Botón menú Objetivo de la Minería de datos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Botón menú Objetivo de la Minería de datos."

Transcripción

1 Titulo de Tutorial: Minería de Datos N2 Botón menú: Introducción. Las instituciones y empresas privadas coleccionan bastante información (ventas, clientes, cobros, pacientes, tratamientos, estudiantes, calificaciones, fenómenos meteorológicos, etcétera, según su giro), aprovechando que las computadoras y los discos de almacenamiento se han abaratado, y las comunicaciones son también baratas y confiables. Esta información reside en bases de datos operacionales, llamadas así porque con ellas se lleva a cabo la labor sustantiva de las organizaciones: envío de mercancía a clientes, registro de estudiantes, tratamiento a pacientes, cobranza, entre otros. Botón menú Objetivo de la Minería de datos. La Minería de Datos, se enfoca en desarrollar tareas con la ayuda de cómputo y el cual se auxilia en modelos o procesos que se han construido de acuerdo a la secuencia de la siguiente figura:

2 Botón menú Alcances. El nombre de Minería de Datos deriva de las similitudes entre buscar valiosa información de negocios en grandes volúmenes de información como: a. Predicción automatizada de tendencias y comportamientos. b. Descubrimiento automatizado de modelos previamente desconocidos. Procesamiento más rápido significa que los usuarios pueden automáticamente experimentar con más modelos para entender datos complejos. Botón menú Técnicas de Minerías de Datos La minería de datos no es más que un caso especial de aprendizaje computacional inductivo, es mejorar el comportamiento a partir de la experiencia. Aprendizaje = Inteligencia, Es mediante la identificación de patrones existentes en la evidencia la observación de predicciones futuras. Cualquier problema de aprendizaje inductivo se puede presentar regularmente de cualquiera de estas formas. Técnicas de Minería de Datos Abductivos Inductivos Explicativos Descriptivos Predictivos Aprendizaje Analítico Aprendizaje No Supervisado Análisis Exploratorio Interpolación Predicción Secuencial Aprendizaje Supervisado

3 Botón menú: Necesidades de análisis de grandes volúmenes de datos. La mayoría de decisiones de empresas, organizaciones e instituciones se basan también en información de experiencias pasadas extraídas de fuentes muy diversas. Las decisiones colectivas suelen tener consecuencias mucho más graves, especialmente económicas, y, recientemente, se deben basar en volúmenes de datos que desbordan la capacidad humana. INFORMACION ORGANIZAR ANALIZAR DATOS APRENDIZAJE INGRESOS DECIDIR MEDIR ACCIONES Botón menú: Como nace el Descubrimiento de Conocimiento El Descubrimiento del Conocimiento nace como interfaz y se nutre de diferentes disciplinas, se define como la extracción no trivial dé información implícita, desconocida, y potencialmente útil de los datos.

4 Botón menú: Fases del Descubrimiento del Conocimiento (KDD) Determinar las fuentes de información que pueden ser útiles y dónde conseguirlas. Diseñar el esquema de un almacén de datos (Data Warehouse) que consiga unificar de manera operativa toda la información recogida. Implantación del almacén de datos que permita la navegación y visualización previa de sus datos, para discernir qué aspectos puede interesar que sean estudiados. Selección, limpieza y transformación de los datos que se van a analizar. La selección incluye tanto una criba o fusión horizontal (filas) como vertical (atributos). Seleccionar y aplicar el método de minería de datos apropiado. Interpretación, transformación y representación de los patrones extraídos. Difusión y uso del nuevo conocimiento. Botón menú El Proceso de extracción del Conocimiento 1. Desarrollar un entendimiento del dominio de la aplicación. 2. Seleccionar y crear un conjunto de datos en el cual se ejecutará el descubrimiento. 3. Limpieza y reprocesamiento de los datos. 4. Transformación de los datos. 5. Elección de la tarea de minería de datos apropiada. 6. Elección de algoritmos de minería de datos. 7. Empleo del algoritmo de minería de datos. 8. Evaluación. 9. Uso del conocimiento descubierto.

5 1. Desarrollar un entendimiento del dominio de la aplicación. En este punto se prepara el escenario para entender qué se debe hacer con varias decisiones sobre la transformación, algoritmos, representación. El líder del proyecto KDD debe entender y definir los objetivos del usuario final y el ambiente del cual se tomará el proceso de descubrimiento de conocimiento (incluyendo conocimiento previo relevante). A medida que avanza el proceso KDD, se puede hacer una revisión de este paso. 2. Seleccionar y crear un conjunto de datos en el cual se ejecutará el descubrimiento. Una vez que se han definidos los objetivos, se determinan los datos que serán usados para el descubrimiento del conocimiento. Este paso del proceso es muy importante porque la Minería de datos aprende y descubre conocimiento de los datos disponibles. Si faltan datos importantes, el estudio entero puede fallar. Por otra parte, recoger, organizar y operar complejos repositorios de datos es costoso y hay una compensación con la posibilidad de comprender mejor los fenómenos. 3. Limpieza y reprocesamiento de los datos. La confiabilidad de los datos se eleva. Incluye la claridad en los datos, el manejo de valores faltantes y la remoción de ruido o datos anómalos.

6 Puede convertirse en la mayor parte (en términos de tiempo invertido) de un proyecto de Descubrimiento del Conocimiento. Puede involucrar métodos estadísticos complejos o el uso de algoritmos de Minería de datos en este contexto. 4. Transformación de los datos Incluye la reducción de dimensión como selección de características, extracción, registro de muestras, transformación de. Este paso puede ser crucial para el éxito del proyecto de Descubrimiento del Conocimiento y suele ser específico para cada proyecto. 5. Elección de la tarea de minería de datos apropiada En este punto decidimos cuál tipo de tarea de Minería de Datos usaremos, todo depende de los objetivos del Descubrimiento del Conocimiento y también de los pasos anteriores. 6. Elección de algoritmos de minería de datos Teniendo la estrategia, ahora se decide la táctica. Esta etapa incluye la selección del método específico que se usará para buscar patrones.

7 7. Empleo del algoritmo de minería de datos En este paso emplea el algoritmo varias veces hasta que se obtienen resultados satisfactorios, por ejemplo por la puesta a punto de los parámetros de control del algoritmo, tal como el número mínimo de instancias en una sola hoja de un árbol de decisiones. 8. Evaluación Evaluación e interpretación de los patrones, con respecto a los objetivos definidos en el primer paso. Aquí se consideran los pasos de reprocesamiento con respecto a sus efectos en los resultados del algoritmo de Minería de Datos. 9. Uso del conocimiento descubierto Ahora se está listo para incorporar el conocimiento en otros sistemas para acciones más adelante. El conocimiento llega a ser activo en el sentido que se pueden hacer cambios al sistema y medir los efectos. En realidad el éxito de este paso determina la efectividad del proceso entero de Descubrimiento del Conocimiento. Botón menú Data Warehouse Antecedentes del Data Warehouse Hace 15 años el análisis de los datos se realizaba con herramientas de consulta sobre la base de datos operacional, que se basaba en un modelo de datos transaccional, estas herramientas de consulta estaban basadas en lenguajes generalistas de consultas, principalmente SQL. Estas herramientas eran poco flexibles y poco escalables a grandes volúmenes de información. Para responder a la necesidad de flexibilizar este tipo de consultas, que tienen un sentido analítico en lugar de operacional se ha creado una nueva tecnología de bases de datos basada en una nueva arquitectura. Estos son los almacenes de datos (Data Warehousing). Los almacenes de datos son el repositorio de datos.

8 Botón menú Objetivo del Data Warehouse Hacer que la información de la organización sea accesible: los contenidos del Data WareHouse son entendibles y navegables, y el acceso a ellos son caracterizado por el rápido desempeño y diseñado para cambios continuos y contenga la información necesaria y correcta para la toma de decisiones en una organización. Botón menú Definición y nacimiento del Data Warehousing EL Data Warehousing es una técnica para consolidar y administrar datos desde variadas fuentes con el propósito de responder preguntas de negocios y toma de decisiones. Para poder operar eficientemente con esos datos y partiendo que los costes de almacenamiento masivo y conectividad se han reducido drásticamente en los últimos años, parece razonable recoger (copiar) los datos en un sistema unificado. Nace el Data Warehouse (Almacenes de Datos). Se separan de los datos a analizar con respecto a sus fuentes transaccionales (se copia/almacena toda la información histórica).

9 Botón menú Características de un Data Warehouse Un Data Warehouse se caracteriza por ser un conjunto de datos orientados a temas, integrado, variante en el tiempo y no volátiles, que dan soporte al proceso de toma de decisiones. Vamos a analizar esto por partes. a. Orientado a temas Orientado a los temas principales de la organización. b. Integrado En un sistema operacional no hay integración, Esta integración se muestra de diferentes maneras: consistencia en codificación de estructuras, en unidades de medida de las variables. c. Variante en el tiempo El Data Warehouse refleja un histórico de los datos en un horizonte de tiempo mucho más amplio (del orden de años). De esta forma podemos detectar tendencias en el tiempo. d. No volátil El Data Warehouse existe para ser leído y no para ser modificado,

10 Botón menú Los elementos básicos de un Data Warehouse Sistema fuente: Sistemas operacionales de registros donde sus funciones son capturar las transacciones del negocio. A los sistemas fuentes también se le conoce como sistemas heredados (Legacy System). Área de tráfico de datos: Es un área de almacenamiento y grupo de procesos, que limpian transforman, combinan, remover los duplicados, guardan, archivan y preparan los datos fuente para ser usados en el Data Warehouse. Servidor de presentación: La máquina física objetivo en donde los datos del Data Warehouse son organizados y almacenados para consultas directas por los usuarios finales, reportes y otras aplicaciones. Modelo dimensional: Una disciplina específica para el modelado de datos que es una alternativa para los modelos de entidad relación. Procesos de negocios: Un coherente grupo de actividades de negocio que hacen sentido a los usuarios del negocio del Data Warehouse. Data Mart: Un subgrupo lógico del Data Warehouse completo. Data Warehouse: Búsquedas fuentes de datos de la empresa. Y es la unión de todos los Data Marts que la constituyen. Almacenamiento operacional de datos: Es el punto de integración por los sistemas operacionales. Es el acceso al soporte de decisiones por los ejecutivos. OLAP: Actividad general de búsquedas para presentación de texto y números del Data Warehouse, también un estilo dimensional especifico de búsquedas y presentación de información y que es ejemplificada por vendedores de OLAP. ROLAP: Un grupo de interfaces de usuarios y aplicaciones que le dan a la base de datos relacional un estilo dimensional. MOLAP: Un grupo de interfaces de usuarios, aplicaciones y propietarios de tecnología de bases de datos que tienen un fuerte estilo dimensional.

11 Aplicaciones para usuarios finales: Una colección de herramientas que hacen las consultas, analizan y presentan la información objetivo para el soporte de las necesidades del negocio. Herramientas de acceso a datos por usuarios finales: Un cliente de Data Warehouse. Herramientas exclusivas de consulta: Un tipo específico de herramientas de acceso a datos por usuarios finales que invita al usuario a formar sus propias consultas manipulando directamente las tablas relacionales y sus uniones. Modelado de aplicaciones: Un sofisticado tipo de cliente de Data Warehouse con capacidades analíticas que transforma o digiere las salidas del Data Warehouse. Meta Data: Toda la información en el ambiente del Data Warehouse que no son así mismo los datos actuales. Modelo de Data Warehouse Botón menú Los procesos básicos del Data Warehouse (ETL) a. Extracción: este es el primer paso de obtener la información hacia el ambiente del Data Warehouse. b. Transformación: una vez que la información es extraída hacia el área de tráfico de datos, hay posibles paso de transformación como; limpieza de la información, tirar la basura que no nos sirve, seleccionar únicamente los campos necesarios para el Data Warehouse, combinar fuentes de datos, haciéndolas coincidir por los valores de las llaves, creando nuevas llaves para cada registro de una dimensión.

12 c. Carga: al final del proceso de transformación, los datos están en forma para ser cargados. Botón menú Diseño de un almacén de datos Para desarrollar un Data Warehouse son necesarias herramientas que nos ayuden a migrar y a la transformar los datos hacia el almacén. Una vez realizada la migración, se requieren medios para manejar grandes volúmenes de información. Se diseña su arquitectura dependiendo de la estructura interna de los datos del almacén y especialmente del tipo de consultas a realizar. Con este criterio los datos deben ser repartidos entre numerosos centros de datos (Data Marts). Para abordar un proyecto de Data Warehouse es necesario hacer un estudio de algunos temas generales de la organización o empresa, los cuales se describen a continuación: a. Situación actual de partida.- Cualquier solución propuesta de Data Warehouse debe estar muy orientada por las necesidades del negocio y debe ser compatible con la arquitectura técnica existente y planeada de la compañía. b. Tipo y características del negocio.- Es indispensable tener el conocimiento exacto sobre el tipo de negocios de la organización y el soporte que representa la información dentro de todo su proceso de toma de decisiones. c. Entorno técnico.- Se debe incluir tanto el aspecto del hardware (mainframes, servidores, redes,...) así como aplicaciones y herramientas. Se dará énfasis a los Sistemas de soporte a decisiones (DSS), si existen en la actualidad, cómo operan, etc. d. Expectativas de los usuarios.- Un proyecto de Data Warehouse no es únicamente un proyecto tecnológico, es una forma de vida de las organizaciones y como tal, tiene que contar con el apoyo de todos los usuarios y su convencimiento sobre su bondad. e. Etapas de desarrollo.- Con el conocimiento previo, ya se entra en el desarrollo de un modelo conceptual para la construcción del Data Warehouse.

13 f. Prototipo.- Un prototipo es un esfuerzo designado a simular tanto como sea posible el producto final que será entregado a los usuarios. g. Piloto.- El piloto de un Data Warehouse es el primero, o cada uno de los primeros resultados generados de forma iterativa que se harán para llegar a la construcción del producto final deseado. h. Prueba del concepto tecnológico.- Es un paso opcional que se puede necesitar para determinar si la arquitectura especificada del Data Warehouse funcionará finalmente como se espera. Botón menú Fases de la implantación de un Data Warehouse 4. Explotación y mantenimiento de la información 1. Identificación de los requerimiento de información 3. Implementación 2. Análisis y diseño del modelo de bases de datos

14 1. Identificación de los requerimientos de información.- Un data Warehouse con un perfil de analistas de información, no son usuarios técnicos, y sus requerimiento no son conocidos de antemano, trabajan de forma recursiva en base a prueba/resultado, y no requieren tiempos de respuesta críticos. 2. Análisis y diseño del modelo de bases de datos.- En base a la información obtenida se definen los componentes del modelo Lógico de Bases de datos. DIMENSIONES: Representan las áreas temáticas o líneas de negocio. Proporcionan un método general de organizar la información corporativa. ATRIBUTOS: Son dimensiones dentro de una dimensión o calificadores de la dimensión. 3. Implementación.- El tipo de proceso que se vaya a utilizar para explotar los datos, y el Diseño del Modelo de Datos, condiciona la implementación del Data Warehouse. En el caso de técnicas OLAP

15 (On Line Analytical Processing) los tipos de implementación más usuales son bases de datos ROLAP (Relacional) ó MOLAP (Multidimensional). ROLAP MOLAP Explotación y mantenimiento de la información.- La explotación de un Data Warehouse se realiza mediante diversas técnicas dependiendo del tipo de aplicación que se quiera dar a los datos, de cómo se haya realizado el Diseño y la Implementación del modelo de datos: Query & Reporting (Consulta y generación de Informes). On Line Analytical Processing (OLAP) (Proceso de Análisis en Línea). Data Mining (Minería de Datos). El mantenimiento de un Data Warehouse es complejo, y se requiere una serie de fases que se repiten a lo largo del tiempo: Alimentación de Datos (Incremento de datos corporativos e integración de nuevas fuentes de datos). Incorporación de nuevas tecnologías que agilicen el desarrollo del sistema. (Actualización de Hardware y Software). Revisión de Modelos de Datos (basándose en la experiencia adquirida por los técnicos y los usuarios). Formación continua (de usuarios y técnicos). 2.

16 3. Botón menú Data-Warehousing: a. Facilita el análisis de los datos en tiempo real (OLAP), b. No disturba el OLTP de las bases de datos originales. c. A partir de ahora diferenciaremos entre bases de datos para OLTP (tradicional) y almacenes de datos (KDD sobre data-warehouses). Botón menú Conclusión Nuestra capacidad para almacenar datos ha crecido en los últimos años a velocidades exponenciales. En contrapartida, la capacidad para procesarlos y utilizarlos no ha ido a la par. Por este motivo, el Data Mining se presenta como una tecnología de apoyo para explorar, analizar, comprender y aplicar el conocimiento obtenido usando grandes volúmenes de datos. Descubrir nuevos caminos que nos ayuden en la identificación de interesantes estructuras en los datos es una de las tareas fundamentales en la Minería de Datos. Como hemos visto en este artículo, son muchas las áreas, técnicas, estrategias, tipos de bases de datos y personas que intervienen en un proceso de Data Mining. Los negocios requieren que las soluciones tengan una integración transparente en un ambiente operativo. Esto nos lleva a la necesidad de establecer estándares para hacer un ambiente interoperable, eficiente y efectivo. Se exponen algunas iniciativas para estos estándares, incluyendo aspectos en: Modelos: para representar datos estadísticos y de Data Mining. Atributos: para representar la limpieza, transformación y agregación de atributos usados como entrada en los modelos. Interfaces y API: para facilitar la integración con otros lenguajes o aplicaciones de software y API. Configuración: para representar parámetros internos requeridos para construir y usar los modelos. Procesos: para producir, desplegar y usar modelos.

17 Datos remotos y distribuidos: para analizar y explorar datos remotos y distribuidos. La Minería de Datos se presenta como una tecnología emergente, con varias ventajas: por un lado, resulta un punto de encuentro entre los investigadores y las personas de negocios; por otro, ahorra grandes cantidades de dinero a una empresa y abre nuevas oportunidades de negocios. Además, no hay duda de que trabajar con esta tecnología implica cuidar un sin número de detalles debido a que el producto final involucra toma de decisiones.

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA MOLAP REALIZADO POR: JOSE E. TABOADA RENNA BASE DE DATOS Conjunto de datos estructurados, fiables y homogéneos organizados independientemente en máquina, m accesibles en tiempo real, compatible por usuarios

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA Qué es inteligencia de negocios? (BI) Business Intelligence es la habilidad para transformar los datos en información, y la información en

Más detalles

DATA WAREHOUSE DATA WAREHOUSE

DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE Autor: Roberto Abajo Alonso Asignatura: Sistemas Inteligentes, 5º Curso Profesor: José Carlos González Dep. Ing. Sistemas Telemáticos, E.T.S.I. Telecomunicación Universidad

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

CAPÍTULO 2 DATA WAREHOUSES

CAPÍTULO 2 DATA WAREHOUSES CAPÍTULO 2 DATA WAREHOUSES Un Data Warehouse (DW) es un gran repositorio lógico de datos que permite el acceso y la manipulación flexible de grandes volúmenes de información provenientes tanto de transacciones

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes Capítulo 4 Arquitectura para análisis de información propuesta 4.1 Arquitectura Zombi es una arquitectura que proporciona de manera integrada los componentes necesarios para el análisis de información

Más detalles

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Inteligencia de Negocios Introducción Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Agenda 1.Introducción 2.Definición 3.ETL 4.Bodega de Datos 5.Data Mart

Más detalles

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI INTRODUCCIÓN Se habla en multitud de ocasiones de Business Intelligence, pero qué es realmente? Estoy implementando en mi organización procesos de Business

Más detalles

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

Sistema de análisis de información. Resumen de metodología técnica

Sistema de análisis de información. Resumen de metodología técnica Sistema de análisis de información Resumen de metodología técnica Tabla de Contenidos 1Arquitectura general de una solución de BI y DW...4 2Orígenes y extracción de datos...5 2.1Procesos de extracción...5

Más detalles

ARQUITECTURA DE UNA BODEGA DE DATOS

ARQUITECTURA DE UNA BODEGA DE DATOS ARQUITECTURA DE UNA BODEGA DE DATOS Estructura de contenidos INTRODUCCIÓN... 3 1. ARQUITECTURA DE UNA BODEGA DE DATOS... 3 1.1 PROPIEDADES... 3 1.2 ARQUITECTURA DE UNA CAPA... 4 1.3 ARQUITECTURA DE DOS

Más detalles

SQL Server Business Intelligence parte 1

SQL Server Business Intelligence parte 1 SQL Server Business Intelligence parte 1 Business Intelligence es una de las tecnologías de base de datos más llamativas de los últimos años y un campo donde Microsoft ha formado su camino a través de

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS Integrante: Profesor: Maximiliano Heise Luis Ríos Fecha de entrega: miércoles 18 de abril de 2012

Más detalles

Business Intelligence

Business Intelligence 2012 Business Intelligence Agenda Programas Diferencias de OLTP vs OLAP Arquitectura de una solución de BI Tecnologías Microsoft para BI Diferencias entre OLTP v/s OLAP Alineación de Datos OLTP Datos organizados

Más detalles

Capítulo 5. Cliente-Servidor.

Capítulo 5. Cliente-Servidor. Capítulo 5. Cliente-Servidor. 5.1 Introducción En este capítulo hablaremos acerca de la arquitectura Cliente-Servidor, ya que para nuestra aplicación utilizamos ésta arquitectura al convertir en un servidor

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

Requisitos de inteligencia comercial para TI:

Requisitos de inteligencia comercial para TI: Requisitos de inteligencia comercial para TI: Lo que cada administrador de TI debe saber sobre las necesidades reales de los usuarios comerciales para inteligencia comercial Enero de 2011 p2 Los usuarios

Más detalles

Sistemas de Información para la Gestión. UNIDAD 2: RECURSOS DE TI Información y Aplicaciones

Sistemas de Información para la Gestión. UNIDAD 2: RECURSOS DE TI Información y Aplicaciones UNIDAD 2: RECURSOS DE TI Información y Aplicaciones UNIDAD 2: RECURSOS DE TI Información y Aplicaciones 1. La Información: Propiedades de la Información. Sistemas de Información. Bases de Datos. 2. Administración

Más detalles

INTRODUCCIÓN A LA COMPUTACION EN LA NUBE Y BIG DATA (1) Ing. Carlos Ormella Meyer

INTRODUCCIÓN A LA COMPUTACION EN LA NUBE Y BIG DATA (1) Ing. Carlos Ormella Meyer INTRODUCCIÓN A LA COMPUTACION EN LA NUBE Y BIG DATA (1) Ing. Carlos Ormella Meyer En los últimos años, el interés por la Computación en la Nube (Cloud Computing), tanto para uso personal como para negocios,

Más detalles

Data Warehousing - Marco Conceptual

Data Warehousing - Marco Conceptual Data Warehousing - Marco Conceptual Carlos Espinoza C.* Introducción Los data warehouses se presentan como herramientas de alta tecnología que permiten a los usuarios de negocios entender las relaciones

Más detalles

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición (cont.) Un Data Warehouse es una colección de

Más detalles

Sistemas de Data Warehousing

Sistemas de Data Warehousing Federación Médica del Interior (FEMI) Sociedad Uruguaya de Informática en la Salud (SUIS) Información en Salud Edición 2009 Sistemas de Data Warehousing Dr. Ing. Adriana Marotta (In.Co - F.Ing - UDELAR)

Más detalles

Juan Carlos Olarte B Innovation and Business Development Management. BIG DATA & ANALYTICS: El Futuro es Ahora

Juan Carlos Olarte B Innovation and Business Development Management. BIG DATA & ANALYTICS: El Futuro es Ahora Juan Carlos Olarte B Innovation and Business Development Management BIG DATA & ANALYTICS: El Futuro es Ahora Temas a Tratar Evolución y Tendencias Big Data & Analytics Data Mining, Data Science y Big Data

Más detalles

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Económicas Departamento de Sistemas Asignatura: INTELIGENCIA DE NEGOCIOS Código: 715 Plan 1997 Cátedra: DEPARTAMENTO DE SISTEMAS Carrera: Licenciado en

Más detalles

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Comunicación para Tecnimap 2010. EL BI APLICADO AL ANÁLISIS DE LAS VISITAS TURÍSTICAS Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Autor:

Más detalles

Informática II Ing. Industrial. Data Warehouse. Data Mining

Informática II Ing. Industrial. Data Warehouse. Data Mining Data Warehouse Data Mining Definición de un Data Warehouses (DW) Fueron creados para dar apoyo a los niveles medios y altos de una empresa en la toma de decisiones a nivel estratégico en un corto o mediano

Más detalles

Sistemas de Información 12/13 La organización de datos e información

Sistemas de Información 12/13 La organización de datos e información 12/13 La organización de datos e información Departamento Informática e Ingeniería de Sistemas Universidad de Zaragoza (raqueltl@unizar.es) " Guión Introducción: Data Warehouses Características: entornos

Más detalles

Construcción de sistemas de soporte a la toma de decisiones

Construcción de sistemas de soporte a la toma de decisiones INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Construcción de sistemas de soporte a la toma de decisiones M. En C. Eduardo Bustos Farías 1 Desarrolla en Sistemas de Apoyo de Decisión Como

Más detalles

Parte I: Introducción

Parte I: Introducción Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one

Más detalles

INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2

INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2 Programa de Capacitación y Certificación. INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2 Contenido PERFIL DE UN ESPECIALISTA EN BASES DE DATOS.... 3 6231. MANTENIENDO UNA BASE DE DATOS DE SQL SERVER 2008

Más detalles

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM?

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM? Introducción En vista de los comentarios y sugerencias que nos hicieron, via mail y por chat, sobre la posibilidad de la creación de nuevo conocimiento, he creido conveniente introducir el tema Data Mining

Más detalles

IMPLEMENTACIÓN DE UN DATA MART PARA UN SERVICIO DE DOSIMETRÍA EXTERNA.

IMPLEMENTACIÓN DE UN DATA MART PARA UN SERVICIO DE DOSIMETRÍA EXTERNA. X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica Radioprotección: Nuevos Desafíos para un Mundo en Evolución Buenos Aires, 12 al 17 de abril, 2015 SOCIEDAD ARGENTINA DE RADIOPROTECCIÓN

Más detalles

Microsoft SQL Server Conceptos.

Microsoft SQL Server Conceptos. Microsoft Conceptos. Microsoft 2005 es una plataforma de base de datos a gran escala de procesamiento de transacciones en línea (OLTP) y de procesamiento analítico en línea (OLAP). La siguiente tabla muestra

Más detalles

VISIÓN GENERAL HERRAMIENTAS COMERCIALES

VISIÓN GENERAL HERRAMIENTAS COMERCIALES VISIÓN GENERAL El servidor de MS SQL se ha convertido en un estándar en muchas partes de la América corporativa. Puede manejar volúmenes de datos grandes y se integra bien con otros productos de Microsoft.

Más detalles

FUNDAMENTOS DE DATA WAREHOUSE

FUNDAMENTOS DE DATA WAREHOUSE FUNDAMENTOS DE DATA WAREHOUSE 1. Qué es Data Warehouse? El Data Warehouse es una tecnología para el manejo de la información construido sobre la base de optimizar el uso y análisis de la misma utilizado

Más detalles

El almacén de indicadores de proceso de negocio en ejecución

El almacén de indicadores de proceso de negocio en ejecución X Congreso de Ingeniería de Organización Valencia, 7 y 8 de septiembre de 2006 El almacén de indicadores de proceso de negocio en ejecución Andrés Boza García 1, Angel Ortiz Bas 1, Llanos Cuenca Gonzalez

Más detalles

Estructura de Bases de datos. Leonardo Víquez Acuña

Estructura de Bases de datos. Leonardo Víquez Acuña Estructura de Bases de datos Leonardo Víquez Acuña Lenguajes de Bases de Datos Un sistema de bases de datos proporciona Un lenguaje de definición de datos para especificar el esquema de la base de datos

Más detalles

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Es un conjunto de conceptos y metodologías para mejorar la toma de decisiones.

Más detalles

RECURSOS DE TI Aplicaciones - Bibliografía FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS

RECURSOS DE TI Aplicaciones - Bibliografía FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS Sistemas de Información para la Gestión UNIDAD 3: RECURSOS DE TECNOLOGÍA DE INFORMACIÓN Aplicaciones UNIDAD 2: RECURSOS DE TI Aplicaciones 1. Administración de bases de datos e información: Sistemas de

Más detalles

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata v.1.0 Clase 5 Docente: Gustavo Valencia Zapata Temas Clase 5: Conceptos de Minería de Datos Herramientas de DM Referencias Minería de datos Proceso de DM www.gustavovalencia.com Minería de datos La minería

Más detalles

Libere el conocimiento que vive en cualquier dato. Mario Ochoa 10/09/2014

Libere el conocimiento que vive en cualquier dato. Mario Ochoa 10/09/2014 Libere el conocimiento que vive en cualquier dato Mario Ochoa 10/09/2014 En qué se diferencian las empresas exitosas de la actualidad? Datos. Valor La innovación de tecnología acelera el valor Machine

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 ANEXO A - Plan de Proyecto 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 2.- Diagrama de Gantt de la Solución DIAGRAMA DE GANTT- FASE INICIAL DOCUMENTACION Y ANALISIS2 DIAGRAMA DE GANTT- FASE FINAL

Más detalles

Tecnologías de la Información en la Gestión Empresarial

Tecnologías de la Información en la Gestión Empresarial Tecnologías de la Información en la Gestión Empresarial 1 Sesión No.8 Nombre: Procesos de Negocio y Gestión en Business Intelligence Objetivo: Al término de la sesión, el alumno ilustrará un proceso de

Más detalles

NCR APTRA PASSPORT Un centro empresarial para la captura de depósitos remotos

NCR APTRA PASSPORT Un centro empresarial para la captura de depósitos remotos NCR APTRA PASSPORT Un centro empresarial para la captura de depósitos remotos Una Mejor Forma de Depositar Cheques Para Sus Clientes Los bancos y las instituciones financieras siguen enfrentándose a los

Más detalles

ANEXO F ARQUITECTURAS DE INTELIGENCIA DE NEGOCIOS

ANEXO F ARQUITECTURAS DE INTELIGENCIA DE NEGOCIOS ANEXO F ARQUITECTURAS DE INTELIGENCIA DE NEGOCIOS 1. Realizado por: Stephanie Herrera Bautista 2. Introducción: 2.1. Propósito: Se busca realizar el planteamiento de las diversas arquitecturas que se pueden

Más detalles

INTELIGENCIA DE NEGOCIOS

INTELIGENCIA DE NEGOCIOS INTELIGENCIA DE NEGOCIOS En tiempos de incertidumbre financiera, la toma de decisiones basada en información es crucial para sobrevivir en el mundo de los negocios. Empresas de todas las industrias dependen

Más detalles

ETL: Extractor de datos georreferenciados

ETL: Extractor de datos georreferenciados ETL: Extractor de datos georreferenciados Dr. Juan Pablo Díaz Ezcurdia Doctor Honoris Causa Suma Cum Laude Master en Telecomunicaciones Master en Gestión Educativa Coordinador de la comisión de CSIRT de

Más detalles

Instituto Tecnológico de Durango

Instituto Tecnológico de Durango Instituto Tecnológico de Durango Negocios Inteligentes Unidad 3 Alumno: 05 de Octubre del 2012 I n t r o d u c c i ó n a l o s N e g o c i o s I n t e l i g e n t e s P á g i n a 1 Tabla de Contenido Tema

Más detalles

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012.

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012 programa Plan 2008 Área Complementaria Carga horaria semanal Anual/ cuatrimestral Coordinador de Cátedra Objetivos

Más detalles

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP Universidad Politécnica de Puebla UPP JESÚS ANTONIO GONZÁLEZ BERNAL 1 2 Evolución de la Tecnología BD 1960 s y antes Creación de las BD en archivos primitivos 1970 s hasta principios de los 1980 s BD Jerárquicas

Más detalles

ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS

ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS Base de Datos ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS Una base de datos es un conjunto de elementos de datos que se describe a sí mismo, con relaciones entre esos elementos, que presenta

Más detalles

INGENIERIA DE SOFTWARE I INTRODUCCIÓN A LA INGENIERIA DE SOFTWARE

INGENIERIA DE SOFTWARE I INTRODUCCIÓN A LA INGENIERIA DE SOFTWARE INGENIERIA DE SOFTWARE I INTRODUCCIÓN A LA INGENIERIA DE SOFTWARE Agenda El software. Definición de software Dominios de aplicación Software heredado La naturaleza de las webapps Ingeniería del software

Más detalles

Cloud Computing. Octubre 2011 / White paper

Cloud Computing. Octubre 2011 / White paper Cloud Computing Octubre 2011 / White paper Cloud Computing El modelo de Computación en la Nube está reemplazando el modelo tradicional de TI para numerosas organizaciones que no han podido seguir el ritmo

Más detalles

DESARROLLO E IMPLANTANCIÓN DE UN SISTEMA ACADEMICO PARA EL ICM

DESARROLLO E IMPLANTANCIÓN DE UN SISTEMA ACADEMICO PARA EL ICM DESARROLLO E IMPLANTANCIÓN DE UN SISTEMA ACADEMICO PARA EL ICM Sergio Bauz Olvera 1, Washington Jama 2 1 Ingeniero en Estadística e Informática 2003 2 Director de Tesis de Grado, Ing. Washington Jama.

Más detalles

Unidad didáctica 2: Metodologías de desarrollo de Bases de Datos. Unidad didáctica 1: Fase de análisis de requisitos Modelo E/R

Unidad didáctica 2: Metodologías de desarrollo de Bases de Datos. Unidad didáctica 1: Fase de análisis de requisitos Modelo E/R índice Módulo A Unidad didáctica 1: Introducción a las Bases de Datos Unidad didáctica 2: Metodologías de desarrollo de Bases de Datos 3 19 Módulo B Unidad didáctica 1: Fase de análisis de requisitos Modelo

Más detalles

Cómo aprovechar la potencia de la analítica avanzada con IBM Netezza

Cómo aprovechar la potencia de la analítica avanzada con IBM Netezza IBM Software Information Management White Paper Cómo aprovechar la potencia de la analítica avanzada con IBM Netezza Un enfoque de appliance simplifica el uso de la analítica avanzada Cómo aprovechar la

Más detalles

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas para la Gestión Unidad 3 Aplicaciones de Sistemas U.N.Sa. Facultad de Cs.Económicas SIG 2010 UNIDAD 3: APLICACIONES DE SISTEMAS Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) SYLLABO

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) SYLLABO UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) FACULTAD DE INGENIERIA DE SISTEMAS E INFORMATICA Escuela Académico Profesional de Ingeniería de Sistemas 1. ESPECIFICACIONES

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

Replicación de Datos en SQL Server... 3. Resumen... 3. 1. Introducción... 3. 2. Componentes del modelo de replicación... 3

Replicación de Datos en SQL Server... 3. Resumen... 3. 1. Introducción... 3. 2. Componentes del modelo de replicación... 3 REPLICACIÓN DE DATOS EN SQL SERVER CONTENIDO Replicación de Datos en SQL Server... 3 Resumen... 3 1. Introducción... 3 2. Componentes del modelo de replicación... 3 3. Escenarios típicos de la replicación...

Más detalles

Unidad 5. Conceptos y Estructuras de Archivos

Unidad 5. Conceptos y Estructuras de Archivos Unidad 5 Conceptos y Estructuras de Archivos En todos los tiempos y más aún en la era en que vivimos, el hombre tiene cada vez mas necesidad de consultar una mayor cantidad de información para poder desarrollar

Más detalles

Sybase almacenamiento y acceso a grandes volúmenes de datos para su análisis y generación de informes. Información en tiempo real para el negocio

Sybase almacenamiento y acceso a grandes volúmenes de datos para su análisis y generación de informes. Información en tiempo real para el negocio Sybase almacenamiento y acceso a grandes volúmenes de datos para su análisis y generación de informes Información en tiempo real para el negocio Obtener los datos relevantes en el momento más adecuado,

Más detalles

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR ÁREA DE CONOCIMIENTO DE CIENCIAS DEL MAR DEPARTAMENTO ACADÉMICO DE SISTEMASCOMPUTACIONALES TESIS

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR ÁREA DE CONOCIMIENTO DE CIENCIAS DEL MAR DEPARTAMENTO ACADÉMICO DE SISTEMASCOMPUTACIONALES TESIS UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR ÁREA DE CONOCIMIENTO DE CIENCIAS DEL MAR DEPARTAMENTO ACADÉMICO DE SISTEMASCOMPUTACIONALES TESIS CONSTRUCCIÓN DE UN DATAWAREHOUSE PARA DATOS DE PESCA RIBEREÑA

Más detalles

SISTEMAS DE INFORMACIÓN II TEORÍA

SISTEMAS DE INFORMACIÓN II TEORÍA CONTENIDO: EL PROCESO DE DISEÑO DE SISTEMAS DISTRIBUIDOS MANEJANDO LOS DATOS EN LOS SISTEMAS DISTRIBUIDOS DISEÑANDO SISTEMAS PARA REDES DE ÁREA LOCAL DISEÑANDO SISTEMAS PARA ARQUITECTURAS CLIENTE/SERVIDOR

Más detalles

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI)

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) OFERTAS TECNOLÓGICAS 1) GESTIÓN ORGANIZACIONAL Y LOGÍSTICA INTEGRADA: TÉCNICAS Y SISTEMAS DE INFORMACIÓN 2) GESTIÓN

Más detalles

Alicia Iriberri Dirección de Tecnologías de Información. I.- Definición del foco estratégico

Alicia Iriberri Dirección de Tecnologías de Información. I.- Definición del foco estratégico Alicia Iriberri Dirección de Tecnologías de Información I.- Definición del foco estratégico II.- Establecimiento de mediciones a través del Balanced Scorecard (Tablero de Comando) III.- Despliegue del

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios Universidad Nacional de Salta Facultad de Ciencias Económicas, Jurídicas y Sociales Sistemas de Información para la Gestión Fundamentos de la Inteligencia de Negocios Administración de Bases de Datos e

Más detalles

Sybase IQ Servidor analítico con arquitectura basada en columnas

Sybase IQ Servidor analítico con arquitectura basada en columnas Sybase IQ Servidor analítico con arquitectura basada en columnas www.sybase.es Sybase IQ Descripción Tener acceso a toda la información de que dispone su organización, con el fin de analizarla no es hoy

Más detalles

Introducción a Bases de Datos

Introducción a Bases de Datos de a M. -Tastets Universidad de Concepción,Chile www.inf.udec.cl\ andrea andrea@udec.cl II Semestre - 2007 y del s: Sistemas de y del s: de y del s: Objetivos de la Unidad Dar a conocer las características,

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios Sistemas de Información para la Gestión UNIDAD 2: Infraestructura de Tecnología de la Información Unidad 2 Infraestructura de Tecnología de la Información Estructura de TI y tecnologías emergentes. Estructura

Más detalles

MODELACION Y ANALISIS DE PROCESOS EMPRESARIALES MAPE

MODELACION Y ANALISIS DE PROCESOS EMPRESARIALES MAPE MODELACION Y ANALISIS DE PROCESOS EMPRESARIALES MAPE Thomas A. Little Ph. D Traducción Autorizada por el Autor. Traductor: MANUEL H RAMIREZ Alta Via Consulting-América Latina La Modelación y Análisis de

Más detalles

Diseño de almacén de datos para el análisis eficiente de la información de incidentes informáticos y mantenimientos.

Diseño de almacén de datos para el análisis eficiente de la información de incidentes informáticos y mantenimientos. Diseño de almacén de datos para el análisis eficiente de la información de incidentes informáticos y mantenimientos. Ing. Corso Cynthia, Ing. Luque Claudio, Ing. Ciceri Leonardo, Sr Donnet Matías Grupo

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 2 - Juan Alfonso Lara Torralbo 1 Índice de contenidos (I) Introducción a Data Mining Actividad. Tipos

Más detalles

BearSoft. SitodeCloud. Rafael Rios Bascón Web: http://www.bearsoft.com.bo Móvil: +591 77787631 Email: rafael.rios@bearsoft.com.bo

BearSoft. SitodeCloud. Rafael Rios Bascón Web: http://www.bearsoft.com.bo Móvil: +591 77787631 Email: rafael.rios@bearsoft.com.bo BearSoft Rafael Rios Bascón Web: http://www.bearsoft.com.bo Móvil: +591 77787631 Email: rafael.rios@bearsoft.com.bo CONTENIDO 1. Resumen. 3 2. Business Intelligence.. 4 3. Características del software.

Más detalles

INTEGRACION DE BASES DE DATOS EN LA WEB

INTEGRACION DE BASES DE DATOS EN LA WEB 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: INTEGRACION DE BASES DE DATOS EN LA WEB Ingeniería en Tecnologías de la Información y Comunicaciones DSD-1202 SATCA1

Más detalles

TECNOLÓGICAS EMPRESAS

TECNOLÓGICAS EMPRESAS SOLUCIONES TECNOLÓGICAS INTEGRALES PARA LAS EMPRESAS Por: Ivonne Rodríguez CONTENIDO 1. Problemas actuales en las empresas 2. Bussines Intelligence 3. Capa: Data Warehouse 4. Capa: BI en el campo empresarial

Más detalles

Capítulo VI. Estudio de Caso de Aplicación del Integrador de Información Desarrollado

Capítulo VI. Estudio de Caso de Aplicación del Integrador de Información Desarrollado Capítulo VI Estudio de Caso de Aplicación del Integrador de Información Desarrollado 6.1 Organización elegida La Organización elegida para el caso de aplicación, es la empresa CTM Tours del grupo Costamar,

Más detalles

GLOSARIO. Arquitectura: Funcionamiento, estructura y diseño de una plataforma de desarrollo.

GLOSARIO. Arquitectura: Funcionamiento, estructura y diseño de una plataforma de desarrollo. GLOSARIO Actor: Un actor es un usuario del sistema. Esto incluye usuarios humanos y otros sistemas computacionales. Un actor usa un Caso de Uso para ejecutar una porción de trabajo de valor para el negocio.

Más detalles

Aplicar Tecnologías Emergentes de Base de Datos para construir soluciones de Inteligencia de Negocios de soporte a la Toma de Decisiones

Aplicar Tecnologías Emergentes de Base de Datos para construir soluciones de Inteligencia de Negocios de soporte a la Toma de Decisiones Nombre de la asignatura: Inteligencia de Negocios Créditos: 3-2-5 Aportación al perfil Analizar, modelar, desarrollar, implementar y administrar sistemas de información para aumentar la productividad y

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

SAS Data Scientist. Plan de Formación

SAS Data Scientist. Plan de Formación SAS Data Scientist Plan de Formación www.sas.com/spain/formacion Juan Lorenzo, Director del Plan de Formación juan.lorenzo@sas.com formacion@sas.com Tel: +34 91 200 73 00 BIG DATA EL NUEVO RETO EN LAS

Más detalles

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS 1. RESEÑA HISTORICA Las exigencias competitivas del mercado hacen que las organizaciones busquen mecanismos

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Diplomado en Inteligencia de Negocios Coordinador académico: Lic. Seth Pérez Melesio

Diplomado en Inteligencia de Negocios Coordinador académico: Lic. Seth Pérez Melesio Diplomado en Inteligencia de Negocios Coordinador académico: Lic. Seth Pérez Melesio Proporcionar a los participantes los conocimientos necesarios que les permitan entender, de una manera integral y objetiva,

Más detalles

PLANEACIÓN DE SISTEMAS INFORMÁTICOS ING. KARINA RAMÍREZ DURÁN

PLANEACIÓN DE SISTEMAS INFORMÁTICOS ING. KARINA RAMÍREZ DURÁN PLANEACIÓN DE SISTEMAS INFORMÁTICOS ING. KARINA RAMÍREZ DURÁN Principios y criterios para la evaluación del ciclo de vida de desarrollo de sistemas Se pueden enunciar algunos principios para desarrollar

Más detalles

TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN. Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres

TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN. Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres Sistemas Informacionales Sistemas informacionales: Sistemas de

Más detalles

Academia de la carrera de Licenciatura Informática del Instituto Tecnológico Aguascalientes

Academia de la carrera de Licenciatura Informática del Instituto Tecnológico Aguascalientes 1. DATOS DE LA ASIGNATURA Nombre de la Asignatura: Sistemas de Soporte a la Decisión Carrera: Licenciatura en Informática Clave de la asignatura: IFS-0406 Horas teoría - horas práctica - créditos: 4-2-10

Más detalles

www.itconsulting.com.bo

www.itconsulting.com.bo Señor(a): Cliente Presente.- Santa Cruz, 23 de octubre del 2012 Distinguido Señores: REF.: COTIZACION CURSO BUSINESS INTELLIGENCE & DATAWAREHOUSE & CUBOS OLAP EN EXCEL 2010 Consultores en Tecnologías de

Más detalles

Capítulo 4. Requisitos del modelo para la mejora de la calidad de código fuente

Capítulo 4. Requisitos del modelo para la mejora de la calidad de código fuente Capítulo 4. Requisitos del modelo para la mejora de la calidad de código fuente En este capítulo definimos los requisitos del modelo para un sistema centrado en la mejora de la calidad del código fuente.

Más detalles

Data Warehousing. Arquitectura de procesos en un sistema de data warehousing. Facultad de Ingeniería Escuela de Ingeniería de Sistemas y Computación

Data Warehousing. Arquitectura de procesos en un sistema de data warehousing. Facultad de Ingeniería Escuela de Ingeniería de Sistemas y Computación Data Warehousing Arquitectura de procesos en un sistema de data warehousing Procesos en DW Un sistema completo de data warehousing lleva a cabo tres tareas: Suministrar datos al data warehouse Gestión

Más detalles

Apoyo para la Toma de Decisiones

Apoyo para la Toma de Decisiones Apoyo para la Toma de Decisiones 1 Andrés Moreno S. La pregunta más importante Para que sirven las Bases de Datos? 2 Sistema para el Apoyo en la Toma de Decisiones Sistemas que ayudan en el análisis de

Más detalles

Data Warehousing. Introducción. Facultad de Ingeniería Escuela de Ingeniería de Sistemas y Computación

Data Warehousing. Introducción. Facultad de Ingeniería Escuela de Ingeniería de Sistemas y Computación Data Warehousing Introducción Introducción Indice (I) Propiedades de un dw Arquitectura de procesos en un sistema de data warehousing Puntos clave Diseño de la base de datos de un data warehouse Indice

Más detalles

Introducción a la Minería de Datos (Data Mining)

Introducción a la Minería de Datos (Data Mining) a la Minería de Datos (Data Mining) IT-Nova Facultad de Ingeniería Informática y Telecomunicaciones Iván Amón Uribe, MSc Minería de Datos Diapositivas basadas parcialmente en material de Inteligencia Analítica

Más detalles

Soluciones Integrales en Inteligencia de Negocios

Soluciones Integrales en Inteligencia de Negocios Soluciones Integrales en Inteligencia de Negocios QUIENES SOMOS NUESTRA MISIÓN DATAWAREHOUSE MINERÍA DE DATOS MODELOS PREDICTIVOS REPORTERÍA Y DASHBOARD DESARROLLO DE APLICACIONES MODELOS DE SIMULACIÓN

Más detalles

Componentes de Integración entre Plataformas Información Detallada

Componentes de Integración entre Plataformas Información Detallada Componentes de Integración entre Plataformas Información Detallada Active Directory Integration Integración con el Directorio Activo Active Directory es el servicio de directorio para Windows 2000 Server.

Más detalles

DATA WAREHOUSING (ENERO DE 2003) Documento creado por Ing. Héctor H. Martínez Orpinel

DATA WAREHOUSING (ENERO DE 2003) Documento creado por Ing. Héctor H. Martínez Orpinel DATA WAREHOUSING (ENERO DE 2003) DEFINICIÓN UN DATA WAREHOUSING ES UN CONJUNTO DE DATOS INTEGRADOS ORIENTADOS A UNA MATERIA, QUE VARIA CON EL TIEMPO Y QUE NO SON TRANSITORIOS, LOS CUALES SOPORTAN EL PROCESO

Más detalles