Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización."

Transcripción

1 PROGRAMACION LINEAL [Introducción] Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. Sirve para asignar recursos escasos a fines alternativos bajo un criterio de optimización. La programación lineal se puede aplicar siempre que existan:. Un objetivo (maximizar ganancias, minimizar costos, - maximizar producción, etc.) 2. Métodos o actividades alternativas para lograr el objetivo. Si no existen no existen varias formas de lograrel objetivo no existe problema económico. La programa-- ción lineal sirve para seleccionar el método más eficiente para lograr el objetivo. 3. Restricciones. No existe problema de asignación de recursos a menos que estos sean limitados. Las restricciones están dadas por la disponibilidad de recursos (tierra, - maquinaria, mano de obra, etc.) Supuestos.. Linealidad la PL admite sólo relaciones lineales tanto en la función objetivo como en las restricciones. Sólo considera rendimientos constantes de escala y proporciones fijas en la combinación de insumos. Una Ha., de sorgo, 0 jornales, 3 Ton., 2 Has., 20 jornales, 6 Ton., etc., se consideran coeficientes de insumo producto constantes. 2. Actividad. El producto de un conjunto de actividades debe ser igual a la suma de los productos obtenidos en c/u de las actividades. Los insumos consumidos en todas las actividades son iguales a la suma de las cantidades consumidas en cada actividad. 3. Divisibilidad. tanto las actividades como los factores de la producción pueden dividirse a voluntad. 4. Certidumbre. Los valores que entran como coeficientes en el modelo se suponen constantes y conocidos (precios, costos, rendimientos y coeficientes técnicos). Ejemplo (modelo de maximización) Suponga que un productor dispone de tres insumos que pueden emplearse para producir dos bienes. El productor dispone de cantidades limitadas de los tres insumos por lo que la producción está limitada por la disponibilidad de insumos. lorenzo castro gómez

2 INSUMO REQUERIMIENTO POR UNIDAD DE PRODUCTO DISPONIBILIDAD Y Y 2 X X 2 X COEFICIENTES TECNICOS La cantidad disponible de cada insumo puede utilizarse para producir Y ó Y 2 ó una combinación de ambos. ³ 3Y + 2Y 2 ¾ 35 la cantidad empleada ³ de Y debe ser menor ³ o igual que la canti ³ dad disponible de - RESTRICCIONES < insumo. ³ Y + 2Y 2 ¾ 30 ³ ³ 3Y + Y 2 ¾ 30 Adicionalmente se impone la restricción de no negatividad Y, Y 2 ¾ 0 Objetivo: Maximizar el ingreso del produ - ctor. FUNCION OBJETIVO I = Py Y + Py 2 Y 2 Supóngase que los precios netos de Y y Y 2 son Py = y Py 2 =, respectivamente, se tiene: I = Y + Y 2 El objetivo del productor e maximizar sus beneficios sujeto a las restricciones impuestas por su disponibilidad de insumos. (Esto es equivalente a usar el método tradicional de optimización cuyo principio es que el valor del producto marginal debe ser igual para los insumos en todas las actividades). Max I = Y + Y 2, sujeto a las restricciones. Un problema de programación lineal se puede resolver de dos formas: * Por el método gráfico (el inconveniente es que sólo admite dos actividades). * Por el método siplex (admite cualquier número de actividades) el cual se aplica por medio de computadora. Método gráfico Los principios para la solución gráfica del problema son idénticas a las establecidas al analizar la relación producto-producto. Se puede construir la curva de posibilidades de producción, graficando todas las restricciones. lorenzo castro gómez 2

3 * Entre D y E el insumo limitante es X * Entre C y D el recurso limitante es X 2 * Entre E y F el insumo limitante es X 3 OCDEF son los puntos de la frontera del área factible. La solución óptima siempre está representada por un punto extremo. Tomando cada restricción individualmente el productor puede producir cualquier combinación de productos que satisfaga a esa restricción. El conjunto de puntos donde se satisfacen simultáneamente la tres restricciones es la región factible de la producción; la línea que limita a la región factible de la curva de posibilidades de producción. Por encima de la curva de posibilidades (CDEF) se viola una o más de las restricciones. Solamente cuando se produce sobre (CDEF) o bajo de ella se cumplen simultáneamente todas las restricciones. La combinación de productos de máximo beneficio deberá ser uno de los puntos de la región factible. A partir de la ecuación de ingreso se pueden construir líneas de isoingreso. para un nivel dado de ingreso ( I 0 ). I = Py Y + Py 2 Y 2 Y 2 = I 0 /Py 2 - Py /Py 2 * Y Con esta ecuación puede construirse un grupo de líneas de isoingreso cuya pendiente es - Py /Py 2 = lorenzo castro gómez 3

4 La producción de máximo beneficio se encuentra cuando una línea de isoingreso toca por encima el último punto de la frontera de posibilidades. Esto es así porque la función objetivo es lineal, y lo que hace que el ingreso siempre se incremente cuando aumentan Y y Y 2. En nuestro ejemplo la solución óptima-factible está dada en el punto D. Esta es una solución similar a la encontrada cuando vimos la relación producto-producto. Podemos demostrar que en D se obtiene el máximo ingreso, substituyendo los niveles de producción encontrados en los puntos C, D, E, y F en la función objetivo. I = Py Y + Py 2 Y 2 I = Y + Y 2 C = (0, 5) I = = $ 5 D = (3, 3.5) I = = $ 6.5 lorenzo castro gómez 4

5 E = (8, 6) I = = $ 4 F = (0, 0) I = = $ 0 La combinación de productos obtenida en el punto D es la solución de máximo ingreso. Modelo de minimización Muchos problemas económicos implican la minimización del costo de un nivel dado de producción, los cuales pueden también ser resueltos mediante el uso de la programación lineal. Un problema que se encuentra frecuentemente en las explotaciones ganaderas consiste en minimizar el costo de producción de una dieta de alimentos balanceados. El problema del productor consiste en alimentar a su ganado al mínimo costo, satisfaciendo los requerimientos mínimos necesarios para mantener y engordar a sus animales. Supongamos que el productor cuenta con dos ingredientes que contienen cantidades variables de calcio, proteínas y calorías. Los requerimientos mínimos diarios de un animal son 0 unidades de calcio, 5 de proteínas y 5 de calorías, por lo tanto la dieta debe contener al menos estas cantidades de nutrientes. Cada unidad del insumo X cuesta $ y de X 2 cuesta $ 2. NUTRIENTE DISPONIBILIDAD DE NUTRIENTE REQUERIMIENTOS CANT. DE NUTR. UNID. DE INSUMO MINIMOS DIARIOS CALCIO PROTEINA CALORIAS 6 5 COSTO/UNIDAD 2 Con esta información puede construirse el siguiente modelo de programación lineal a saber: Minimizar costo C = X + 2X 2 sujeto a X + X 2 = 0 () 3X + X 2 = 5 (2) X + X 2 = 5 (3) X, X 2 = 0 La desigualdad () indica que la ración debe contener al menos 0 unidades de calcio, las cuales pueden provenir de X o de X 2 ó de ambos. La misma interpretación es válida para las otras restricciones. lorenzo castro gómez 5

6 La región factible consiste en todos los puntos por encima o sobre la línea ABCD que son puntos donde se satisfacen los requerimientos mínimos. Dado que la función de isocosto es lineal y decrece cuando se desplaza a la izquierda, el punto de mínimo costo será el último punto de la región factible que sea tocado por una isocosta la línea de isocosto tiene un pendiente: PX / PX 2 = - ½ C = X + X 2 La línea de isocosto toca a la región factible sólo en el punto C (9, ). Un costo menor no permite obtener una ración que satisfaga los requerimientos mínimos. En el procedimiento tradicional la condición de maximización era que TMgST = Py /Py 2, como lo muestra la gráfica siguiente. lorenzo castro gómez 6

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

Investigación Operativa I. Programación Lineal. Informática de Gestión

Investigación Operativa I. Programación Lineal.  Informática de Gestión Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Problemas resueltos con el método gráfico 4 de junio de 2014 1. Resuelva el siguiente PL por el método gráfico Max z = x 1 + x 2 x 1 + x 2 4 x 1 x 2 5 En la figura 1

Más detalles

Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente:

Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente: Fundamentos de la programación lineal Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la situación siguiente: Optimizar (maximizar o minimizar) una función objetivo,

Más detalles

OPTIMIZACION DETERMINISTICA

OPTIMIZACION DETERMINISTICA OPTIMIZACION DETERMINISTICA 1 PROBLEMA GENERAL Además de analizar los flujos de caja de las las alternativas de inversión, también se debe analizar la forma como se asignan recursos limitados entre actividades

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Matemáticas

Matemáticas a la a la Matemáticas a la En esta lectura daremos una introducción a la modelación de problemas mediante programación lineal; pondremos énfasis en las etapas que componen la modelación. Cerraremos estos

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de Modelos de LP 25 de julio de 2004. Descripción del Método ualquier problema de Programación Lineal de sólo 2 variables puede

Más detalles

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una función sujeta a un sistema

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

UNIVERSIDAD DE LA REPUBLICA FACULTAD DE INGENIERÍA. Guía curso para el bloque temático: Microeconomía

UNIVERSIDAD DE LA REPUBLICA FACULTAD DE INGENIERÍA. Guía curso para el bloque temático: Microeconomía UNIVERSIDAD DE LA REPUBLICA FACULTAD DE INGENIERÍA Guía curso para el bloque temático: Microeconomía Guía 3 Prof: Gustavo Dutra 2016 1 LA PRODUCCION Los factores de producción: tierra, trabajo, capital

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

PARTE III LA TEORÍA DE LA EMPRESA. Tema 4 Los Costes de Producción

PARTE III LA TEORÍA DE LA EMPRESA. Tema 4 Los Costes de Producción PARTE III LA TEORÍA DE LA EMPRESA Tema 4 1 1-. Introducción Tema 4 ESQUEMA 2-. Los Costes en el Corto Plazo Los Costes Totales, Fijos y Variables El Coste Medio y el Coste Marginal Curvas de Coste en Forma

Más detalles

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Introducción a la Programación Lineal Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Historia La investigación de Operaciones se caracteriza

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

2) Existen limitaciones o restricciones sobre las variables de la función objetivo.

2) Existen limitaciones o restricciones sobre las variables de la función objetivo. 1 Introducción La programación lineal es un método de resolución de problemas que se ha desarrollado para ayudar a profesionales de distintos ambitos a tomar mejores decisiones Desde su aparición a finales

Más detalles

APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 2010

APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 2010 Pagina APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 00 Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una

Más detalles

FUNCIÓN DE PRODUCCIÓN LINEAL. La función lineal se caracteriza porque las variables están elevadas a la primera potencia.

FUNCIÓN DE PRODUCCIÓN LINEAL. La función lineal se caracteriza porque las variables están elevadas a la primera potencia. LA FUNCION DE PRODUCCION LINEAL lorenzo castro gómez 1 La función lineal se caracteriza porque las variables están elevadas a la primera potencia. A). Si se tiene un insumo variable: Y = ƒ (X) = a +b 1

Más detalles

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN Asignatura: Investigación de Operaciones 1 Periodo Académico: Julio - Diciembre de 2009 TALLER MÉTODO GRÁFICO 1. PROBLEMA DE PLANEACIÓN DE

Más detalles

UNIDAD II. PROGRAMACIÓN LINEAL

UNIDAD II. PROGRAMACIÓN LINEAL UNIDAD II. PROGRAMACIÓN LINEAL OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Introducción

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA Facultad de Farmacia Grado en Nutrición Humana y Dietética Depto. de Estadística e Investigación Operativa ESTADÍSTICA TEMA 6: Introducción a la Programación Lineal GRUPO C y E. Curso 2015-2016 Profesor:

