son iguales, indica que cualquiera de las variables correspondientes pueden salir de la base. Al elemento situado en la intersección de la fila pivote y columna pivote se le llama pivote, en este caso el 3. A partir de esta tabla se calcula la siguiente teniendo en cuenta los siguientes aspectos: a) Todos los elementos de la fila pivote se dividen entre el pivote b) Todos los elementos de la columna pivote se hacen cero excepto el pivote c) El resto de elementos de la tabla se calculan siguiendo la fórmula De esta manera se obtiene la siguiente tabla:
12 Iteración nº 2 Base Variable de decisión Variable de holgura Valores solución x y 0 1/ / / /3 26 x 1 1/ /3 8 Z Como en los elementos de la última fila hay uno negativo no hemos llegado todavía a la solución óptima. Hay que repetir el proceso y se obtiene la siguiente tabla: Iteración nº 3 Base Variable de decisión Variable de holgura Valores solución x y y x Z Como en los elementos de la última fila hay uno negativo no hemos llegado todavía a la solución óptima. Hay que repetir el proceso y se obtiene la siguiente tabla: Tabla final Base Variable de decisión Variable de holgura Valores solución x y y 0 1-1/ / x 1 0-3/ Z 0 0 5/ Como todos los coeficientes de la fila de la función objetivo son positivos, hemos llegado a la solución óptima.
13 Interpretación de la solución: 3; 12; 33 0 No sobra nada del primer recurso o bien se utiliza todo, las 18 unidades posibles 0 No sobra nada del segundo recurso o bien se utiliza todo, las 42 unidades posibles 3 Sobran 3 unidades del tercer recurso o lo que es lo mismo, se utilizan unidades El coste de oportunidad de las variables x e y es 0 El precio sombra de la primera restricción es restricción 0. y el de la segunda Si el problema lineal en lugar de maximización fuese de minimización se sigue el mismo proceso, pero cambiando el sentido del criterio, es decir, Las variables artificiales se relejan en la función objetivo con un coeficiente muy grande positivo: M La variable que entra en la base es aquella cuyo valor en la fila de la función objetivo, sea el mayor de los positivos Las iteraciones finalizan cuando todos los coeficientes de la fila de la función objetivo son negativos
Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:
Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones
Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I
Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante
Programación Lineal. El método simplex
Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación
Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.
Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto
El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.
El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
Tema 3: El Método Simplex. Algoritmo de las Dos Fases.
Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo
PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.
PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de
Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos
Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.
Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para
IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0
IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del
Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1
Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran
PROBLEMA 1. Considere el siguiente problema de programación lineal:
PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el
PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.
PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
Introducción a la programación lineal
Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una
Integradora 3. Modelos de Programación Lineal
Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas
PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX
Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,
MÉTODO DEL DUAL (TEORIA DE DUALIDAD)
MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado
Parciales Matemática CBC Parciales Resueltos - Exapuni.
Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre
RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA
RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice
PASO 1: Poner el problema en forma estandar.
MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad
UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI
Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y
Pasos en el Método Simplex
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006
APUNTE: Introducción a la Programación Lineal
APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La
Tema II: Programación Lineal
Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución
Unidad I: Programación Lineal
Unidad I: Programación Lineal 1.1 Definición, desarrollo y tipos de modelos de investigación de operaciones Actualmente la administración está funcionando en un ambiente de negocios que está sometido a
3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN
El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del
Tema 3. El metodo del Simplex.
Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento
Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones
Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización
RESOLUCIÓN INTERACTIVA DEL SIMPLEX
RESOLUCIÓN INTERACTIVA DEL SIMPLEX Estos materiales interactivos presentan la resolución interactiva de ejemplos concretos de un problema de P.L. mediante el método Simplex. Se presentan tres situaciones:
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible
Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de
Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9
IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
INVESTIGACIÓN OPERATIVA
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación
El Método Simplex. H. R. Alvarez A., Ph. D. 1
El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina
Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte
9 INECUACIONES 2ª Parte INECUACIONES INTRODUCCIÓN Los objetivos de esta segunda parte del tema serán la resolución de inecuaciones con GeoGebra y la aplicación que tiene este software para la representación
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.
EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo
2.2 Rectas en el plano
2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto
METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2
METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ Max Z= 12X 1 + 15X 2 Sujeto a: 2X 1 + X 2
Sistemas de ecuaciones.
1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
Práctica 2: Análisis de sensibilidad e Interpretación Gráfica
Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,
SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.
SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.
DOCENTE: JESÚS E. BARRIOS P.
DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades
Identificación de inecuaciones lineales en los números reales
Grado Matematicas - Unidad Operando en el conjunto de Tema Identificación de inecuaciones lineales en los números reales Nombre: Curso: A través de la historia han surgido diversos problemas que han implicado
EJERCICIOS PROGRAMACIÓN LINEAL
EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
Programación Lineal Continua
Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.
Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5
DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes
EJERCICIO DE MAXIMIZACION
PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación
Derivadas Parciales (parte 2)
40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene
Jesús Getán y Eva Boj. Marzo de 2014
Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza
Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).
Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante
Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal.
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA UNIDAD CURRICULAR: INVESTIGACIÓN DE OPERACIONES PROFESOR: JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución
I N T >. y y
I N T - 1 7 5 3 >. y y S Santiago, octubre de 1963 MODELOS DE TRANSPORTE (Programa especial) * Apuntes del Sr. Norman Gillmore, Consultor en Transporte. Utilizado como material de estudio y referencia
Investigación de Operaciones Método Simplex
FACULTA DE INGENIERIA DE SISTEMAS E INFORMATICA Investigación de Operaciones Método Simplex Integrantes Mayta Chiclote, Ricardo Toledo Fabian, Jimmy Yarleque Esqueche, Jimmy Daniel Método Simplex Página
Lección 12: Sistemas de ecuaciones lineales
LECCIÓN 1 Lección 1: Sistemas de ecuaciones lineales Resolución gráfica Hemos visto que las ecuaciones lineales de dos incógnitas nos permiten describir las situaciones planteadas en distintos problemas.
Parte 2 / 3 Programación lineal, método Simplex:
Parte 2 / 3 Programación lineal, método Simplex: Programación lineal, método Simplex: Típico ejemplo de maximizar los beneficios o producción de una empresa: la inyectora de plástico Zonda, que produce
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4
Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica
EL PROBLEMA DE TRANSPORTE
1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede
Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales
Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley
Tema 5: Análisis de Sensibilidad y Paramétrico
Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el
Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte.
Dirección de Operaciones SESIÓN # 5: El método simplex. Segunda parte. Contextualización Qué más hay que conocer del método simplex? En la sesión anterior dimos inicio a la explicación del método simplex.
Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:
Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
DETERMINANTES Profesor: Fernando Ureña Portero
: CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=a ij, de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.
POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente
Introducción a Programación Lineal
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005
Programación Lineal (PL)
Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
Localizando el punto de intersección
Localizando el punto de intersección Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. En la gráfica de una función, los valores de la variable están en el eje horizontal y los
Problemas de programación lineal.
Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante
Esterilización 1 4. Envase 3 2
9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado
Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.
10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
ECUACIÓN DE LA RECTA
MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,
SISTEMAS DE NUMERACION
SISTEMAS DE NUMERACION INTRODUCCION El número de dígitos de un sistema de numeración es igual a la base del sistema. Sistema Base Dígitos del sistema Binario 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9
EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés
EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la
Colegio Universitario Boston
Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,
REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)
1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN
APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA
Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x
1 ÁLGEBRA DE MATRICES
1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa
T7. PROGRAMACIÓN LINEAL
T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL
GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA
LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
Representaciones gráficas: Método del Paralelogramo
Representaciones gráficas: Método del Paralelogramo La relación funcional más simple entre dos variables es la línea recta. Sea entonces la variable independiente x y la variable dependiente y que se relacionan
Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones
Solución de un sistema de desigualdades
Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque
Breve introducción a la Investigación de Operaciones
Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de
315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba
Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA
Facultad de Farmacia Grado en Nutrición Humana y Dietética Depto. de Estadística e Investigación Operativa ESTADÍSTICA TEMA 6: Introducción a la Programación Lineal GRUPO C y E. Curso 2015-2016 Profesor: