Integrando con Pit agoras

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integrando con Pit agoras"

Transcripción

1 Integando con Pit agoa M. en C. Ren e Ben ³tez L oez Deatamento de Matem atica UAM-I Recibido: 0 de etiembe de 004. Acetado: 8 de febeo de 005. Intocci on Lo libo uuale de c alculo integal, tatan lo cao de la t ecnica de integaci on o utituci on tigonom etica, identi cando eectivamente a la uma de cuadado y a la difeencia de cuadado con una exei on ue e ate de una euivalencia tigonom etica. Po ejemlo, el cao en el ue un integando contiene una a ³z de la foma a x, dicho libo identi can la difeenciaa x con una exei on tigonom etica conocida, obeve: ³ x a x a µ a a en µ a co µ; ieme ue enµ x a : En cuyo cao a x acoµ; adem a: tanµ enµ coµ x a x ; cotµ coµ enµ a x ; x ecµ coµ a a x ; ccµ enµ a x ; Con la identi caci on anteio, la vaiablexe exea en funci on de la vaiableµ etableci endoe a ³ uno de lo cao de utituci on tigonom etica de la mencionada t ecnica. A abe: x aenµ; a x acoµ; d(aenµ) acoµdµ; N otee ue aa exea a x como funci on de µ no e alic o exl ³citamente el teoema de Pit agoa, e u o la conocida euivalencia tigonom etica co µ en µ la cual e una conecuencia de dicho teoema. A difeencia de eto ue hacen lo libo de c alculo, en ete at ³culo cada uno de lo cao de utituci on tigonom etica e tata a ati del teoema de Pit agoa, identi cando a la a ³z cuadada de una uma de cuadado con la hiotenua de un ti angulo ect angulo, y a la a ³z cuadada de una difeencia de cuadado con uno de lo cateto de un ti angulo ect angulo. 9

2 0 ContactoS 55, 9{4 (005) Adem a con ete tatamiento e etablece la f omula ue igue: (ax +bx +c) n x +b (n )() (n )()(ax n + +bx +c) (n )() (ax +bx +c) n ; en dondene un n umeo enteo oitivo mayo ue ; y4ac b 6 0: Lo libo uuale de c alculo no etablecen eta f omula, y no obtante ueella e batante util aa intega o faccione aciale, mucho de ello ni iuiea la mencionan. Teoema de Pit agoa Recu edee ue un ti angulo ect angulo e un ti angulo ue tiene un angulo ecto. El lado oueto al angulo ecto e llama hiotenua y lo lado ue deteminan el angulo ecto e llaman cateto. En el ti angulo de la gua adjunta: ² La hiotenua ec; ² a ybon lo cateto. Po el teoema de Pit agoa ( a.c.) alicado al ti angulo ect angulo anteio, e tiene: 8 c a >< +b ; a +b c ) a c b ; >: b c a : Po lo ue, en lo uceivo: La a ³z cuadada de una uma de cuadado, e inteeta a geom eticamente como la medida de la hiotenua de un ti angulo ect angulo y en dicha uma cada umando e el cuadado de uno de lo cateto de dicho ti angulo. La a ³zcuadada deuna difeencia de cuadado, e inteeta a geom eticamente como uno de lo cateto de un ti angulo ect angulo, y en dicha difeencia el minuendo e elcuadado de la hiotenua y el utaendo e el cuadado del oto cateto del mencionado ti angulo. Ejemlo En x + x + ; hay una uma de cuadado y e inteeta geom eticamente como la hiotenua de un ti angulo ect angulo, cuyo cateto midenxy ; como e mueta eneguida.

3 Integando con Pit agoa. Ren e Ben ³tez L oez. En cuyo cao: tanµ x ) x tanµ; ecµ x + ) x + ecµ: O bien a ³: En ete cao: cotµ x ) x cotµ; ccµ x + ) x + ccµ: Ejemlo En 4x (x) ; hay una difeencia de cuadado y e inteeta geom eticamente como uno de lo cateto de un ti angulo ect angulo cuya hiotenua e ; como e muta eneguida. En cuyo cao: coµ x ) x enµ 4x coµ; ) 4x enµ: O a ³: En ete cao: enµ x ) x coµ 4x enµ; ) 4x coµ: Ejemlo En e x (e x ) ; hay una difeencia de cuadado y e inteeta geom eticamente como uno de lo cateto de un ti angulo ect angulo cuya hiotenua ee x ; como e mueta eneguida.

