Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números"

Transcripción

1 IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1

2 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números reales. Por ejemplo, una v.a. continua puede ser el tiempo de retraso con el que un alumno o un profesor llega al aula de clases ó también el peso o la estatura de los estudiantes de la FE.

3 La función de densidad de una variable aleatoria continua La función f() es una función de densidad de probabilidad para la variable aleatoria continua X, definida sobre el conjunto de los números reales, sí: 1.- f() 0 R.- f ( ) d = P ( a X b) = P( a < X b) = P( a X < b) ( ) ( ) = P a < X < b = fx d b a 3

4 La función de densidad de una variable aleatoria continua Esto es, la probabilidad de que X tome un valor en el intervalo [a, b] es el área bajo la gráfica de la función de densidad, como lo ilustra la figura 4.1 La gráfica de f(), se conoce a veces como curva de densidad. d Esto es, la probabilidad de que X tome un valor en el intervalo [a, b] es el área bajo la gráfica de la función de densidad, como lo ilustra la figura. La gráfica de f(), se conoce a veces como curva de densidad. 4

5 La función de densidad de una variable aleatoria continua Propiedades Para una v.a. X, f X () satisface las siguientes propiedades: 1. f () 0,. f ( ) d = 1 X P 1 X = f X d 3. ( ) ( ) 1 Note además que P(X = c) = 0, para cualquier número real c. 5

6 La función de densidad de una variable aleatoria continua Ejemplo Un profesor de la UNAM nunca termina su clase antes del término de la hora, mas nunca se pasa de minutos de ésta. Sea X : el tiempo que transcurre entre el término de la hora y el término efectivo de la clase. Suponga que la fdp de X viene dada por: f X ( ) k 0 = 0 dom... 6

7 La función de densidad de una variable aleatoria continua 1. Encuentre el valor de k.. Cuál es la probabilidad de que la clase termine a menos de un minuto después del término de la hora? 3. Cuál es la probabilidad de que la clase continúe entre 60 y 90 segundos después del término de la hora? 4. Cuál es la probabilidad de que la clase continúe por lo menos 90 segundos después del término de la hora? 7

8 La función de densidad de una variable aleatoria continua a 0 ) X ( ) = f d 0d k d 0d k = 3 = k 3 Como 8 3 f X ( ) d = 1 k = 1 k = 3 8 ( ) = 3 3 d b ) P X 1 = = = 0,

9 La función de densidad de una variable aleatoria continua ( ) 1,5 ) 1 1,5 = 3 1 d cp X = ( ) 19 = 3 3 0, ,5 3 3 = 1 1, d ) P X 1,5 = d d = = 1 1 = 0,

10 Función de Distribución Acumulada La distribución acumulada F() de una variable aleatoria continua X, con una función de densidad f() es: para F() () = P(X ) = f ( s ) ds De la definición de función de distribución acumulada de una variable aleatoria continua se deducen las propiedades p siguientes: 1.- F( ) = 0.- F( ) = P( 1 X ) = F( ) F( 1 ) df ( ) 4.- = f ( ) d 10

11 Función de Distribución Acumulada 11

12 Función de Distribución Acumulada Se ilustra el cálculo de probabilidades entre a y b como una diferencia entre las probabilidades acumuladas en la fda ( áreas ). Cálculo de P a X b acumuladas. ( ) a partir de las probabilidades 1

13 Esperanza Matemática Esperanza Matemática Sea X una variable aleatoria continua con función de densidad f(). Se llama esperanza matemática o valor esperado, valor medio o media de X al número real. E ( X ) = μ = f ( ) d Significado de la esperanza Como valor medio teórico de todos los valores que puede tomar la variable. Representa una medida de centralización. 13

14 Esperanza Matemática Ejemplo: La distribución de la cantidad de grava (en toneladas) vendida a una empresa en particular proveedora de materiales para la construcción, en una semana dada, es una v.a. X continua con fdp: f X ( ) ( ) = 0 0 de otra manera Cuántas toneladas esperarías que se vendan durante esa semana? 14

15 Esperanza Matemática Solución: Por definición tenemos: 1 3 = = = = 8 0 E X f d 1 d 0,375 ( ) ( ) 3 ( ) X Lo cual significa que esperaríamos que se vendieran 0,375 [Ton] ó 375 [kg] de grava a la empresa proveedora de materiales para la construcción. 15

16 Esperanza Matemática 16

17 Varianza Definición Medida del cuadrado de la distancia promedio entre la media y cada elemento de la población. Sea X una variable aleatoria continua con distribución de probabilidad f() y media μ. La varianza de X es calculada por medio de: σ [ ] ( X μ) = ( μ) f ( ) d = f ( ) d μ = E 17

18 Desviación estándar 18

19 IV.1. La distribución Uniforme 19

20 IV.1. La distribución Uniforme b f ( ) d = 1 a μ = b + E [ ] = Var() () = ( b a) 1 a 0

21 IV.1. La distribución Uniforme Densidad de una v.a. Uniforme 1

22 IV.. Distribución de Probabilidad Eponencial

23 IV.. Distribución de Probabilidad Eponencial 0 λe λ d b λ lim e b λ 0 d 3

24 IV.. Distribución de Probabilidad Eponencial Sea: Entonces: lim b e λ t = dt d dt e λ = λe λ λ = λe λ d λ ( λ) d = lim e ( λ ) b b 0 b 0 d Realizando el cambio de variable Sustituyendo: t lim b b 0 e t dt = lim b ( t e ) λ = e ( λ ) b = lim e b 0 b 0 1 = lim b e λ b 0 4

25 IV.. Distribución de Probabilidad Eponencial Evaluando la integral: = lim lim = 0 lim b λ b b λ ( 0) 0 e b e e [ ( )] lim 1 = lim ( 1 ) = 1 1 = 0 lim = = b 1 b b Lo cual queda demostrado. 5

26 IV.. Distribución de Probabilidad Eponencial Función de distribución: Demostración: F( ) = 0 λe λ t dt La integral se resuelve por cambio de variable: Sea: w = e λt dw t = λe λ d dw = λe λt dt 6

27 IV.. Distribución de Probabilidad Eponencial Entonces: t F = ( ) λe λ dt 0 λt ( λ) dt = e ( )dt λt F( ) = e λ 0 0 Realizando el cambio de variable: F F λt ( ) e ( ) = λ dt 0 w ( ) e dw = = 0 e w 0 7

28 IV.. Distribución de Probabilidad Eponencial F( ) F ( ) F( ) F( ) F ( ) = e = e = = = 1 w 0 λt 0 [ ( )] λ λ 0 e e [ ] λ 0 e e e λ 8

29 IV.. Distribución de Probabilidad Eponencial La media y la varianza de la distribución eponencial son: 1 E() ( ) = λ 1 Var ( ) = λ Respectivamente. 9

30 IV.. Distribución de Probabilidad Eponencial Propiedad de la pérdida de memoria de la distribución eponencial. 1. La distribución eponencial carece de memoria, es decir: t P (X > + > ) = P(X > t) X. La distribución eponencial es la generalización al caso continuo de la distribución Geométrica. 3. La distribución eponencial aparece, en ocasiones, caracterizada utilizando como parámetro la media, 1 E( ) = μ = λ 4. La distribución eponencial se caracteriza por tener una razón de fallo constante; la probabilidad de fallar en cualquier intervalo no depende de la vida anterior. Es, por lo tanto, adecuada para describir la aparición ió de fallos al azar. La razón de fallo fll viene dada dd por: h(t) = λ. 30

31 IV.3. Distribución de Probabilidad Normal El 1 de noviembre de 1733, Abraham DeMoivre desarrolló la ecuación matemática de la curva normal. De igual manera proporcionó una base sobre la cual se fundamenta una gran parte de la teoría de la estadística inductiva. A la distribución normal se le llama también Distribución Gaussiana en honor a Karl Friedrich Gauss. 31

32 IV.3. Distribución de Probabilidad Normal Definición Una variable aleatoria continua X tiene una distribución normal con parámetros μ y σ, siendo μ un número real cualquiera y σ > 0, siendo su función de densidad de probabilidad de la forma siguiente: Con: f < < < μ < σ > 0 ( ) = ( μμ ) 1 σ e πσ 3

33 IV.3. Distribución de Probabilidad Normal Para ser una función de densidad de probabilidad debe de satisfacer las siguientes condiciones. 1. Que f() 0para toda que pertenece a los números reales. Que por ser una función eponencial lo cumple.. f ( ) d = 1 33

34 IV.3. Distribución de Probabilidad Normal Propiedades. 1. Es unimodal.. La moda, mediana y moda poseen el mismo valor. 3. El dominio de f() son todos los números reales y su imagen está contenida en los reales positivos. 4. Es simétrica respecto de la recta μ. Esto se debe a que: f(μ + ) = f(μ ) 5. Tiene una asíntota horizontal en y = 0 En efecto y = 0 es una asíntota horizontal, ya que: 34 ( ) 0 lim f =

35 IV.3. Distribución de Probabilidad Normal 6. Alcanza un máimo absoluto en el punto: μ, 1 π σ Demostración Sea: f ( ) 1 = e πσ ( ) 1 μ σ 35

36 IV.3. Distribución de Probabilidad Normal Derivando con respecto a μ. f f Igualando a cero: ( ) ( ) = = ( μ ) ( μ) ( ) 1 σ e 1 πσ ( μ ) 1 σ ( μ) σ e πσ σ ( μ ) ( μ ) 1 σ e = πσ σ 0 De donde resulta: μ = 0 = μ 36

37 IV 3 Distribución de Probabilidad Normal IV 3 Distribución de Probabilidad Normal IV.3. Distribución de Probabilidad Normal IV.3. Distribución de Probabilidad Normal Obteniendo la segunda derivada: ( ) ( ) ( ) + = 1 σ σ μ σ μ f f f ( ) ( ) ( ) ( ) + = 1 4 σ σ μ σ σ σ f f f ( ) ( ) ( ) = 1 4 σ σ μ σ σ f f ( ) ( ) ( ) = 1 1 μ σ σ f f ( ) ( ) σ σ f f 37

38 IV.3. Distribución de Probabilidad Normal De donde resulta: Entonces: Y como: Por lo tanto: 1 σ ( ) = f f f(μ) < 0 = μ ( μ) = 1 πσ Lo que prueba que el máimo se encuentra en: 38 1 μ, μσ

39 IV.3. Distribución de Probabilidad Normal 7. Es creciente en el intervalo (, μ) y decreciente en (μ, ): Si < μ, es f () > 0, entonces la función es creciente Si > μ, es f () < 0, entonces la función es decreciente 39

40 IV.3. Distribución de Probabilidad Normal 8. Posee dos puntos de infleión en: = μ σ = μ + σ Considerando la segunda derivada, la obtenida en el punto seis, e igualando a cero: 1 ( ) ( μ) f 1 = 0 σ σ Despejando: ( μ) = 1 σ De donde resulta: ( μ) = σ Por lo tanto: μ = σ y μ = σ = σ + μ y = μ σ 40

41 IV.3. Distribución de Probabilidad Normal 9. Los parámetros μ y σ son la media y la varianza respectivamente. 41

42 IV31 IV.3.1. Distribución Normal Tipificada Teorema. Si X tiene una distribución normal con la media y la desviación estándar, entonces: X μ Z = σ Donde: X es la variable de interés. μ: es la media. σ: es la desviación estándar Z: es el número de desviaciones i estándar ád de X respecto a la media de esta distribución. La distribución normal estándar tiene media cero y varianza 1, y se denota como N(0,1). 4

43 IV31 IV.3.1. Distribución Normal Tipificada Propiedades. 1. Su dominio son todos los números reales y su imagen son los números reales positivos.. Es simétrica respecto al eje de ordenadas. 3. Tiene una asíntota horizontal en y = Alcanza un máimo absoluto en el punto (0, ). π 5. Es creciente en el intervalo (, 0) y decreciente en el intervalo (0, ). 6. Posee dos puntos de infleión en = 1 1 y = 1, respectivamente. 43

44 IV31 IV.3.1. Distribución Normal Tipificada Áreas de la normal: 1. Aproimadamente el 68% de todos los valores se encuentran dentro de una desviación estándar.. Aproimadamente el 95.5% de todos los valores se encuentran dentro de dos desviaciones estándar. 3. Aproimadamente el 99.7% de todos los valores se encuentran dentro de tres desviaciones estándar. 44

45 IV31 IV.3.1. Distribución Normal Tipificada 45 Probabilidades bilid d asociadas con una distribución ib ió normal

46 Ejemplos de distribución normal Ejemplo 1 El tiempo que tarda un automovilista en reaccionar a las luces de freno traseras de otro vehículo al desacelerar, es crítico para ayudar a evitar una colisión. Suponga que esta variable se puede modelar como una distribución normal con media de 1,5 segundos y desviación estándar de 0,46 segundos. Cuál es la probabilidad de que el tiempo de reacción se encuentre 1 y 1,75 segundos? 46

47 Ejemplos de distribución normal Solución: 47

48 Ejemplos de distribución normal A continuación se muestra el cálculo de esta probabilidad en forma gráfica, mostrando la equivalencia en el área entre la distribución normal y la estándar 48

49 Ejemplos de distribución normal Ejemplo En un quiosco de periódicos se supone que el número de ventas diarias se distribuye normalmente con media 30 y varianza. Determinar: a) Probabilidad de que en un día se vendan entre 13 y 31 periódicos b) Determinar el máimo número de periódicos que se venden en el 90% de las ocasiones 49

50 Ejemplos de distribución normal 50

51 Ejemplos de distribución normal Ejemplo 3. Los pesos de 000 soldados presentan una distribución normal de media 65 kg y desviación típica 8 kg. Calcula la probabilidad de que un soldado elegido al azar pese: a) Más de 61 kg. b) Entre 63 y 69 kg. c) Menos de 70 kg. d) Más de 75 kg 51

52 Ejemplos de distribución normal 5

53 Ejemplos de distribución normal Ejercicio En un estudio estadístico sobre la altura de los españoles y de los ingleses. Se han obtenido los siguientes datos: Nacionalidad Españoles Ingleses Media Desviación típica a) Quién es más alto en su país, un español que mide 177 cm o un inglés que mide 181 cm? b) Cuál es la probabilidad de que un español mida más de 180 cm? c) Cuál es la probabilidad de que un ingles mida entre 160 y 170 cm? d) Cuál es la probabilidad de que un español sea más alto que un inglés? 53

54 Ejemplos de distribución normal 54

55 Apéndice Distribución de Probabilidad Normal f ( ) d = 1 Demostración Sea: f ( ) Como: = I ( μ ) 1 σ e πσ ( ) ( μ ) 1 σ = f d = e d πσ Estableciendo la siguiente igualdad: t μ = σ 55

56 Apéndice Derivando: Entonces: Por lo que: dt 1 e π 1 = d σ ( ) 1 μ 1 σ 1 e π d σ t dt Considerando I : I t s 1 1 = e dt e ds π π 56

57 Apéndice Por lo que ahora tenemos una integral doble de la siguiente forma: ( s + t ) 1 = I π e dsdt De donde resulta: ( s + t ) 1 I = e dsdt ππ 57

58 Apéndice Realizando un cambio a coordenadas polares. Sea: s = r cos α Y t = r sen α Por lo que el área ds y dt se transforma en rdrd α, y los nuevos intervalos son: - <s < y - <t < 0 < r < y 0 < α < π 58

59 Apéndice Entonces π ( r sen α + r cos α ) 1 I e = rdrdα π 0 0 π r ( sen α + cos α ) 1 I = e rdrdα π I I = = 1 π 1 π 0 0 π 0 0 e r π e r 0 0 ( 1) rdrd α rdrdα 59

60 Apéndice Resolviendo: Por cambio de variable Sea: La integral resultante es: r e 0 rdr r w = dw = r dw = rdr I r ( ) e ( 1)rdr = 0 60

61 Apéndice Por lo que: w ( ) e dw = lim 0 b 0 w dw r lim lim w b e 0 = e b e 0 Sustituyendo: b o lim e lim e b b = lim b 1 lim1 b b e = [ 0 1] = 1 61

62 Apéndice Entonces: π π 1 d α = α = π 0 = π 0 0 Por lo tanto: I 1 = π π [ ] = 1 Lo cual queda demostrado. I = 1 6

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

CAPÍTULO 6: VARIABLES ALEATORIAS

CAPÍTULO 6: VARIABLES ALEATORIAS Página 1 de 11 CAPÍTULO 6: VARIABLES ALEATORIAS En el capítulo 4, de estadística descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y en el capítulo 5 se trataron los fundamentos

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π DISTRIBUCIÓN NORMAL. Es la más importante de las distribuciones teóricas, es también conocida con los nombres de curva normal y curva de Gauss. De Moivre publico en 1773 su trabajo sobre la curva normal

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

JUNIO Opción A

JUNIO Opción A Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

Distribuciones Continuas

Distribuciones Continuas Capítulo 5 Distribuciones Continuas Las distribuciones continuas mas comunes son: 1. Distribución Uniforme 2. Distribución Normal 3. Distribución Eponencial 4. Distribución Gamma 5. Distribución Beta 6.

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Tema 13. Distribuciones de Probabilidad Problemas Resueltos

Tema 13. Distribuciones de Probabilidad Problemas Resueltos Tema 3. Distribuciones de Probabilidad Problemas Resueltos Distribución de Probabilidad. Una variable aleatoria discreta, X, se distribuye como se indica en la siguiente tabla: ( ) a) Halla el valor de

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

Pendientes de Matemáticas Aplicadas a las Ciencias Sociales I b) 5-2

Pendientes de Matemáticas Aplicadas a las Ciencias Sociales I b) 5-2 . ARITMÉTICA OPERACIONES CON FRACCIONES. Realiza las siguientes operaciones teniendo en cuenta el orden de prioridades: 8-5 ( 5. Opera y simplifica: 5 5 5+ + ( ) 5 5 5 : c) 7-4 -(5-5- + PROPIEDADES DE

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

Cuáles son las características aleatorias de la nueva variable?

Cuáles son las características aleatorias de la nueva variable? Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II Septiembre 2013 Selectividad-Opción A Tiempo: 90 minutos Problema 1 2 puntos Se consideran las matrices A = 3 8. 3 5 0 2 3 0 y B = a Calcúlese la matriz

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Distribución normal estándar. Juan José Hernández Ocaña

Distribución normal estándar. Juan José Hernández Ocaña Distribución normal estándar Juan José Hernández Ocaña Tipos de variables jujo386@hotmail.com Tipos de variables Cualitativas Son las variables que expresan distintas cualidades, características o modalidades.

Más detalles

MANTENIMIENTO INDUSTRIAL.

MANTENIMIENTO INDUSTRIAL. REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL MANTENIMIENTO INDUSTRIAL. Realizado por: Ing. Danmelys Perozo UNIDAD II: ESTADÍSTICAS DE FALLAS

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si

Más detalles

CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA

CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA 1 (4.1) DISTRIBUCIÓN NORMAL 2 4.1.1- ASPECTOS GENERALES: Al graficarse los diferentes valores obtenidos de una variable X se obtiene una distribución

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

Cálculo de derivadas

Cálculo de derivadas 0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

CONCEPTOS BÁSICOS DE INFERENCIA

CONCEPTOS BÁSICOS DE INFERENCIA CONCEPTOS BÁSICOS DE INFERENCIA Ciencia encargada de suministrar diferentes técnicas y procedimientos que permitan recolectar, organizar, analizar e interpretar datos. La estadística es un método empleado

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3 [4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine

Más detalles

Habilidades Matemáticas. Alejandro Vera

Habilidades Matemáticas. Alejandro Vera Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos

Más detalles

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2 Curso de nivelación Estadística y Matemática Cuarta clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2016 Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria

Más detalles

La Distribución Normal

La Distribución Normal La Distribución Normal Alejandro Vera Trejo La Distribución ib ió Normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones

Más detalles

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,

Más detalles

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017 INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos

Más detalles

UNIDAD Nº 4 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD

UNIDAD Nº 4 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD UNIDAD Nº DISTRIBUCIONES CONTINUAS DE PROBABILIDAD Reportaje a Steve Hanke, Ex? Asesor de Domingo Cavallo. El Gobierno no continúa las reformas, y todo es confusión. El especialista en convertibilidad

Más detalles

Curso: 2º Grupo: B Día: 18 - IV CURSO

Curso: 2º Grupo: B Día: 18 - IV CURSO 3ª EVALUACIÓN Curso: º Grupo: B Día: 18 - IV - 008 CURSO 007-08 EJERCICIO 1 (1.75 puntos) Sea la población {1, 5, 7}. Escriba todas las muestras de tamaño, mediante muestreo aleatorio simple, y calcule

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA JUNIO (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA JUNIO (RESUELTOS por Antonio Menguiano) I.E.S. CSTELR BDJOZ. Menguiano PRUEB DE CCESO (LOGSE) UNIVERSIDD DE VLENCI JUNIO (RESUELTOS por ntonio Menguiano) MTEMÁTICS II Tiempo máimo: horas Se elegirá el Ejercicio o el B, del que sólo se harán

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Lista de Ejercicios (Parte 1)

Lista de Ejercicios (Parte 1) ACT-11302 Cálculo Actuarial III ITAM Lista de Ejercicios (Parte 1) Prof.: Juan Carlos Martínez-Ovando 15 de agosto de 2016 P0 - Preliminar 1. Deriva las expresiones de las funciones de densidad (o masa

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Septiembre 010 (Prueba Específica) SEPTIEMBRE 010 Opción A 1.- Se considera el sistema de ecuaciones: x y = 3x+ y = 4 4x + y = a a) Clasifica el sistema en función de sus posibles soluciones para los distintos

Más detalles

T. 2 Modelos teóricos de distribución de probabilidad

T. 2 Modelos teóricos de distribución de probabilidad T. 2 Modelos teóricos de distribución de probabilidad 1. La distribución binomial 2. La distribución o curva normal El conocimiento acumulado en Psicología ha permitido evidenciar como algunas variables

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del

Más detalles

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos 5.3-1 El % de los DVDs de una determinada marca son defectuosos. Si se venden en lotes de 5 unidades, calcular

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Soluciones

Matemáticas Aplicadas a las Ciencias Sociales II Soluciones Prueba etraordinaria de septiembre. Matemáticas Aplicadas a las Ciencias Sociales II Soluciones.- Un sastre dispone de 8 m de tela de lana y m de tela de algodón. Un traje de caballero requiere m de algodón

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

TEOREMAS DE FUNCIONES DERIVABLES 1. Teorema de Rolle

TEOREMAS DE FUNCIONES DERIVABLES 1. Teorema de Rolle Cálculo _Comisión Año 6 TEOREMAS DE FUNCIONES DERIVABLES Una de las propiedades que poseen las funciones derivables y continuas en intervalos cerrados, expresa que al dibujar la curva de una de ellas y

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7. Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles