OPERACIONES UNITARIAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPERACIONES UNITARIAS"

Transcripción

1 OPERACIONES UNITARIAS 2016

2 TEMA 2 - CALOR

3 INTRODUCCION

4 MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía en forma de calor. Por lo tanto, las leyes que rigen la transferencia de calor yeltipo de aparatos, cuyo fin principal es el control del flujo de calor, tienen una gran importancia Cuando dos objetos que están a temperaturas diferentes se ponen en contacto térmico, el calor fluye desde el objeto de temperatura más elevada hacia el de temperatura más baja. El flujo neto se produce siempre en el sentido de la temperatura decreciente.

5 MECANISMOS DE TRANSFERENCIA DE CALOR INTERCAMBIO DE CALOR ENTRE CUERPOS CALIENTES Y FRIOS Tº > Tº Q FUENTE RECEPTOR

6 MECANISMOS DE TRANSFERENCIA DE CALOR LA MATERIA SE PRESENTA EN TRES ESTADOS: FASE SÓLIDA FASE LIQUIDA FASE GASEOSA

7 MECANISMOS DE TRANSFERENCIA DE CALOR CUANDO LA TRASFERENCIA DE CALOR ENTRE LA FUENTE Y EL RECEPTOR PROVOCA VARIACION DE TEMPERATURA CALOR SENSIBLE Q S = M cp Tº

8 MECANISMOS DE TRANSFERENCIA DE CALOR CUANDO LA TRASFERENCIA DE CALOR ENTRE LA FUENTE Y EL RECEPTOR PROVOCA UN CAMBIO DE FASE CALOR LATENTE Q L = M L o

9 MECANISMOS DE TRANSFERENCIA DE CALOR EN GENERAL LA TRASFERENCIA DE CALOR ENTRE LA FUENTE Y EL RECEPTOR PROVOCA UN CAMBIO DE FASE Y DE Tº CALOR TOTAL Q T = Q L + Q S = M cp Tº + M L o

10 MECANISMOS DE TRANSFERENCIA DE CALOR Cuantos Kg/h de agua se necesitan para enfriar 500 Kg/h de vapor saturado, en un condensador barométrico, si se dispone de agua a 25 C Agua de enfriamiento Vapor no condensado mas aire Vapor saturado Agua de Enfriamiento y de condensación

11 MECANISMOS DE TRANSFERENCIA DE CALOR ESTUDIO DE LAS VELOCIDADES A LAS QUE EL CALOR SE INTECAMBIA ENTRE FUENTES Y RECEPTORES DE CALOR Q FUENTE RECEPTOR

12 MECANISMOS DE TRANSFERENCIA DE CALOR Mecanismos de transmisión de calor Conducción: transferencia de energía desde cada porción de materia a la materia adyacente por contacto directo, sin intercambio, mezcla o flujo de cualquier material. Convección: transferencia de energía mediante la mezcla íntima de distintas partes del material: se produce mezclado e intercambio de materia. Convección natural: el origen del mezclado es la diferencia de densidades que acarrea una diferencia de temperatura. Convección forzada: la causa del mezclado es un agitador mecánico o una diferencia de presión (ventiladores, compresores...) impuesta externamente. Radiación: transferencia de energía mediante ondas electromagnéticas, emanadas por los cuerpos calientes y absorbidas por los cuerpos fríos.

13 MECANISMOS DE TRANSFERENCIA DE CALOR CONCLUSION CONDUCCION: Transferencia de calor a través de un material sólido (pared). CONVECCION: Transferencia de calor entre partes calientes y frías de un fluido por mezclas. ( agua que se calienta en un recipiente). RADIACION: Transferencia de energía radiante desde una fuente a un receptor (Sol Tierra).

14 CALOR POR CONDUCCION

15 CONDUCCIÓN La conducción es el único mecanismo de transmisión del calor posible en los medios sólidos opacos. Cuando en tales medios existe un gradiente de temperatura, el calor se transmite de la región de mayor temperatura a la de menor temperatura debido al contacto directo entre moléculas.

16 LEY DE FOURIER ESTABLECIDA HACE MAS DE UN SIGLO PARA SISTEMAS QUE INVOLUCRAN FLUJOS DE: CALOR, ELECTRICIDAD, ETC POTENCIAL FLUJO α RESISTENCIA

17 CIRCUITO HIDRAULICO W FLUJO RUGISIDAD P PRESION FLUJO α RUGOSIDAD

18 Ley de Fourier: determinación del flujo de calor Conducción. Si existe un gradiente de temperatura en una sustancia, el calor fluye sin que tenga lugar un movimiento observable de la materia. El flujo de calor de este tipo recibe el nombre de conducción, y de acuerdo con la ley de Fourier, el flujo de calor es proporcional al gradiente de la temperatura y de signo opuesto. Para el flujo de calor en una dimensión, la ley de Fourier es Q ɺ x X

19 FLUJO DE CALOR T1 Q 1 CONDUCTANCIA = RESISTENCIA T2 FLUJO α CONDUCTANCIA. POTENCIAL Q Q = --- = CONDUCTANCIA. ΔT t

20 FLUJO DE CALOR Q T1 CONDUCTIVIDAD TERMICA [k] T2 A CONDUCTANCIA = k --- L A Q =k--- ΔT L

21 FLUJO DE CALOR CONDUCCIÓN EN ESTADO ESTACIONARIO Gradientes de temperatura en el exterior de tanques aislados: a) flujo de calor hacia el tanque; b) flujo de calor desde el tanque.

22 COEFICIENTE DE CONDUCTIBILIDAD TERMICA k; PROPIEDAD DE TRANSPORTE DE LA MATERIA a) SUSTANCIA ISOTROPICA b) Tº O RANGO DE Tº k= ko + a T c) MATERIAL COMPUESTO d) MATERIAL AMORFO PESO ESPECIFICO e) SUSTANCIA HIGROSCOPICA % HUMEDAD f) SUSTANCIA GASEOSA PRESION

23 ECUACION GENERAL DE LA CONDUCCION CONDUCCIÓN DE CALOR EN ESTADO ESTACIONARIO Z dq' dq dt ---- = k da dt dx dq 1 dq 2 Y x dx x + dx X A Q =k --- ΔT L

24 FLUJO DE CALOR CONDUCCIÓN DE CALOR EN ESTADO NO ESTACIONARIO Bloque de material de espesor 2s Temperatura inicial uniforme T 0 Temperatura final T s en un tiempo corto t T Las dos superficies son isotérmicas Gradiente de temperatura en x El calor que entra en el intervalo de tiempo dt en x El gradiente a la distancia x + dx

25 FLUJO DE CALOR CONDUCCIÓN DE CALOR EN ESTADO NO ESTACIONARIO El flujo de calor que sale de la capa a la distancia x + dx Exceso de calor que entra y que sale, correspondiente a la acumulación de calor en la capa dx La acumulación de calor en la capa provoca un aumento de temperatura de la misma

26 FLUJO DE CALOR CONDUCCIÓN DE CALOR EN ESTADO NO ESTACIONARIO cp= calor específico ρ= densidad de la capa Calor acumulado = al producto de la masa (volumen por densidad) por el calor específico y por el incremento de temperatura Aplicando un balance de calor α = difusividad térmica del sólido y es una propiedad del material

27 FLUJO DE CALOR CONDUCCIÓN DE CALOR EN ESTADO NO ESTACIONARIO calentamiento o enfriamiento, por ambos lados, de un bloque infinito de espesor conocido, con temperatura constante de las superficies

28 ECUACION GENERAL DE LA CONDUCCION ECUACION DEL ESTADO ESTACIONARIO dt dq = k da dx ( Kcal / hora )

29 Conductividades térmicas de algunos materiales a temperatura ambiente La conductividad térmica cambia con el estado de agregación Material K k (W m -1 K -1 ) Vapor de agua Aire Agua líquida 0.61 Mercurio 8.4 Espuma de poliestireno Papel 0.13 Vidrio Hielo 2.2 Plomo 34 Acero 45 Aluminio 204 Cobre 380 Malos conductores Buenos conductores... pero la capacidad de transporte de calor no depende sólo de la conducción

30 EJEMPLO 1: CONDUCCIÓN DEL CALOR (Placa plana) Conductividad térmica Área A Espesor Calor transferido en el tiempo t Q= ɺ Q t

31 EJEMPLO 2: CONDUCCIÓN DEL CALOR (tabique) Flujo de calor a través del tabique de una habitación, de 34 cm de espesor, siendo las temperaturas interior y exterior de 22 ºC y 5 ºC respectivamente. Tómese como valor de la conductividad k = 0.25 W m -1 K -1. Gradiente de temperaturas dt Tdentro Tfuera 22 5 = = = 50K m dx x x 0.34 dentro fuera Gradiente de temperaturas constante la temperatura varía linealmente 1 T dentro Qɺ x S dt dx Densidad de flujo T fuera Qɺ dt = λ = = 12.5 W m S dx 2 x fuera 0.34 m x dentro Gradiente de temperaturas constante densidad de flujo constante

32 RESISTENCIA TERMICA Cuando el calor se transfiere a través de una pared aparece una resistencia a la conducción Q ɺ T2 T = λ 1 A x T2 T1 = x/ λ = T 1 2 T R = T R Conductividad Resistencia térmica en W-1 m2 K Similitud con circuitos eléctricos x V I = 0 R Qɺ T = A R

33 EJEMPLO 3: RESISTENCIAS EN SERIE R 1 R 2 R 1 R 2 Ejemplo Calcúlese la resistencia térmica de la pared de un refrigerador, formada por tres capas de material, cuyos espesores son, de dentro afuera 2 cm, 10 cm y 3 cm. Las conductividades térmicas de los tres materiales son, respectivamente, 0.25, 0.05 y 0.20 W m -1 K (cm) x R1 = = = 0.08 W λ x R2 = = = 2.00 λ W m 2 K -1 m 2 K Resistencias en serie R= R + R + R 2.23 W-1 m2 K 1 2 3= x R3 = = = 0.15 λ W m 2 K

34 EJEMPLO 4:CONDUCCION EN EL AISLAMIENTO DE UNA TUBERIA T T( r) = r a ln + T ln b r a ln b T b r a T 1

35 EJEMPLO 4:CONDUCCION EN EL AISLAMIENTO DE UNA TUBERIA ºK 300 ºK 380 T (ºC) ,00 0,02 0,04 0,06 0,08 0, r (m) 10 cm

36 BIBLIOGRAFIA - Apuntes de la cátedra de Operaciones Unitarias. - PROCESOS DE TRANSFERENCIA DE CALOR Donald Q. Kern. - TRANSMISIÓN DEL CALOR - Cao.

37 Los Profesores de la Cátedra OPERACIONES UNITARIAS Agradecemos su asistencia!

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval CUADERNILLO DE FÍSICA. TERCER GRADO. I.- SUBRAYE LA RESPUESTA CORRECTA EN LOS SIGUIENTES ENUNCIADOS. 1.- CUANDO DOS CUERPOS CON DIFERENTE TEMPERATURA SE PONEN EN CONTACTO, HAY TRANSMISIÓN DE: A) FUERZA.

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

[CONDUCTIVIDAD TÉRMICA]

[CONDUCTIVIDAD TÉRMICA] Curso 2009-10 Conductividad Térmica D.Reyman U.A.M. Curso 2009-10 Curso2009-10 Página 1 Conductividad Térmica. Ley de Fourier Es un proceso de transporte en el que la energía migra en respuesta a un gradiente

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D.

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D. TEMPERATURA Y CALOR Tomás Rada Crespo Ph.D. Temperatura y Calor Tengo Calor!!!! Tengo Frio!!!! Este café esta frío!!!! Uff qué temperatura!!!! Esta gaseosa esta caliente!!!! En el lenguaje cotidiano, es

Más detalles

ORIGEN DE LA ENERGÍA GEOTÉRMICA Y MECANISMOS DE PROPAGACIÓN DEL CALOR

ORIGEN DE LA ENERGÍA GEOTÉRMICA Y MECANISMOS DE PROPAGACIÓN DEL CALOR 2 ORIGEN DE LA ENERGÍA GEOTÉRMICA Y MECANISMOS DE PROPAGACIÓN DEL CALOR 2 1 Origen de la energía geotérmica La energía que llega cada segundo a la superficie de la Tierra, desde su interior, en forma de

Más detalles

DINÁMICA DE LAS MARCAS DE FUEGO

DINÁMICA DE LAS MARCAS DE FUEGO DINÁMICA DE LAS MARCAS DE FUEGO Dentro de esta disciplina, la identificación y análisis correcto de estas señales de la combustión supone conocer que marcas producen los tres tipos de transmisión de calor,

Más detalles

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen

Más detalles

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales MECÁNICA DE FLUIDOS Docente: Ing. Alba Díaz Corrales Fecha: 1 de septiembre 2010 Mecánica de Fluidos Tipo de asignatura: Básica Específica Total de horas semanales: 6 Total de horas semestrales: 84 Asignatura

Más detalles

CALOR Y TEMPERATURA CALOR

CALOR Y TEMPERATURA CALOR CALOR Y TEMPERATURA El calor y la temperatura no son sinónimos, podemos decir que están estrictamente relacionados ya que la temperatura puede determinarse por la cantidad de calor acumulado. El calor

Más detalles

FOURIER Y NEWTON). LEY DE FICK PARA DIFUSIÓN

FOURIER Y NEWTON). LEY DE FICK PARA DIFUSIÓN INTRODUCCIÓN. SEMEJANZA ENTRE TRANSFERENCIA DE MASA, CALOR Y MOMENTO (LEYES DE FICK, FOURIER Y NEWTON). LEY DE FICK PARA DIFUSIÓN MOLECULAR. E-mail: williamsscm@hotmail.com TRANSFERENCIA DE MASAS El transporte

Más detalles

CAPITULO 5. Presión. Temperatura. Transmisión de calor. Producción horaria de vapor. Título o calidad de vapor. Vapor húmedo, seco, sobrecalentado

CAPITULO 5. Presión. Temperatura. Transmisión de calor. Producción horaria de vapor. Título o calidad de vapor. Vapor húmedo, seco, sobrecalentado CAPITULO 5 VAPOR Presión Temperatura Transmisión de calor Producción horaria de vapor Título o calidad de vapor Vapor húmedo, seco, sobrecalentado Arrastre FIMACO S.A. Capítulo 5 Página 1 VAPOR Calor El

Más detalles

CALEFACCIÓN TEMA I. DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA

CALEFACCIÓN TEMA I. DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA CALEFACCIÓN TEMA I. CONCEPTOS FÍSICOS BÁSICOS. MANUEL ROCA SUÁREZ JUAN CARRATALÁ FUENTES

Más detalles

Tc / 5 = Tf - 32 / 9. T = Tc + 273

Tc / 5 = Tf - 32 / 9. T = Tc + 273 ENERGIA TERMICA Energía Interna ( U ) : Es la energía total de las partículas que lo constituyen, es decir, la suma de todas las formas de energía que poseen sus partículas; átomos, moléculas e iones.

Más detalles

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O Calor y temperatura 1ª) Qué es la energía térmica? La energía térmica es la energía que posee un cuerpo (o un sistema material) debido al movimiento

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

La energía interna. Nombre Curso Fecha

La energía interna. Nombre Curso Fecha Ciencias de la Naturaleza 2.º ESO Unidad 10 Ficha 1 La energía interna La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas que la componen.

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

2 Conducción Unidimensional

2 Conducción Unidimensional 2 Conducción Unidimensional 2.1 Soluciones simples en 1D 2.1.1 Conducción estacionaria sin fuentes. Paredes planas Un problema puede presentar características físicas que permiten simplificar las ecuaciones

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h.

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h. SISTEMA DE UNIDADES EQUIVALENCIAS DE UNIDADES DE ENERGÍA 1 cal = 4,18 J 1 J = 0,24 cal 1Kwh = 3,6 x 10 6 J PROBLEMAS SOBRE ENERGÍA MECÁNICA FÓRMULAS: Energía potencial gravitatoria:. Energía cinética:.

Más detalles

ALUMNO: AUTORA: Prof. Ma. Laura Sanchez

ALUMNO: AUTORA: Prof. Ma. Laura Sanchez h ALUMNO: AUTORA: Prof. Ma. Laura Sanchez 3.1 Temperatura A menudo solemos confundir calor con temperatura, cuando decimos hoy hace calor, ó el helado está frío nos estamos refiriendo a sensaciones térmicas

Más detalles

Fundamentos de los Motores Eléctricos

Fundamentos de los Motores Eléctricos 1 B = Φ A 2 Fuerza sobre un conductor eléctrico. Fuerza proporcional a: Densidad de flujo magnético. Corriente eléctrica que circula por el conductor. Seno del ángulo que forman los campos B e I. Fuerza

Más detalles

INGENIERÍA TÉRMICA Y DE FLUIDOS

INGENIERÍA TÉRMICA Y DE FLUIDOS DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA INGENIERÍA TÉRMICA Y DE FLUIDOS Pedro Fernández Díez I.- PRINCIPIOS BÁSICOS DE TRANSFERENCIA DE CALOR I..- INTRODUCCIÓN La Ingeniería

Más detalles

Leonel Lira Cortes Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología

Leonel Lira Cortes Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología MEDICIÓN DE LA CONDUCTIVIDAD TÉRMICA EN MATERIALES SÓLIDOS DE CONSTRUCCIÓN Leonel Lira Cortes Laboratorio de Propiedades Termofísicas División Termometría, Área Eléctrica Centro Nacional de Metrología

Más detalles

TRANSFERENCIA DE MASA II CURVA DE SECADO

TRANSFERENCIA DE MASA II CURVA DE SECADO TANFEENIA DE MAA II UVA DE EADO EJEMPLO DE UVA DE EADO Para determinar la factibilidad de secar cierto producto alimenticio, se obtuvieron datos de secado con un secador de bandejas y flujo de aire sobre

Más detalles

Sistemas de refrigeración: compresión y absorción

Sistemas de refrigeración: compresión y absorción Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.

Más detalles

Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida. Nociones sobre calor y temperatura. Escalas de temperatura.

Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida. Nociones sobre calor y temperatura. Escalas de temperatura. Unidad 1: Conceptos Básicos Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida Peso específico. Unidades de medida. Presión. Unidades de medida. Elementos de medición

Más detalles

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M. 1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.

Más detalles

GPRNV013F2-A16V1. Calentamiento global

GPRNV013F2-A16V1. Calentamiento global GPRNV013F2-A16V1 Calentamiento global ATENCIÓN DESTINAR LOS ÚLTIMOS 20 MINUTOS DE LA CLASE A RESOLVER DUDAS QUE PLANTEEN LOS ALUMNOS SOBRE CONTENIDOS QUE ESTÉN VIENDO EN SU COLEGIO. Profesor(a): Usted

Más detalles

ENERGÍA. Trabajo y Calor

ENERGÍA. Trabajo y Calor ENERGÍA Trabajo y Calor La energía se puede definir como toda propiedad que se puede producir a partir de trabajo o que puede convertirse en trabajo, incluyendo el propio trabajo. Como existen diferentes

Más detalles

Conducción en régimen transitorio

Conducción en régimen transitorio Conducción en régimen transitorio 1.1. Ejemplo: Calefacción de una casa Se propone el estudio de la transferencia de calor entre una casa y el medio que la rodea en régimen estacionario y en régimen transitorio.

Más detalles

Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología

Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología Medición de la conductividad térmica de materiales sólidos conductores Leonel Lira Cortés Laboratorio de Propiedades Termofísicas División Termometría, Área Eléctrica Centro Nacional de Metrología INTRODUCCION

Más detalles

EFECTO DEL CALOR SOBRE LA MATERIA

EFECTO DEL CALOR SOBRE LA MATERIA EFECTO DEL CALOR SOBRE LA MATERIA MATERIA: es todo aquello que ocupa un lugar en el espacio y tiene masa LOS EFECTOS QUE PRODUCE EL CALOR SOBRE LA MATERIA SE PUEDEN CLASIFICAR EN: * CAMBIOS FÍSICOS. *

Más detalles

5.3 Estructura térmica de la litósfera oceánica

5.3 Estructura térmica de la litósfera oceánica 513314 Geofísica de la Tierra Sólida 165 5.3 Estructura térmica de la litósfera oceánica 5.3.1 Introducción La estructura térmica de la litósfera oceánica esta restringida por las observaciones de: 1.

Más detalles

FUNDAMENTOS DE REFRIGERACION

FUNDAMENTOS DE REFRIGERACION FUNDAMENTOS DE REFRIGERACION PRESENTACION EN ESPAÑOL Mayo 2010 Renato C. OLvera Index ESTADOS DE LA MATERIA LOS DIFERENTES ESTADOS DE LA MATERIA SON MANIFESTACIONES DE LA CANTIDAD DE ENERGIA QUE DICHA

Más detalles

INTERCAMBIADORES DE CALOR. TIPOS Y CLASIFICACIÓN. Operaciones Unitarias I. Prof Pedro Vargas

INTERCAMBIADORES DE CALOR. TIPOS Y CLASIFICACIÓN. Operaciones Unitarias I. Prof Pedro Vargas INTERCAMBIADORES DE CALOR. TIPOS Y CLASIFICACIÓN Operaciones Unitarias I. Prof Pedro Vargas Objetivos del Tema General Aplicar los Conocimientos Básicos de intercambio de calor para seleccionar y diseñar

Más detalles

1 Nociones fundamentales sobre la teoría del frío

1 Nociones fundamentales sobre la teoría del frío Nociones fundamentales sobre la teoría del frío 1 1.1 Introducción El concepto de frío es muy relativo. Aquí, en invierno, decimos que hace frío si la temperatura ambiente está a +10 o C. En cambio, en

Más detalles

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada.

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Anexo1. Ejemplo práctico, pg 1 Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Para clarificar conceptos y ver la verdadera utilidad del asunto, haremos el siguiente ejemplo práctico

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

Sol.: el cuerpo ha aumentado su energía potencial en J.

Sol.: el cuerpo ha aumentado su energía potencial en J. Energía y trabajo Todos los sistemas físicos poseen energía aunque no se esté produciendo ninguna transformación en ellos. Esta energía se transfiere de unos cuerpos a otros, esta transferencia produce

Más detalles

Tabla de Contenidos. 1. Introducción... 19. 2. El agua y su importancia en la vivienda... 29. 1.1. Antecedentes... 19. 1.2. Alcances...

Tabla de Contenidos. 1. Introducción... 19. 2. El agua y su importancia en la vivienda... 29. 1.1. Antecedentes... 19. 1.2. Alcances... Tabla de Contenidos 1. Introducción... 19 1.1. Antecedentes... 19 1.2. Alcances... 19 1.3. La Humedad... 20 1.3.1. Humedad de lluvia... 20 1.3.2. Humedad accidental... 20 1.3.3. Humedad del suelo... 21

Más detalles

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES 1. OBJETIVO En esta práctica se determina la conductividad térmica del cobre y del aluminio midiendo el flujo de calor que atraviesa una barra de cada uno

Más detalles

Plan. cuerpo gris factor de forma. Transferencia de Calor p. 1/2

Plan. cuerpo gris factor de forma. Transferencia de Calor p. 1/2 Transferencia de Calor p. 1/2 Plan modos de conducción de calor conducción - ecuación del calor convección radiación estado estacionario, 1D resistencia térmica sistemas con generación de calor aletas,

Más detalles

T6.- Producción y Acumulación de Hielo

T6.- Producción y Acumulación de Hielo T6. Producción Tecnología y Acumulación Frigorífica (I.I.) de Hielo Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden

Más detalles

Necesidades de medición de conductividad térmica para el cumplimiento de normas de eficiencia energética en edificaciones

Necesidades de medición de conductividad térmica para el cumplimiento de normas de eficiencia energética en edificaciones Necesidades de medición de conductividad térmica para el cumplimiento de normas de eficiencia energética en edificaciones Dr. Leonel Lira Cortés Laboratorio de Propiedades Termofísicas Dirección Termometría,

Más detalles

Dónde: -Por una superficie de 1 m 2, -Por un grosor de 1 m, -Cuando la diferencia de temperatura entre las dos caras es de 1 K.

Dónde: -Por una superficie de 1 m 2, -Por un grosor de 1 m, -Cuando la diferencia de temperatura entre las dos caras es de 1 K. Aislamiento térmico Aislamiento térmico es la capacidad de los materiales para oponerse al paso del calor por conducción a través de ellos. Se evalúa por la resistencia térmica que tienen. La medida de

Más detalles

III.- COLECTORES DE PLACA PLANA

III.- COLECTORES DE PLACA PLANA III.- COLECTORES DE PLACA PLANA III..- INTRODUCCIÓN Un colector solar transforma la energía solar incidente en otra forma de energía útil. Difiere de un intercambiador de calor convencional en que en éstos

Más detalles

1. La temperatura en un día de verano en Santiago fue 34 [ C] la máxima y 8 [ C] la mínima. La variación de temperatura en kelvin para ese día fue

1. La temperatura en un día de verano en Santiago fue 34 [ C] la máxima y 8 [ C] la mínima. La variación de temperatura en kelvin para ese día fue Programa Estándar Anual Nº Guía práctica Calor I: calor y temperatura Ejercicios PSU 1. La temperatura en un día de verano en Santiago fue 34 [ C] la máxima y 8 [ C] la mínima. La variación de temperatura

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

Conceptos Básicos (Relaciones de flujos)

Conceptos Básicos (Relaciones de flujos) Conceptos Básicos (Relaciones de flujos) 1. Una solución ideal contiene 0,1 x 10-3 m 3 de metanol y 0,9 x 10-3 m 3 de benceno se mueve a una velocidad media molar de 0,12 m/s. Si el flujo molar del benceno

Más detalles

BALANCE ENERGÉTICO CLIMATIZACIÓN

BALANCE ENERGÉTICO CLIMATIZACIÓN BALANCE ENERGÉTICO EN INSTALACIONES DE CLIMATIZACIÓN LAS CARGAS INTERNAS CARGA POR ILUMINACIÓN La iluminación de un local a acondicionar constituye una generación interna de calor sensible que debe ser

Más detalles

Mediciones Confiables con Termómetros de Resistencia i de Platino. Edgar Méndez Lango

Mediciones Confiables con Termómetros de Resistencia i de Platino. Edgar Méndez Lango Mediciones Confiables con Termómetros de Resistencia i de Platino Edgar Méndez Lango Termometría, Metrología Eléctrica, CENAM Noviembre 2009 Contenido 2 1. Concepto de temperatura 2. La Escala Internacional

Más detalles

4. DIFUSION EN SÓLIDO

4. DIFUSION EN SÓLIDO 4. DIFUSION EN SÓLIDO MATERIALES 13/14 ÍNDICE 1. Conceptos generales. Mecanismos de difusión. 3. Leyes de Fick. 1. Estado estacionario.. Estado no estacionario. 4. Factores de difusión. 5. Aplicaciones

Más detalles

Tutorial de Torres De Enfriamiento

Tutorial de Torres De Enfriamiento Tutorial de Torres De Enfriamiento Indice 1. Principios 2. Teoría de la torre de enfriamiento 3. Torres De Tiro Mecánico 4. Operación De una torre de enfriamiento 5. Torres De Tiro Natural 6. Generalidades

Más detalles

Geología. Tema 2. La Tierra. Composición y estructura.

Geología. Tema 2. La Tierra. Composición y estructura. Evolución temprana de la Tierra El origen del planeta Tierra. La mayoría de los investigadores cree que la Tierra y los otros planetas se formaron esencialmente al mismo tiempo. Hipótesis de la nebulosa.

Más detalles

Calor y Temperatura. Podemos hacer de ella un concepto preciso y cuantitativo (o sea definirla como magnitud) a partir de otros dos conceptos:

Calor y Temperatura. Podemos hacer de ella un concepto preciso y cuantitativo (o sea definirla como magnitud) a partir de otros dos conceptos: TERMODINÁMICA Calor y Temperatura Nuestro concepto intuitivo de temperatura la asocia con cuán caliente o frío sentimos un objeto, el ambiente, etc. Sin embargo nuestros sentidos no son confiables en este

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

Medición de la Conductividad Térmica de Algunos Materiales Utilizados en Edificaciones

Medición de la Conductividad Térmica de Algunos Materiales Utilizados en Edificaciones Simposio de Metrología 008 Santiago de Querétaro, México, al 4 de Octubre Medición de la Conductividad Térmica de Algunos Materiales Utilizados en Edificaciones L. Lira-Cortés, González Rodríguez, O. J.,

Más detalles

La temperatura se puede medir en diferentes escalas pero en esta aplicación, se usaran grados Farenheit y grados centrígrados. º C = 5/9 (ºF - 32)

La temperatura se puede medir en diferentes escalas pero en esta aplicación, se usaran grados Farenheit y grados centrígrados. º C = 5/9 (ºF - 32) PRINCIPIOS BÁSICOS. A continuación se darán unos conceptos que le permitirán aclarar, afianzar y ampliar sus conocimientos para entender las diferencias que hay entre refrigeración, frío, enfriamiento

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA JUSTIFICACION DEL CURSO

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA JUSTIFICACION DEL CURSO UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA FS0310 FISICA GENERAL II Créditos: 3 Correquisito: FS-311 Requisitos: FS-210, FS-211, MA-1002 ó MA-2210 Horas por semana: 4 JUSTIFICACION

Más detalles

TRANSMISION DE CALOR UNIDAD 1 TRANSMISION DE CALOR

TRANSMISION DE CALOR UNIDAD 1 TRANSMISION DE CALOR TRANSMISION DE CALOR UNIDAD 1 TRANSMISION DE CALOR 1 TRANSMISION 2 DE CALOR PROLOGO El presente módulo se revisa y actualiza ampliando las aplicaciones de los mecanismos de transferencia de calor a los

Más detalles

Guía de Examen Semestral Física II Grupo: 82-A Bachillerato. Prof. Alberto Flores Ferrer

Guía de Examen Semestral Física II Grupo: 82-A Bachillerato. Prof. Alberto Flores Ferrer Guía de Examen Semestral Física II Grupo: 82-A Bachillerato. Prof. Alberto Flores Ferrer Junio/2016 Alumno: Esta Guía se resuelve en el cuaderno y se entrega al iniciar el examen. Describe las siguientes

Más detalles

Tema 7: Fundamentos de transferencia de calor

Tema 7: Fundamentos de transferencia de calor .- INRODUCCIÓN ema 7: Fundamentos de transferencia de calor La transferencia de calor es la ciencia ue trata de predecir el intercambio de energía ue puede tener lugar entre cuerpos materiales como resultado

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

AUDITORÍAS ENERGÉTICAS

AUDITORÍAS ENERGÉTICAS MÁSTER DE ENERGÍA: GENERACIÓN, GESTIÓN Y USO EFICIENTE Asignatura: GESTIÓN ENERGÉTICA AUDITORÍAS ENERGÉTICAS E.T.S. Ingenieros Industriales Dr. Eloy Velasco Gómez Profesor Titular de Universidad Dpto.

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS DEPARTAMENTO ACADEMICO DE INGENIERIA AGROINDUSTRIAL SÍLABO

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS DEPARTAMENTO ACADEMICO DE INGENIERIA AGROINDUSTRIAL SÍLABO UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS DEPARTAMENTO ACADEMICO DE INGENIERIA AGROINDUSTRIAL SÍLABO ASIGNATURA: OPERACIONES UNITARIAS I CÓDIGO: 5B0070 1.

Más detalles

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA Ing. Gerardo Sarmiento CALOR Y TEMPERATURA FORMAS DE TRANSMISIÓN DEL CALOR FORMAS DE TRANSMISION DE CALOR El calor se transmite de un lugar a otro de tres maneras diferentes: Por conducción entre cuerpo

Más detalles

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Introducción: Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química

Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química Lección 7 Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química 1 Ecuaciones Diferenciales en Cinética Química Ecuación estequiométrica: o a A b B = p P q Q 0 = a A b B... p P

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

Temario. Colectores térmicos. 1. El colector de placa plana. 2. Pérdidas térmicas. 3. Superficies selectivas. 4. Pérdidas ópticas

Temario. Colectores térmicos. 1. El colector de placa plana. 2. Pérdidas térmicas. 3. Superficies selectivas. 4. Pérdidas ópticas Temario Colectores térmicos 1. El colector de placa plana 2. Pérdidas térmicas 3. Superficies selectivas 4. Pérdidas ópticas 1. El Colector de placa plana Curiosidad: La potencia solar incidente en un

Más detalles

La infinidad de cosas que nos rodean están constituidas de pequeñas partículas en movimiento.

La infinidad de cosas que nos rodean están constituidas de pequeñas partículas en movimiento. La infinidad de cosas que nos rodean están constituidas de pequeñas partículas en movimiento. Estas partículas no las podemos ver con nuestros ojos, pero las podemos imaginar así De los materiales que

Más detalles

TRANSPORTE DE PAQUETERÍA A TEMPERATURA CONTROLADA

TRANSPORTE DE PAQUETERÍA A TEMPERATURA CONTROLADA TRANSPORTE DE PAQUETERÍA A TEMPERATURA CONTROLADA EMBALAJES ISOTERMOS Eduard Monrós CONCEPTOS BÁSICOS TRANSPORTE A TEMPERATURA CONTROLADA Cualquier tipo de envío en el que el producto a transportar debe

Más detalles

Eficiencia energética en conductos de climatización. Claire Plateaux

Eficiencia energética en conductos de climatización. Claire Plateaux Eficiencia energética en conductos de climatización Claire Plateaux Introducción Informe Anual De Consumos Energéticos IDAE - 2009 Sector Residencial + Servicio : 27% del consumo total Acondicionamiento

Más detalles

Propiedades físicas y mecánicas de los materiales Parte I

Propiedades físicas y mecánicas de los materiales Parte I Propiedades físicas y mecánicas de los materiales Parte I Propiedades físicas y mecánicas de los materiales Capítulo 1. Conceptos generales Tipos de materiales Metodología para el estudio de materiales

Más detalles

Guía de Materia Calor y materiales

Guía de Materia Calor y materiales Física Guía de Materia Calor y materiales Módulo Común II Medio www.puntajenacional.cl Nicolás Melgarejo, Verónica Saldaña Licenciados en Ciencias Exactas, U. de Chile Estudiantes de Licenciatura en Educación,

Más detalles

Revista de actualidad de Higiene y Seguridad Laboral editada por la Cámara Argentina de Seguridad

Revista de actualidad de Higiene y Seguridad Laboral editada por la Cámara Argentina de Seguridad Revista de actualidad de Higiene y Seguridad Laboral editada por la Cámara Argentina de Seguridad www.cas-seguridad.org.ar/revista_ahora.htm Explosiones la importancia de conocer sus características principales

Más detalles

FÍSICA DE LA CONSTRUCCIÓN CONSTRUCCIÓN I CONSTRUCCIÓN I PLAN DE ESTUDIOS 2002

FÍSICA DE LA CONSTRUCCIÓN CONSTRUCCIÓN I CONSTRUCCIÓN I PLAN DE ESTUDIOS 2002 CONSTRUCCIÓN I PLAN DE ESTUDIOS 2002 CONSTRUCCIÓN I 2. EL DISEÑO EN LA CONSTRUCCIÓN. 2.1. 0bjetivos y metodología. Las etapas del diseño. 2.2. Los requerimientos: niveles exigenciales. 2.2.1. Breve reseña

Más detalles

UTN Facultad Regional La Plata Integración III

UTN Facultad Regional La Plata Integración III Balance de energía El concepto de balance de energía macroscópico, es similar al concepto del balance de materia macroscópico. Acumulación Transferencia Transferencia Generación Consumo de energía de energía

Más detalles

Ensayo De Evaporadores

Ensayo De Evaporadores Ensayo De Evaporadores UNITARIAS II PROFESOR: Dr. SALMERON OCHOA IVAN ALUMNOS: ANA LAURA PACHECO MORALES 232553 OSCAR OSWALDO AGUIRRE OLVERA 232619 OSCAR SALGADO POSADA 245454 GRUPO: 7 E La Evaporación

Más detalles

TEMA 1: ENERGÍA. Definición La energía se define como la capacidad que tiene un cuerpo para realizar un trabajo

TEMA 1: ENERGÍA. Definición La energía se define como la capacidad que tiene un cuerpo para realizar un trabajo TEMA 1: ENERGÍA Definición La energía se define como la capacidad que tiene un cuerpo para realizar un trabajo Energía /trabajo/potencia Vamos a considerar que trabajo y energía es lo mismo. La potencia

Más detalles

INDUSTRIAS I HORNO ROTATIVO

INDUSTRIAS I HORNO ROTATIVO INDUSTRIAS I HORNO ROTATIVO Ing. Bruno A. Celano Gomez Abril 2015 HORNO ROTATIVO Continuo Calentamiento Externo Llama libre Aplicaciones: cemento, cal, aluminio, etc. Horno Rotativo Diagrama Horno Rotativo

Más detalles

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa?

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa? Slide 1 / 20 1 Dos sustancias, A tiene una densidad de 2000 kg/m 3 y la B tiene una densidad de 3000 kg/m 3 son seleccionadas para realizar un experimento. Si el experimento necesita de igual masa de cada

Más detalles

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE )

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE ) Asociación española de fabricantes de tubos y accesorios plásticos InfoTUB N.13-005 diciembre 2013 Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE) 1. Introducción Según

Más detalles

INGENIERÍA TÉRMICA Y DE FLUIDOS

INGENIERÍA TÉRMICA Y DE FLUIDOS INGENIERÍA TÉRMICA Y DE FLUIDOS Pedro Fernández Díez INGENIERIA TERMICA (I) 992.- PEDRO FERNANDEZ DIEZ Primera Edición, 992 I.S.B.N. 84-600-8244-X Depósito Legal SA-478-992 Edita: Servicio de Publicaciones

Más detalles

Intercambiadores de calor

Intercambiadores de calor UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR Intercambiadores de calor Profesor: Ing. Isaac Hernández Isaachernandez89@gmail.com

Más detalles

Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández

Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández BALANCE ENERGÉTICO EN CALDERAS 1 Introducción 2 Funcionamiento de una caldera 3 Pérdidas energéticas en calderas 4 Balance energético en una caldera. Rendimiento energético 5 Ejercicios Pedro G. Vicente

Más detalles

HUMEDAD ATMOSFÉRICA

HUMEDAD ATMOSFÉRICA www.uwm.edu/~vlarson/research.htm HUMEDAD ATMOSFÉRICA Cantidad de vapor de agua que contiene el aire; es la fuente de precipitaciones; influye en los procesos de evapotranspiración y derretimiento de nieves.

Más detalles

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS NIVEL: TECNICO MEDIO INGRESOS A LOS CURSOS ESCOLARES: 2008 2009 Y

Más detalles

DEPARTAMENTO DE FISICA CATEDRA DE TERMODINAMICA DETERMINACION DEL CALOR ESPECÍFICO DETERMINACION DEL CALOR ESPECÍFICO

DEPARTAMENTO DE FISICA CATEDRA DE TERMODINAMICA DETERMINACION DEL CALOR ESPECÍFICO DETERMINACION DEL CALOR ESPECÍFICO En este apunte, se describen dos experiencias que nos permiten determinar los calores latentes de cambio de estado del agua: el calor de fusión y el calor de vaporización. Cambios de estado Normalmente,

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO Facultad de Ingeniería Química Escuela Profesional de Ingeniería Química CALORIMETRIA, DETERMINACION DE CAPACIDAD CALORIFICA DEL CALORIMETRO ( TERMO ) CURSO : FISICO QUIMICA

Más detalles

=. (3) La ecuación (2) también es útil escribirla en forma diferencial, (Fig. 1.B) para un elemento de barra infinitesimal de longitud dx como:

=. (3) La ecuación (2) también es útil escribirla en forma diferencial, (Fig. 1.B) para un elemento de barra infinitesimal de longitud dx como: Transmisión del Calor El calor se transfiere básicamente por tres procesos distintos; conducción, convección y radiación. En la naturaleza, todos los mecanismos de transmisión intervienen simultáneamente

Más detalles