Más detalles

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

Integradora 3. Modelos de Programación Lineal

Integradora 3. Modelos de Programación Lineal Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Teoría de la Producción El Caso de Dos Insumos Variables. Cátedra de Economía Agraria FAZ - UNT

Teoría de la Producción El Caso de Dos Insumos Variables. Cátedra de Economía Agraria FAZ - UNT Teoría de la Producción El Caso de Dos Insumos Variables Cátedra de Economía Agraria FAZ - UNT El Caso de Dos Insumos Vemos que ocurre cuando tengo dos insumos que varían mientras que el resto permanece

Más detalles

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios Ubicación dentro del Programa Unidad III UNIDAD II: PROGRAMACIÓN LINEAL 1. Característica. Formulación matemática de un problema de programación lineal. Planteo e interpretación de un sistema de inecuaciones.

Más detalles

Teoría de la Producción. Cátedra de Economía Agraria FAZ - UNT

Teoría de la Producción. Cátedra de Economía Agraria FAZ - UNT Teoría de la Producción Cátedra de Economía Agraria FAZ - UNT Objetivo Determinar el nivel de producción o de insumo que permite maximizar los ingresos del productor. La maximización de beneficios depende

Más detalles

LA ECONOMIA Y LA TOMA DE DECISIONES EN LA AGRICULTURA

LA ECONOMIA Y LA TOMA DE DECISIONES EN LA AGRICULTURA LA ECONOMIA Y LA TOMA DE DECISIONES EN LA AGRICULTURA lorenzo castro gómez 1 De acuerdo con la teoría económica, se define a la Economía como la asignación de recursos escasos entre actividades alternativas.

Más detalles

Los costes. José C. Pernías. Curso Índice

Los costes. José C. Pernías. Curso Índice os costes José C. Pernías Curso 2015 2016 Índice 1 Introducción 1 2 Costes a corto plazo 2 3 Costes a largo plazo 7 4 Relación entre los costes a corto y a largo plazo 14 Esta obra está licenciada bajo

Más detalles

PROGRAMACIÓN LINEAL. Para resolver estos problemas la investigación de operaciones los agrupa en dos categorías básicas:

PROGRAMACIÓN LINEAL. Para resolver estos problemas la investigación de operaciones los agrupa en dos categorías básicas: PROGRAMACIÓN LINEAL INTRODUCCIÓN La Investigación de Operaciones o Investigación Operativa, es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística y algoritmos con objeto

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

TEORÍA DEL COSTO CÁTEDRA DE ECONOMÍA AGRARIA FACULTAD DE AGRONOMÍA Y ZOOTECNIA UNIVERSIDAD NACIONAL DE TUCUMÁN

TEORÍA DEL COSTO CÁTEDRA DE ECONOMÍA AGRARIA FACULTAD DE AGRONOMÍA Y ZOOTECNIA UNIVERSIDAD NACIONAL DE TUCUMÁN TEORÍA DEL COSTO CÁTEDRA DE ECONOMÍA AGRARIA FACULTAD DE AGRONOMÍA Y ZOOTECNIA UNIVERSIDAD NACIONAL DE TUCUMÁN La revisión de la Teoría de la Producción permite concluir que: - El Ingreso Total (IT), dado

Más detalles

INTRODUCCIÓN A LA MODELACIÓN MATEMÁTICA Y OPTIMIZACIÓN

INTRODUCCIÓN A LA MODELACIÓN MATEMÁTICA Y OPTIMIZACIÓN INTRODUCCIÓN A LA MODELACIÓN MATEMÁTICA Y OPTIMIZACIÓN Carlos Julio Vidal Holguín UNIVERSIDAD DEL VALLE FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INDUSTRIAL Y ESTADÍSTICA 1. FORMULACIÓN DE MODELOS DE

Más detalles

VALOR OPTIMO DEL INSUMO

VALOR OPTIMO DEL INSUMO CLASE 5 UNIDAD 2 VALOR OPTIMO DEL INSUMO Factores a Considerar: P(X) = Costo del Insumo P(Y) = Precio de venta del producto Valor de la producción marginal = VPMa =PMa * P(Y) 3 Condición de optimización

Más detalles

Problemas de PL con varias variables Análisis de Sensibilidad

Problemas de PL con varias variables Análisis de Sensibilidad UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Asignatura: Investigación de Operaciones I Problemas de PL con varias variables Análisis de Sensibilidad M.C. Ing. Julio Rito Vargas Avilés 1 P.

Más detalles

TEORÍA DE LA EMPRESA. ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana

TEORÍA DE LA EMPRESA. ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana TEORÍA DE LA EMPRESA ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana asienrag@gmail.com. Conjuntos y funciones de producción El conjunto de posibilidades

Más detalles

MÉTODO GRÁFICO. PROFESORA: LILIANA DELGADO HIDALGO

MÉTODO GRÁFICO. PROFESORA: LILIANA DELGADO HIDALGO MÉTODO GRÁFICO PROFESORA: LILIANA DELGADO HIDALGO Liliana.delgado@correounivalle.edu.co Este método grafica las restricciones y la función objetivo del modelo en un plano cartesiano. Para poder representar

Más detalles

PROGRAMACION CUADRATICA

PROGRAMACION CUADRATICA PROGRAMACION CUADRATICA Programación convexa La programación convexa abarca una amplia clase de problemas, entre ellos como casos especiales, están todos los tipos anteriores cuando /(x) es cóncava. Las

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6 Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los

Más detalles

La Dualidad en el Problema de Transporte

La Dualidad en el Problema de Transporte II Conferencia de Ingeniería de Organización Vigo, 5-6 Septiembre 2002 La Dualidad en el Problema de Transporte Francisco López Ruiz, Germán Arana Landín 2 Doctor Ingeniero Industrial, Departamento Organización

Más detalles

MODELOS DE PROGRAMACIÓN LINEAL I. Juan Antonio Torrecilla García

MODELOS DE PROGRAMACIÓN LINEAL I. Juan Antonio Torrecilla García MODELOS DE PROGRAMACIÓN LINEAL I 2.1. Construcción del Modelo P.L. 2.2. Solución Gráfica. 2.3. El Método SIMPLEX. 2.1. Construcción del Modelo P.L. MODELADO: EJEMPLO Una empresa fabrica dos tipos de cinturones

Más detalles

TEORÍA DE LA PRODUCCIÓN

TEORÍA DE LA PRODUCCIÓN TEORÍA DE LA PRODUCCIÓN 1. LA FUNCIÓN DE PRODUCCIÓN Y EL CORTO PLAZO Muchos de los factores que se emplean en la producción son bienes de capital tales como edificios, maquinarias, etc. Si quisiéramos

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Departamento de Matemáticas, CCIR/ITESM 3 de junio de 2014 Problemas Resueltos 1. El granjero Jones debe determinar cuántos acres de maíz y trigo debe plantar este año.

Más detalles

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

Demanda de factores productivos. Capítulo 8 de la ficha «Introducción a la microeconomía»

Demanda de factores productivos. Capítulo 8 de la ficha «Introducción a la microeconomía» Demanda de factores productivos Capítulo 8 de la ficha «Introducción a la microeconomía» La empresa como demandante de factores productivos La empresa debe demandar factores productivos para producir el

Más detalles

UNIDAD 5 TEORIA DE LA PRODUCCION

UNIDAD 5 TEORIA DE LA PRODUCCION UNIDAD 5 TEORIA DE LA PRODUCCION Teoría de la Producción La producción es un proceso a través del cual se transforman los insumos: tierra, trabajo y capital en productos finales: Bienes o Servicios. Con

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución.

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución. I.E.S. CASTILLO DE LUNA Programación lineal En un problema de programación lineal con dos variables x; y, se trata de optimizar (hacer máximo o mínimo, según los casos) una función, llamada función objetivo

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones. A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

CASO: Stratton Company

CASO: Stratton Company CASO: Stratton Company La Stratton Company produce dos tipos de tubos de plástico. Tres recursos son fundamentales para la producción de esos tubos: las horas de extrusión, las horas de embalaje y un aditivo

Más detalles

TEORIA DE LA PRODUCCION

TEORIA DE LA PRODUCCION Definición TEORIA DE A PRODUCCION Definición: Una función de Producción es una relación o ecuación matemática, que indica la cantidad máxima de máxima de producto que se puede obtener con un conjunto de

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

INECUACIONES LINEALES CON DOS INCÓGNITAS

INECUACIONES LINEALES CON DOS INCÓGNITAS pág.1 INECUACIONES LINEALES CON DOS INCÓGNITAS Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede transformar en otra equivalente a una de las siguientes

Más detalles

Licda. M.A. Claudia Isolina Ordoñez Gálvez

Licda. M.A. Claudia Isolina Ordoñez Gálvez UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MICROECONOMÍA Licda. M.A. Claudia

Más detalles

TEMA Nº 4 LA EMPRESA, LA PRODUCCIÓN Y LOS COSTES.

TEMA Nº 4 LA EMPRESA, LA PRODUCCIÓN Y LOS COSTES. TEMA Nº 4 A EMPRESA, A PRODUCCIÓN Y OS COSTES. 1. a función de producción y la creación de utilidad: un factor variable y varios factores variables. os rendimientos de escala. 2. os costes: coste de oportunidad

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

FUNCION DE PRODUCCION CUBICA (Función clásica). lorenzo castro gómez 1

FUNCION DE PRODUCCION CUBICA (Función clásica). lorenzo castro gómez 1 FUNCION DE PRODUCCION CUBICA (Función clásica). lorenzo castro gómez Esta función es Y = ƒ (X) = b X + b 2 X 2 - b X donde : Y = producto total X i = insumos b i = parámetros Ejemplo: sea la función Y

Más detalles

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2 Bloque 6. Programación Lineal Ejercicios resueltos 6.-1 Resolver las siguientes inecuaciones: x y a) x+ 2y 6; b) 2x y< 5; c) 3x+ 2y + 5 2 a) Se representa gráficamente la recta que define la igualdad,

Más detalles

EXCEDENTE DEL CONDUMIDOR Y EXCEDENTE DEL PRODUCTOR Notas docentes elaboradas por: Ianina Rossi y Máximo Rossi

EXCEDENTE DEL CONDUMIDOR Y EXCEDENTE DEL PRODUCTOR Notas docentes elaboradas por: Ianina Rossi y Máximo Rossi EXCEDENTE DEL CONDUMIDOR Y EXCEDENTE DEL PRODUCTOR Notas docentes elaboradas por: Ianina Rossi y Máximo Rossi El bienestar del consumidor y la función de gasto: EXCEDENTE DEL CONSUMIDOR Recuerden que la

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 AVISO Traer para la siguiente clase laptop para desarrollar ejercicios con winqsb, tora, qsb, y otros. Investigación de Operaciones

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Dirección de operaciones. SESIÓN # 2: Programación lineal

Dirección de operaciones. SESIÓN # 2: Programación lineal Dirección de operaciones SESIÓN # 2: Programación lineal Contextualización Dentro de la sesión anterior conocimos el concepto y alcance de la administración de operaciones, dicho de otro modo el qué, ahora

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Departamento de Matemáticas, CCIR/ITESM 31 de agosto de 2010 SOLUCIÓN 1. El granjero Jones debe determinar cuántos acres de maíz y trigo debe plantar este año. Un acre

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

Inecuaciones. Objetivos

Inecuaciones. Objetivos 5 Inecuaciones Objetivos En esta quincena aprenderás a: Resolver inecuaciones de primer y segundo grado con una incógnita. Resolver sistemas de ecuaciones con una incógnita. Resolver de forma gráfica inecuaciones

Más detalles

Antecedentes. Ejemplos de Optimización en Procesos Agrícolas. Planificación v/s Operación. Planificación, Operación y Control en el negocio agrícola

Antecedentes. Ejemplos de Optimización en Procesos Agrícolas. Planificación v/s Operación. Planificación, Operación y Control en el negocio agrícola Ejemplos de Optimización en Procesos Agrícolas Pedro Traverso Profesor Asociado Escuela de Administración Pontifica Universidad Católica de Chile Ingeniero Agrónomo PUC MBA, PUC M.Sc. Ingeniería Industrial

Más detalles

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando

Más detalles

Para hallar, gráficamente, la solución de un problema de Programación Lineal con dos variables, procederemos del siguiente modo:

Para hallar, gráficamente, la solución de un problema de Programación Lineal con dos variables, procederemos del siguiente modo: Siempre que el problema incluya únicamente dos o tres variables de decisión, podemos representar gráficamente las restricciones para dibujar en su intersección el poliedro convexo que conforma la región

Más detalles

TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES.

TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES. TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES. Ing. Manuel Domínguez Alejo 1, MSc. Adriana Delgado Landa 2. 1. Universidad de Matanzas Sede

Más detalles

INECUACIONES LINEALES

INECUACIONES LINEALES INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada

Más detalles

Programación Matemática para Economistas 1

Programación Matemática para Economistas 1 Programación Matemática para Economistas 1 CAPÍTULO 4. TOMA DE DECISIONES MULTICRITERIO. 1.- Introducción. Los problemas de programación lineal vistos hasta ahora, no implicaban ninguna decisión. Una vez

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1 Un fabricante desea encontrar la producción semanal óptima de los artículos A, B y C para maximizar sus beneficios. Las ganancias por unidad de estos artículos son:

Más detalles

Optimización. Condiciones de Karush-Kuhn-Tucker ITESM. Condiciones de Karush-Kuhn-Tucker Profr. E. Uresti - p. 1/30. Dr. E Uresti

Optimización. Condiciones de Karush-Kuhn-Tucker ITESM. Condiciones de Karush-Kuhn-Tucker Profr. E. Uresti - p. 1/30. Dr. E Uresti Optimización Condiciones de Karush-Kuhn-Tucker Dr. E Uresti ITESM Condiciones de Karush-Kuhn-Tucker Profr. E. Uresti - p. 1/30 Las condiciones necesarias que deben satisfacer los óptimos de problemas de

Más detalles

- El costo es una función lineal cuya tasa de variación está dada por el precio del insumo (Px)

- El costo es una función lineal cuya tasa de variación está dada por el precio del insumo (Px) TEORÍA DEL COSTO La revisión de la Teoría de la Producción permite concluir que: - El Ingreso Total (IT), dado por el Valor de la Producción Total (VPT) en una Función de Producción del tipo =F(xi) para

Más detalles

Micro y Macroeconomía

Micro y Macroeconomía Micro y Macroeconomía 1 Sesión No. 6 Nombre: Teoría del consumidor Contextualización: La microeconomía como herramienta de análisis nos permite el poder comprender el comportamiento de las personas en

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr Nombre: UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS METODOS CUANTITATIVOS II EXAMEN PARCIAL I /3/7 Sección # Cuenta: Catedrático: Desarrolle en forma clara y ordenada lo que a continuación se le pide:.-

Más detalles

MICROECONOMIA. Adaptado de Paul Krugman Robin Wells. Tema 1: Teoría del consumidor

MICROECONOMIA. Adaptado de Paul Krugman Robin Wells. Tema 1: Teoría del consumidor MICROECONOMIA Adaptado de Paul Krugman Robin Wells Tema 1: Teoría del consumidor Contenido 1. Introducción 2. La Restricción Presupuestaria y la Recta Presupuestaria, posibilidades de consumo. 3. La pendiente

Más detalles