4 ContactoS 55, 9{4 (005) En tal cao: ecµ ex ) ex ecµ ) x ln(ecµ); e x tanµ ) e x tanµ: O a ³: En ete cao: ccµ ex ) ex ccµ ) x ln(ccµ); e x cotµ ) e x cotµ: Integaci on o utituci on tigonom etica La t ecnica de integaci on o utituci on tigonom etica e alica a integale cuyo integando et a en t emino de la a ³z cuadada de una uma de cuadado o en t emino de la a ³z cuadada de una difeencia de cuadado, y conite en inteeta geom eticamente a la a ³z cuadada, aa exeala a ella y a la vaiable de integaci on en t emino de una funci on tigonom etica. x Ejemlo 4 Calcula + : Soluci on En x + x + ; hay una uma de cuadado y e inteeta geom eticamente como la hiotenua de un ti angulo ect angulo, cuyo cateto midenxy ; como e mueta eneguida. En cuyo cao: tanµ x ) x tanµ ) ec µdµ; x + ecµ ) x + ecµ: Dado ue ec n x ecn x tanx n + n n ec n x in6 ; e ecx lnjecx + tanxj +c;

5 Integando con Pit agoa. Ren e Ben ³tez L oez. entonce: Ejemlo 5 Calcula x + µ tanµecµ + x x + ecµ ec µdµ + ln x 9 x : ecµdµ x + x + ec µdµ tanµecµ + lnjecµ + tanµj +c 8 < tanµ +c Poue: x ; : ecµ x + : Soluci on En 9 x x hay una difeencia de cuadado, entonce eta a ³z geom eticamente eeenta uno de lo catetode un ti angulo act angulo. Dicho cateto e ecogeo cotumbe como el cateto oueto al anguloµ; como e mueta eneguida. En cuyo cao: coµ x ) x coµ ) enµdµ; enµ 9 x ) 9 x enµ: A ³ ue, utituyendo e tiene: x 9 x enµdµ ( coµ) (enµ) 7 µ tanµecµ + ecµdµ 7 dµ co µ 7 tanµ ecµ lnjecµ + tanµj +c Peo en el ti angulo ect angulo ue e et a uando, e tiene: 9 x tanµ ; y ecµ x x : Po tanto: 9 x x 9 x 8x 54 ln + 9 x x +c: Ejemlo 6 Calcula : (4x + 5) ec µdµ Soluci on En 4x + 5 (x) + 5 hay una uma de cuadado, entonce 4x + 5 geom eticamente e la hiotenua de un ti angulo ect angulo, y dicha uma e la uma de lo cuadado de lo cateto. o lo ue e tiene la iguiente gua.

6 4 ContactoS 55, 9{4 (005) En cuyo cao: tanµ x 5 ) x 5 tanµ ) 5 ec µdµ; ecµ 4x ) 4x + 5 5ecµ: Entonce utituyendo e tiene: (4x + 5) 0 5 4x + 5 ec µdµ (5ecµ) coµdµ enµ +c 0 0 x 4x + 5 +c Poue: enµ x 4x + 5 Integale de la foma x 0 4x + 5 +c: (ax +bx +c) n Pooici on Si 4ac b ; entonce 8 x +b actan +c i> 0; >< ax +bx +c +c i 0; x +b >: ln x +b x +b+ +c i< 0: Demotaci on N otee ue µ ax +bx +c a x + b a x +c a a à µ x + b! + : 4a Po lo ue: Si>0; entonce : Po tanto: ax +bx +c a x + b + 4a

7 Integando con Pit agoa. Ren e Ben ³tez L oez. 5 a a a Geom eticamente u + 4a u + à ³ u + u + Sutituci on: u x+ b Poue: ( ) : ³ como e mueta eneguida. ³! Poue: u + µ ) : u + µ e la hiotenua de un ti angulo ect angulo cuyo cateto midenuy ; A : Entonce utituyendo e tiene: a à ³! a u + En tal cao: tanµ u ) u tanµ 8 >< ec µdµ; ) >: µ actan u : ecµ u + ec µdµ ³ ecµ ³ ) u + dµ µ +c µ ecµ: actan u +c x +b actan +c: Si<0; entonce > 0; o lo ue ( ) ( ) : Po tanto: ax +bx +c a x + b + a 4a x + b ³ a à x + b ³! i x< b o x> b + : a à u ³! (Sutituci on: u x+ b ) :)

8 6 ContactoS 55, 9{4 (005) µ Geom eticamente u e uno de lo cateto de un ti angulo ect angulo cuya hiotena euy e el oto cateto, como e mueta en la gua ue igue. En tal cao: ecµ u ) u ecµ ) 8 >< >: µ acec u : ecµ tanµdµ; tanµ µ u ) u µ tanµ: Entonce utituyendo e tiene: a à u ³! a ecµ tanµdµ ³ tanµ ecµ tanµ dµ ln u u ln ccµdµ lnjccµ cotµj +c ³ u (u) ( ) () +c u ³ 8 ccµ >< +c Poue: cotµ >: u ³ u ³ u ; :

9 Integando con Pit agoa. Ren e Ben ³tez L oez. 7 u ln (u ) (u + ) +c ln u u + +c ln u u + +c ln x +b x +b + x +b +c Poue: u : Si 0; entonce: ax +bx +c a x + b + 4a a x + b Ejemlo 7 a u (u x + b ) :) a + u + +c a x+b (x + ) Calcula x x : +c x +b +c: Soluci on Po la ooici on y el hecho de ue (x + ) x + x x x x u 0 (x) lnju(x)j +c; e tiene: u(x) x + + x x (x ) x x + 5 x + x x x + 5 x x x x ln x x ln x 5 x + 5 +c: Pooici on Sin e un n umeo enteo oitivo mayo ue y 4ac b 6 0; entonce x +b (ax +bx +c) n (n )()(ax +bx +c) n + + (n )() (n )() (ax +bx +c) n :

10 8 ContactoS 55, 9{4 (005) Demotaci on Si 4ac b ; entonce (ax +bx +c) n a n a n à µ x + b + 4a ³ u + n: 4a! n µ u x + b ) : Si> 0; entonce (ax +bx +c) n a n 0 u + A n : µ Geom eticamente u + e la hiotenua de un ti angulo ect angulo cuyo cateto midenuy como e mueta en la gua ue igue. ; En ete cao: tanµ ) dµ u ) u ec µ tanµ ) ec µdµ ³ u + à A u + ³! : Dado ue ecµ u + ³ co m x com xenx m + m m ) u + µ ecµ: co m x; en dondeme un enteo oitivo; e tiene:

11 Integando con Pit agoa. Ren e Ben ³tez L oez. 9 a n à u + ³! n ec µdµ a n ³ ecµ n a n ( ) n () n ec n µdµ n a n a n () n co n µdµ n a n n n a n µ co n µ enµ n + n n n co n 4 µdµ co n µdµ Peo: co n µ 0 u + ³ C A n n () n Ãu + ³! n : enµ u + u ³ : Entonce: n a n n con µ enµ n n a n n n () n Ãu + ³! n (n ) u u + ³ u µ (a n )()(n ) u + ³ n u (a n )()(n ) a n (ax +bx +c) n x +b (n )()(ax +bx +c) n Po ota ate:

12 40 ContactoS 55, 9{4 (005) Po lo ue (ax +bx +c) n n a n n n n n a n n n n co n 4 µdµ 0 u + n a n (n ) n 4 n (n )() n 4 () ³ C A Ã (n ) a n (n )() (n ) a n (n )() (n ) (n )() x +b (n )()(ax +bx +c) n + + (n )() (n )() n 4 0 u + B u + µ u + ³! n ³ n ³ (ax a +bx +c) n n (ax +bx +c) n (ax +bx +c) n :! C A Deivando el egundo lado de la igualdad anteio e tiene: " d x +b (n )() (n )()(ax n + +bx +c) (n )() # (ax +bx +c) n h(x +b) ( n) ax +bx +c n + ax +bx +c i n () (n )() + h(n )() ax +bx +c i n (n )() (n )() (n )() " ( n)(x +b) + ax +bx +c # ( + (n )()) (ax +bx +c) n " ( n)(x +b) + ax +bx +c # (n )(4a) (ax +bx +c) n (ax +bx +c) n :

13 Integando con Pit agoa. Ren e Ben ³tez L oez. 4 Dado ue la deivada anteio et a de nida aa todo 4ac b 6 0; entonce x +b (ax +bx +c) n (n )()(ax +bx +c) n + ieme ue 4ac b 6 0: + (n )() (n )() (ax +bx +c) n ; Ejemlo 8 Calcula (x x + ) : Soluci on Po la ooici on, aa 4()() ( ) 5< 0 e tiene: (x x + ) x ( 5)(x x + ) 5 x x + x (5)(x x + ) 5 5 ln x 5 x + 5 +c: Ejemlo 9 Calcula (4x 4x + ) : Soluci on En ete cao 4ac b 4(4)() (4) 0; entonce el olinomio 4x 4x + tiene una a ³z de multilicidad, la cual ex ; o ea, µ x e facto del olinomio 4x 4x + ; como e mueta eneguida. µ 4x 4x + (x ) 4 x : Entonce uando el cmbio de vaiableu x ; e tiene ue Bibliogaf ³a (4x 4x + ) 64 ³ 4 x 64 x 6 64 u 6 u 6 µ u 6+ +c µ x 5 +c (x ) 5 +c:. Haae/LaSalle/Sullivan. An alii Matem atico Volumen. Edit. Tilla. M exico Leithold Loui C alculo con geomet ³a anal ³tica. Edit. Hala. M exico. 98.

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos Hotel Buj Al Aab Dubai Emiato Áabe Unido Pedo ami Bofill-Gaet Poyecto de paametiación Ampliación de Matemática Intoducción Paa ete poyecto e ha ecogido como upeficie el lujoo hotel Buj al Aab de Dubai.

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

Derivadas de funciones trigonométricas y sus inversas

Derivadas de funciones trigonométricas y sus inversas Deivadas de funciones tigonométicas y sus invesas Las funciones tigonométicas se definen a pati de un tiángulo ectángulo como sigue: sin α y csc α y y cos α x sec α x α x tan α y x cot α x y Como puedes

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

Guía Regla de la Cadena(1 er Orden)

Guía Regla de la Cadena(1 er Orden) UNIVERSIDAD DE CHILE CÁLCULO EN VARIAS VARIABLES PROFESOR: MARCELO LESEIGNEUR AUXILIARES: ALFONSO TORO - SEBASTIÁN COURT Guía Regla de la Cadena1 e Oden 1. Sean f : R R y g : R R dos funciones difeenciables.

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Capitulo III. Capítulo III

Capitulo III. Capítulo III Cinemática y Dinámica de Máquinas. III. Métodos analíti de análisis cinemático Capitulo III Métodos analíti de análisis cinemático. 1 R Sancibián y. de Juan. Ing. Mecánica Cinemática y Dinámica de Máquinas.

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes. 826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El

Más detalles

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos.

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos. Po Camen Recondo Coeccón toogáfca de la magen aa mejoa la clafcacone en zona montañoa. Modelo método. Jonada de Coeccón Toogáfca de mágene de Satélte Camu de Mee. Unvedad de Ovedo. 7 de dcembe de 009.

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003 CÁLCULO Pime cuso de Igeieo de Telecomuicació Pime Exame Pacial. 7 de Eeo de 3 Ejecicio. Deducilafómuladeláeadeusegmetopaabólico e fució de su base y su altua. Se cosidea u coo cicula ecto co adio de la

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

ESTADÍSTICA DESCRIPTIVA BIVARIADA

ESTADÍSTICA DESCRIPTIVA BIVARIADA ESTDÍSTIC DESCRIPTI IRID ESTDÍSTIC DESCRIPTI IRID No coepode tata ahoa el poblema de aalza multáeamete do vaable etadítca de ua poblacó paa lo cual la ceamo o tomamo ua mueta de ella etudado e bae a tal

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

XIII. La a nube de puntos-variables

XIII. La a nube de puntos-variables XIII. La a nube de punto-vaiable Una vaiable e epeentada con un vecto en R n. El conunto de etemidade de lo vectoe que epeentan la vaiable contituyen la nube de punto N. m im m n i m Pogama PRESTA - 999

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

PARALELISMO RECTA RECTA

PARALELISMO RECTA RECTA ARALELISMO RECTA RECTA Do ect lel en el ecio on tmbien lel en oyeccione. Si do ect on lel en el ecio u oyeccione eticle tmbien lo ón, í como u oyeccione oizontle o tece oyeccione. Tmbién eán lel l el btid

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

Aplicaciones de las integrales m ultiples a la Mec anica.

Aplicaciones de las integrales m ultiples a la Mec anica. Cap ³tulo 3 Aplicaciones de las integrales m ultiples a la Mec anica. Introducci on. Los conceptos de integral doble y triple se aplican al estudio de propiedades f ³sicas de fuerzas distribuidas sobre

Más detalles

Solución: Solución: 30 cm 20 cm

Solución: Solución: 30 cm 20 cm .- Un embague de dico tiene cuato muelle actuando obe el plato opeo con una contante elática de 0 Kp/. Se compime con tonillo y tueca como e mueta en la figua y hacen actua el plato opeo obe el dico. Sabiendo

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS 1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

El siguiente diagrama representa una memoria asociativa y su contenido. Calcule los valores del registro de marcas.

El siguiente diagrama representa una memoria asociativa y su contenido. Calcule los valores del registro de marcas. El iguiente dig epeent un eoi oitiv y u ontenido. Clule lo vloe del egito de. 0 0 0 0 guento 0 0 0 á 0 0? 0 0 0 0? 0 0 0 0 0? 0 0 0 0? 0 0 0 0? ontenido El lgoito genel del funioniento de un eoi oitiv

Más detalles

ELECTRICIDAD Y MAGNETISMO. Electromagnetismo

ELECTRICIDAD Y MAGNETISMO. Electromagnetismo ELECTCDAD Y MAGNETSMO. Eectomgnetimo ) Ccu fue eectomoti inducid en un epi po un p de io peo de gn ongitud, po o que cicu un coiente igu peo con entido contio. b ) En un emiepcio > exite un cmpo mgnético,

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

N r euros es el precio

N r euros es el precio RETABILIDADES ACTIVOS FIACIEROS Ejemplo 1: Una leta del teoo a doce mee tiene un nominal de 10.000 euo. Ha ido compada po un pecio de 9.500 euo. Cual e el endimiento implícito de dicha leta?. Rendimiento

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

Contaminación por sustancias tóxicas

Contaminación por sustancias tóxicas Contamación o utancia tóxica Refeencia Chaa, 997. Suface Wate Quality Moellg. McGaw-Hill Thomann & Muelle, 987. Pcile of uface wate quality moelg an contol. Hae & Row, 987. Oozco y oto. 003. Contamación

Más detalles

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA CAO GAVIAOIO FCA 07 ANDAUCÍA 1. Un satélite atificial de 500 kg obita alededo de la una a una altua de 10 km sobe su supeficie y tada hoas en da una uelta completa. a) Calcule la masa de la una, azonando

Más detalles

FUERZA CENTRAL (soluciones)

FUERZA CENTRAL (soluciones) FUERZA CENTRAL (olucione) 1.- Un cuerpo de peo g gira en una circunferencia vertical de radio R atado a un cordel. Calcular la tenión del cordel en el punto á alto y en el á bajo. Calcule la velocidad

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

C 0 9LCULO DE DERIVADAS.

C 0 9LCULO DE DERIVADAS. Matem ticas II C 0 9LCULO DE DERIVADAS. Calcula las derivadas de las siguientes funciones, simplificando al m imo el resultado.. y ln tan Soluci n: y tan tan sin. y 5 Soluci n: y 5 5 4. y e e e Soluci

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

Chapter 1 Integrales irracionales

Chapter 1 Integrales irracionales Chapte Integales iacionales. Del tipo R R(, (a + b) m,..., (a + b) y z )d Se esuelven mediante el siguiente cambio de vaiable a + b = t n donde n = m.c.m(,,..., z) Difeenciando tendemos ad = nt n dt d

Más detalles

MÁQUINAS SECUENCIALES

MÁQUINAS SECUENCIALES MÁUINAS SECUENCIALES 1. Máuinas secuenciales. Definición. 2. Máuina de Mealy. 3. Máuina de Mooe. 4. Repesentación de MS 1. Dos Tablas 2. Una sola tabla 3. Diagamas de tansición 5. Extensión a palabas.

Más detalles

L M X J V S D 1 2 3 4 5. MIGUEL BALLESTA Avda.Guillermo Reyna,14. JAIME JIMENEZ Avda.Guillermo Reyna,24. JOSE SOTO CAPARROS C/ Dr.

L M X J V S D 1 2 3 4 5. MIGUEL BALLESTA Avda.Guillermo Reyna,14. JAIME JIMENEZ Avda.Guillermo Reyna,24. JOSE SOTO CAPARROS C/ Dr. Enero 2014 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Febrero 2014 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Marzo 2014 1 2 3 4

Más detalles

Enero 2008 1 2 3 4 5 6-2- -2- -2- -2- -2- -2-7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27-5- -5- -5- -5- -5- -5- -5-28 29 30 31-1- -1- -1- -1- Febrero 2008 1 2 3-1- -1- -1-4 5 6 7 8 9 10

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resolución de tiángulos ectángulos Ahoa vamos a aplica las funciones tigonométicas paa esolve tiángulos ectángulos. Resuelve el siguiente tiángulo ectángulo: Ejemplo y 60 Empezamos notando que podemos

Más detalles

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN Decripción Diagrama de bloue originale ONMUTATIVA AA A SUMA Diagrama de bloue euivalente 8 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN DISTIBUTIVA A A SUMA 9 MOVIMIENTO A A DEEA DE UN UNTO DE BIFUAIÓN

Más detalles

Cinemática del Sólido Rígido (SR)

Cinemática del Sólido Rígido (SR) Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto

Más detalles

D = 4 cm. Comb. d = 2 mm

D = 4 cm. Comb. d = 2 mm UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

Suponé que tengo un cuerpo que está apoyado en un plano que está inclinado un ángulo α. La fuerza peso apunta para abajo de esta manera:

Suponé que tengo un cuerpo que está apoyado en un plano que está inclinado un ángulo α. La fuerza peso apunta para abajo de esta manera: 94 PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que etá apoyado en un plano que etá inclinado un ángulo α. La fuerza peo apunta para abajo de eta anera: UN CUERPO POYDO EN UN

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

UNIVERSIDAD DE LA LAGUNA

UNIVERSIDAD DE LA LAGUNA ESCUEL UNIVERSIDD DE L LGUN TÉCNIC SUPERIOR DE INGENIERÍ INFORMÁTIC Tecnología de Computadoes Páctica de pogamación, cuso 2010/11 Pofeso: Juan Julian Meino Rubio Enunciado de la páctica: Cálculo de una

Más detalles

Flotamiento de esferas

Flotamiento de esferas Flotamiento e esfeas M. C. José Antonio Meina Henánez Depatamento e Matemáticas y Física Univesia Autónoma e Aguascalientes Aquímies fue un científico giego nacio el año 287 a.c. en Siacusa (Sicilia),

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia.

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia. El alumno realizará una opción de cada uno de lo bloque. La puntuación máxima de cada problema e de punto, y la de cada cuetión de 1,5 punto. BLOQUE I-PROBLEMAS Se determina, experimentalmente, la aceleración

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

MA26A, Auxiliar 5, 26 de Abril, 2007

MA26A, Auxiliar 5, 26 de Abril, 2007 MA26A, Auxiliar 5, 26 de Abril, 27 Profeor Cátedra: Raúl Manaevich Profeor Auxiliar : Alfredo Núnez. Tranformada de Laplace... Sea f : [, ) R función continua a trozo y de orden exponencial. Demuetre que

Más detalles

Resumen Unidad Figuras planas 1. Polígonos

Resumen Unidad Figuras planas 1. Polígonos 12 Figua plana 1. Polígono l uni uceivamene vaio egmeno e foma una línea a la que e llama poligonal y que puede e abiea o ceada. La zona ineio que delimia una línea poligonal ceada e llama polígono. Según

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

Cálculo Diferencial e Integral - Función inversa y límite. Farith J. Briceño N.

Cálculo Diferencial e Integral - Función inversa y límite. Farith J. Briceño N. Cálculo Difeencial e Integal - Función invesa y límite. Faith J. Biceño N. Objetivos a cubi Función inyectiva. Función invesa. De nición fomal de límite. Límites lateales. Cálculo de límites. Código :

Más detalles

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

5. Equilibrio químico

5. Equilibrio químico 5. Equilibrio químico Química (1S, Grado Biología) UAM 5. Equilibrio químico Contenidos Equilibrio químico Concepto Condición de uilibro químico Energía libre de Gibbs de reacción Cociente de reacción

Más detalles

Reflexiones sobre las Leyes de la ELECTROSTÁTICA

Reflexiones sobre las Leyes de la ELECTROSTÁTICA Reflexiones sobe las Leyes de la ELECTROSTÁTICA todo empezo con la le Ley de Coulomb... eceta paa calcula E: dada la densidad de caga ρ, se puede (en pincipio) intega y obtene E Luego, desaollamos dos

Más detalles

Consulta estado de exenciones, renovaciones y duplicados de "Bus LLIure"

Consulta estado de exenciones, renovaciones y duplicados de Bus LLIure Actualizado a: 15/09/2016 16:41:47 60 EX17 61 EX17 90 EX17 100 REN 102 EX17 102 REN 161 RC 181 EX17 191 EX17 197 DUP 222 EX17 243 EX17 261 EX17 339 EX17 356 EX17 372 EX17 373 DUP 376 REN 380 DUP 384 REN

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

Interacción gravitatoria

Interacción gravitatoria Inteacción gavitatoia H. O. Di Rocco I.F.A.S., Facultad de Cs. Exactas, U.N.C.P.B.A. June 5, 00 Abstact Tatamos en esta clase de oto de los modelos fundamentales de la Física toda: el movimiento en campos

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA TALLER : Fabricación y medición de inductancia OBJETIVO: Lograr la habilidad ara imlementar inductore de caracterítica

Más detalles

ESCUELA INTERNACIONAL DE IDIOMAS Avenida Pedro de Heredia, Calle 49a #31-45, barrio el Libano 6600671

ESCUELA INTERNACIONAL DE IDIOMAS Avenida Pedro de Heredia, Calle 49a #31-45, barrio el Libano 6600671 Página: Pág: 1 HORARIOS DE CLASES IDIOMAS Jornada: M Sem:01 Curso:01 A.1.1 AA A.1.1 AA A.1.1 AA 11:00AM-12:00PM VIONIS VIONIS Jornada: M Sem:01 Curso:02 A.1.1 AB A.1.1 AB A.1.1 AB VIONIS VIONIS Jornada:

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

2.2 TIPOS DE EVENTOS, excluyentes y no excluyentes; complementarios, dependientes e independientes.

2.2 TIPOS DE EVENTOS, excluyentes y no excluyentes; complementarios, dependientes e independientes. 2.2 TIPOS DE EVENTOS, excluyentes y no excluyentes; complementaios, dependientes e independientes. Expeimento aleatoio. Espacio muestal asociado. Concepto de expeimento aleatoio. Definición: Un fenómeno

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles