En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )"

Transcripción

1 Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo los ecoomstas podría basar sus predccoes del producto acoal bruto (PNB) e el gasto destado al cosumo fal detro de la ecoomía. E esta seccó estudaremos el caso e que se usa u solo "Predctor" para predecr la varable de terés ( ). Relacó etre varables a) Relacó fucoal etre dos varables. Ua relacó fucoal etre dos varables es eplcada por ua ecuacó. ea : Varable depedete : Varable depedete Ua relacó fucoal es de la forma f ( ) Dado u valor partcular de, la fucó dca el valor correspodete de. Ejemplo : upogamos y :$ veddos, : udades veddas (preco por udad $) Luego: ( f ( )) Así para: 75 y 5 5 y 5 3 y 6 5 y 5 5 todos los putos está sobre la líea Mauel Galea Rojas.

2 Regresó Leal mple b) Relacó Estadístca etre dos varables Ua relacó estadístca, a dfereca de ua relacó fucoal, o es perfecta. E geeral las observacoes e ua relacó estadístca o cae sobre la curva de la relacó. Ejemplo : como parte de u estudo de sucursales de u baco mercatl, se ha obtedo datos acerca del úmero de egocos depedetes ( ) localzados e ua muestra de áreas seleccoadas por medo del códgo postal y del úmero de sucursales del baco ( y ) ubcadas e dchas áreas. e ecluyero los cetros comercales de las cudades y y Observacó: Este gráfco os da ua dea de cómo es la relacó etre las dos varables.. Modelo Leal mple Cosderemos u epermeto el cual volucra dos varables de las cuales ua es aleatora deotada por " " y la otra es ua varable matemátca que se mde s error la que deotamos por " ". La varable de terés es llamada Respuesta metras que la ; Predctor (també recbe los ombres de varable cotrolada, regresor o varable eplcatva). E el epermeto prmero seleccoamos valores de, deotados por,, K, y luego observamos e estos valores de, de modo que obteemos ua muestra de la forma: ( ; y ), ( ; y ), K,(, y ). E aálss de regresó estamos teresados e la depedeca de sobre, es decr supoemos que la meda de, deotada por E ( ), depede de. Así E E f podemos escrbr: ( ) ( ) ( ) Mauel Galea Rojas.

3 La curva ( ) f ( ) E es llamada Fucó de Regresó. Regresó Leal mple Observacó: També recbe el ombre de Curva de Regresó de sobre. El caso más smple es: ( ) f ( ) β + Gráfcamete E β Modelo: El modelo estadístco puede ser establecdo como sgue: β + β + ε,,, K, dode : valor de la varable respuesta e el -ésmo esayo. : valor de la varable cotrolada e el -ésmo esayo. ( β, β ): parámetros. V ε σ ε : error aleatoro, co E( ε ) y ( ) ε y j ε se supoe o correlacoados de modo que Cov(, ε ) Cosecuecas. es ua varable aleatora co Cov y, y Cov ε ε j. ( ) (, ) j E( ) β + β V ( ) σ Luego y, y o so correlacoadas j ε, j j Mauel Galea Rojas.

4 3. La respuesta y cuado el vel de es Regresó Leal mple provee desde ua dstrbucó de probabldades cuya meda es: E( ) β + β y varaza: ( ) σ Gráfcamete V..3 Estmacó de la Fucó de Regresó upogamos que teemos ua muestra de observacoes: Estmacó Míma Cuadrátca ( y ), ( ; y ),,(, ) ; K y El método de los mímos cuadrados cosste e mmzar la suma de cuadrados de los errores: ( β β ) ε ( β ), β Los valores de β y β que hace mímo se obtee resolvedo el sstema: β β E efecto β β ( β β ) ( β β ) Mauel Galea Rojas.

5 Regresó Leal mple Igualado a cero y deotado la solucó por ˆ β ˆ, β se tee: Observacoes: ( )( ) ( ) ˆβ ˆ β ˆ β. ˆβ y ˆβ se deoma Estmadores Mímos Cuadrátcos de β y β respectvamete.. Para efectos de cálculo se puede usar las sguetes detdades: ( )( ) ( ) ˆ ˆ ˆ ˆ se le llama: Fucó de Regresó Estmada o Líea de 3. A E( ) β + β Regresó Ajustada. 4. Los Resduos se defe como: e ˆ,,, K, 5. Propedades de los resduos: 5. e 5. e 5.3 ˆ e 6. Estmacó de σ : como estmador de σ usaremos: ( ˆ ) e Mauel Galea Rojas.

6 Regresó Leal mple Ejemplo 3: Cosderemos el ejemplo.upogamos que: dode ε ~ N (, σ ) β + β + ε,,, K,. Ajuste el modelo y estme. σ. olucó: Teemos Luego y 65 y ˆ β ( y y )( ) y y ( ) y Iterpretacó: Esperamos uevas sucursales bacaras, como cosecueca de uevos egocos locales. ˆ β.767 Iterpretacó: Esperamos.767 sucursales bacaras, cuado o este egocos locales. La fucó de reagresó ajustada es: ˆ Para estmar la varaza usamos, que puede escrbrse como: dode yy y yy ( y y ) y ( y y ) ( ) ( ) Aquí yy Mauel Galea Rojas.

7 Regresó Leal mple luego 56.9 ( ).37 U estmador putual de σ, la desvacó estmada, de la dstrbucó de probabldades de para cualquer es ˆ σ el úmero de egocos es depedetes es 5, estmamos que la dstrbucó de probabldades de tee ua meda de ˆ Iferecas e Aálss de Regresó Para obteer ferecas sobre los parámetros del modelo leal (, β σ ) β,, ecestamos ua dstrbucó de probabldades para los errores. La dstrbucó comúmete postulada para los errores es la dstrbucó ormal de meda cero y varaza σ. Es decr dado el modelo leal: β + β + ε,,,..., upoemos que dstrbucó (, σ ) N. ε,...,, ε ε so varables aleatoras depedetes cada ua Observacó: Esta suposcó mplca que:.,,..., sea varables aleatoras depedetes co,...,. ˆβ ~ N β + ; σ y ~ ( β β ) N +,,σ ˆβ ~ N β ; σ Mauel Galea Rojas.

8 Regresó Leal mple.4. Iferecas sobre β a) Itervalo de Cofaza. U tervalo cofdecal del ( α )% para β, se puede costrur utlzado el hecho de que la varable aleatora T ˆ β β + ~ t ( ) Así u tervalo cofdecal del ( α )% para β está dado por: ˆ β ± + t, α Dode t, α es el percetl α de la dstrbucó t ( ), para < α <. b) Test sobre β. upogamos que deseamos probar las hpótess: H v s β H β dode β es coocdo. Está prueba se basa e el estadístco: T ˆ β β + ~ t ( ) bajo H La Regó de Rechazo (RR) (Regó Crítca) es: t, co t valor de T. > t, α Observacó: H > β etoces RR: t > t, α H etoces RR: t α < β < t, Mauel Galea Rojas.

9 Regresó Leal mple.4. Iferecas sobre β a) Itervalo de Cofaza. U tervalo cofdecal del ( α )% para β, se puede costrur usado el hecho de que la varable aleatora ( ˆ β β ) T ~ t ( ) Así u tervalo cofdecal del ( α )% para β está dado por: b) Test sobre β ˆ β ± t, α ( ) upogamos que deseamos probar las hpótess: H v s β H β dode β es coocdo. Esta prueba se basa e el estadístco: ( ˆ β β ) T ~ t ( ) bajo H La Regó de Rechazo (RR) (Regó Crítca) es: t, co t valor de T. > t, α Observacó: H > β etoces RR: t > t, α H etoces RR: t < t, α < β Mauel Galea Rojas.

10 Regresó Leal mple Ejemplo: tomemos los ejemplos y 3 (a) Ecuetre u IC del 95 % para β. (b) Pruebe H β v / s H β olucó: : : > Tomemos α. 5 co t. 8 (a) (b) IC, ( β ) ˆ β ± t. ±.8 (.9;.98) 95 %, Esto sgfca que estamos u 95% seguros que por cada uevos egocos locales, la catdad promedo de uevas sucursales bacaras estará etre 9 y 9. Aquí β. upogamos α. 5 y t. 8, RR t >. 8, t ˆ β Como 3.39>.8 H es rechazada, reflejado u aumeto sgfcatvo e el úmero de sucursales bacaras cuado se abre uevos egocos locales.5 Aálss de Varaza Aplcado a Aálss de Regresó El aálss de varaza, más apropadamete el aálss de varaza alrededor del promedo, cosste e partcoar la varacó total presete e u cojuto de datos e compoetes cada uo de los cuales es atrbudo a ua fuete detfcable. La varacó de las desvacoes. es covecoalmete medda e térmos de las La medda de la varacó total, deotada por CT, es la suma de los cuadrados de las desvacoes. Es decr: CT ( ) Mauel Galea Rojas.

11 Regresó Leal mple Las desvacoes puede escrbrse como: ( ˆ ) + ( ˆ ) dode: : Desvacó total. ( ˆ ): Desvacó del ajuste de la regresó alrededor de la meda. ( ˆ ): Desvacó alrededor de la líea de regresó. també se cumple: ( ) ( ˆ ) + ( ˆ ) CT CR + CE Cualquer suma de cuadrados tee asocado u úmero, llamado grados de lbertad. Este úmero dca cuatas pezas de formacó depedetes volucra las varables aleatoras,,..., resumdas e sumas de cuadrados. Por ejemplo: CT tee CE tee grados de lbertad ya que ( y y ) grados de lbertad ya que e e Esta formacó se puede resumr e ua Tabla de Aálss de Varaza Tabla ANDEVA para regresó smple: Fuete de Varacó Debdo a la regresó umas de Cuadrados Grados de Lbertad CR Error CE Cuadrados Medos CR CE Total CT Mauel Galea Rojas.

12 Regresó Leal mple Observacoes: ˆβ.. CR CMR. El estadístco F se puede utlzar també para probar H v / s CME H. Bajo H F ~ F (, ). Rechazamos H s F > F, ; α. Dode F, ; α correspode al percetl α de la dstrbucó F(, ) - 3. Como ídce de cua bueo es el modelo es razoable cosderar la proporcó: R ( ˆ ) CR CT ( ) dode R represeta la proporcó de la varabldad eplcada por la relacó leal co. A R se le llama "Coefcete de Determacó" y puede escrbrse como: R XX y yy, ote que R Para los datos del ejemplo se tee que: yy CT y CE yy 3.7 CR TABLA ANDEVA y Fuete de Varacó Debdo a la regresó umas de Cuadrados Grados de Lbertad Cuadrados Medos Error Total 56.9 Mauel Galea Rojas.

13 Regresó Leal mple Pruebe H β v / s H β. ea α. 5 : Regó Crítca : 53.8 F > F,; F Rechazamos H co u vel de sgfcacó del 5%. El coefcete de determacó es: R ( ).954 Esto sgfca que el 95.4% de la varabldad e la varable de Respuesta : úmero de sucursales del baco, es eplcada por la regresó leal. El modelo leal parece satsfactoro e este caso. MGR/pvj. Mauel Galea Rojas.

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

Figura 1

Figura 1 Regresó Leal Smple 7 Regresó Leal Smple 7. Itroduccó Dra. Daa Kelmasky 0 E muchos problemas cetífcos teresa hallar la relacó etre ua varable (Y), llamada varable de respuesta, ó varable de salda, ó varable

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1 Aálss de Regresó y Correlacó Materal Preparado por Olga Susaa Flpp y Hugo Delfo ORIGEN HISTÓRICO DEL TÉRMINO REGRESlÓN El térmo regresó fue troducdo por Fracs Galto. E u famoso artículo Galto platea que,

Más detalles

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears Aál etadítco báco (II) Magdalea Cladera Muar mcladera@ub.e Departamet d Ecooma Aplcada Uvertat de le Ille Balear CONTENIDOS Covaraza y correlacó. Regreó leal mple. REFERENCIAS Alegre, J. y Cladera, M.

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Capítulo V Análisis de regresión y correlación

Capítulo V Análisis de regresión y correlación Capítulo V Aálss de regresó y correlacó Itroduccó E la vestgacó estadístca es muy frecuete ecotrar varables que está relacoadas o asocadas etre sí de algua maera, como se estudó e el capítulo ateror. Exste

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V Área Académca de: Químca Líea de Ivestgacó: Fscoquímca de Almetos Programa Educatvo: Lcecatura e Químca Nombre de la Asgatura: Químca Aalítca V Tema: Represetacoes gráfcas de las relacoes propedadcocetracó

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

Análisis de Regresión Lineal Simple.

Análisis de Regresión Lineal Simple. Aál de Regreó Leal mple. Itroduccó Regreó mple Método de lo mímo cuadrado Propedade de lo etm. m. cuadrado Predccó Evaluacó de la tedad de la relacó leal Ejercco Itroduccó E mu frecuete ecotrar proceo

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

CAPÍTULO 2 MODELO DE REGRESIÓN LOGÍSTICA

CAPÍTULO 2 MODELO DE REGRESIÓN LOGÍSTICA Estmacó de la ocurreca de cdecas e declaracoes de pólzas de mportacó Salcedo Poma, Cela Mercedes CAPÍULO MODELO DE REGRESIÓN LOGÍSICA INRODUCCIÓN La Regresó Logístca es ua técca estadístca multvarate que

Más detalles

METODO DE MAXIMA VEROSIMILITUD. Supongamos una muestra aleatoria de 10 observaciones de una distribución Poisson:

METODO DE MAXIMA VEROSIMILITUD. Supongamos una muestra aleatoria de 10 observaciones de una distribución Poisson: Aputes Teoría Ecoométrca I. Profesor: Vvaa Ferádez METODO DE MAIMA VEOSIMILITUD Supogamos ua muestra aleatora de observacoes de ua dstrbucó Posso: 5,,,,, 3,, 3,,. La desdad de probabldad para cada observacó

Más detalles

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión REGREIÓN NO LINEAL Ídce. CUÁNDO EXITE REGREIÓN?.... TIPO DE REGREIÓN... 3. REPREENTATIVIDAD DE LA CURVA DE REGREIÓN... 3 3.. Poder explcatvo del modelo... 3 3.. Poder explcatvo frete a poder predctvo...

Más detalles

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. (crstacabrera@apsa.cl) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, robso.lucero@moptt.gov.cl

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1 63 ITRODUCCIÓ AL AÁLISIS DE ECUESTAS COMPLEJAS MARCELA PIZARRO BRIOES ISTITUTO ACIOAL DE ESTADÍSTICA (IE CHILE Para presetarse e el Taller Regoal del MECOVI: La Práctca del Muestreo para el Dseño de las

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS. REGRESIÓN LINEAL SIMPLE. CORRELACIÓN.

RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS. REGRESIÓN LINEAL SIMPLE. CORRELACIÓN. FCEyN - Estadístca para Químca Marta García Be 8 RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS. REGRESIÓN LINEAL SIMPLE. CORRELACIÓN. Los métodos de regresó se usa para estudar la relacó etre dos varables umércas.

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

CAPÍTULO 3. ANÁLISIS DE REGRESIÓN

CAPÍTULO 3. ANÁLISIS DE REGRESIÓN CAPÍTULO 3. ANÁLISIS DE REGRESIÓN Leccó 0: Regreó leal Smple La palabra Regreó fue utlzada por prmera vez por Frac Galto, (.8.9) e u etudo de Bología obre la hereca, doe él oto que la caracterítca promedo

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

Formulación precisa de la(s) pregunta(s) de investigación. Planeación: Comunicación usuario/estadístico

Formulación precisa de la(s) pregunta(s) de investigación. Planeación: Comunicación usuario/estadístico Esquema estadístco Problema de vestgacó Preguta de vestgacó Formulacó precsa de la(s) preguta(s) de vestgacó Plaeacó Dseño Muestra Feómeo Aleatoro Aálss y presetacó de la formacó Iferecas Toma de decsoes

Más detalles

ANÁLISIS DE REGRESIÓN SIMPLE Y CORRELACIÓN

ANÁLISIS DE REGRESIÓN SIMPLE Y CORRELACIÓN UNIDAD 6 ANÁLISIS DE REGRESIÓN SIMPLE Y CORRELACIÓN Itroduccó a la udad El uso de la regresó leal smple es muy utlzado para observar el tpo de relacó que exste etre dos varables y poder llevar a cabo la

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

5- VARIABLES ALEATORIAS BIDIMENSIONALES

5- VARIABLES ALEATORIAS BIDIMENSIONALES Parte Varables aleatoras bdmesoales Prof. María B. Ptarell 5- VARIABLES ALEATORIAS BIDIMENSIONALES 5. Geeraldades Hasta ahora hemos cosderado el caso de varables aleatoras udmesoales. Esto es, el resultado

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre

Más detalles

3 Regresión lineal múltiple: estimación y propiedades

3 Regresión lineal múltiple: estimación y propiedades 3 Regresó leal múltple: estmacó y propedades Ezequel Urel Uversdad de Valeca Versó 09-013 3.1 El modelo de regresó leal múltple 1 3.1.1 Modelo de regresó poblacoal y fucó de regresó poblacoal 3.1. Fucó

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

PLAN DE TRABAJO 11 Período 23/10/06 al 3/11/06. Durante estas dos semanas estudiarás los modelos de regresiones lineales.

PLAN DE TRABAJO 11 Período 23/10/06 al 3/11/06. Durante estas dos semanas estudiarás los modelos de regresiones lineales. Pla de Trabajo 0- Año 006 Curso Lbre Assdo de Esadísca II Docees resposables: Lercy Barros - María Sague PLAN DE TRABAJO Período 3/0/06 al 3//06 TEMAS A ESTUDIAR Durae esas dos semaas esudarás los modelos

Más detalles

ESTADÍSTICA BAYESIANA

ESTADÍSTICA BAYESIANA ESTADÍSTICA BAYESIANA Notas Ídce. INTRODUCCIÓN.... ESTADÍSTICA BAYESIANA... 3. QUÉ ES LA INFERENCIA BAYESIANA?...3 4. CONCEPTOS BAYESIANOS BÁSICOS...5 4.. Teorema de Bayes... 5 4.. Naturaleza secuecal

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

R-C CARGA Y DESCARGA DE UN CONDENSADOR

R-C CARGA Y DESCARGA DE UN CONDENSADOR RC CARGA Y DESCARGA DE UN CONDENSADOR CONTENIDOS Estado trastoro de carga y descarga. Cálculo de la costate de tempo. Método de cuadrados mímos. Errores que se comete durate la evaluacó de τ OBJETIVOS

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

3 AJUSTE DE FUNCIONES

3 AJUSTE DE FUNCIONES AJUSTE DE UNCIONES.. udametos de estadístca: cojuto de medcoes epermetales meda y desvacó estádar INTRODUCCION TEÓRICA E la mayoría de los procedmetos epermetales se gasta mucho esfuerzo para reur los

Más detalles

Regresión lineal simple

Regresión lineal simple Regresó leal smple.- Itroduccó....- Dagrama de dspersó... 3 3.- Especfcacó del modelo de regresó leal smple... 4 3..- upuestos del modelo... 7 4.- Estmacó de parámetros... 0 4..- Estmacó medate mímos cuadrados...

Más detalles

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el CAPÍTULO 3 METODOLOGÍA El objetvo del capítulo 3 es coocer la metodología, por lo cual os apoyaremos e el lbro de Smulato modelg ad Aalyss (Law, 000), para estudar alguas pruebas de bodad de ajuste. També

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

MS Word Editor de Ecuaciones

MS Word Editor de Ecuaciones MS Word Edtor de Ecuacoes H L. Mata El Edtor de ecuacoes de Mcrosoft Word permte crear ecuacoes complejas seleccoado símbolos de ua barra de herrametas y escrbedo varables y úmeros. medda que se crea ua

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! INTRODINTRODUCCIÓN D etro del estudo de muchos feómeos de

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! Isttuto Tecológco de Apzaco Departameto de Cecas Báscas INSTITUTO

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE arte Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 3 6- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 6. Suma de varables aleatoras deedetes Cuado se estudaro las

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS

ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS 5 ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS María C. Paz Sabogal Profesor Auxlar. Uversdad del Valle, Escuela de Igeería Idustral Estadístca, Cal. karo.paz@gmal.com

Más detalles

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS UNIVERIDAD de VALLADOLID ECUELA de INGENIERÍA INDUTRIALE INGENIERO TÉCNICO INDUTRIAL, EPECIALIDAD EN MECÁNICA PROYECTO FIN DE CARRERA ANÁLII ETADÍTICO DEL CONTROL DE CALIDAD EN LA EMPREA Autor: Galca Adrés,

Más detalles

I n t r o d u c i ó n A l a E s t a d í s t i c a 1

I n t r o d u c i ó n A l a E s t a d í s t i c a 1 Estadístca I t r o d u c ó A l a E s t a d í s t c a INTRODUCCIÓN: La Estadístca descrptva es ua parte de la Estadístca cuyo objetvo es examar a todos los dvduos de u cojuto para luego descrbr e terpretar

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO RESOLUCIÓN OENO 0/005 GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO LA ASAMBLEA GENERAL, Vsto el artículo, párrafo

Más detalles

12º seminario AEDEMO sobre Audiencia de Televisión Palma de Mallorca, Febrero de 1996

12º seminario AEDEMO sobre Audiencia de Televisión Palma de Mallorca, Febrero de 1996 º semaro AEDEMO sobre Audeca de Televsó Palma de Mallorca, Febrero de 996 LA PRECISIÓN ESTADÍSTICA EN EL PANEL DE AUDIMETRÍA Carlos Lamas ÍNDICE. INTRODUCCIÓN, TEORÍA Y CONCEPTOS. EFECTO DEL EQULILIBRAJE

Más detalles