PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA"

Transcripción

1 Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados a intervalos regulares. * Soporte. * Tramo de varilla corto adaptable a la varilla delgada. * Cronómetro. 1. Fundamento Un péndulo físico es un sólido rígido de forma arbitraria que puede oscilar en un plano vertical alrededor de un eje perpendicular a un plano que contenga a su centro de masas. El punto de intersección del eje con dicho plano es el punto de suspensión. La posición de equilibrio es aquella en que el centro de masas se encuentra en la misma vertical y por debajo del punto de suspensión. En la figura 1 se presenta esquemáticamente un sólido plano de pequeño espesor utilizado como péndulo físico. -1-

2 O d θ c.m. mg Figura 1. Sólido plano empleado como péndulo físico. El punto de suspensión es O, su centro de masas es c.m., y la distancia entre ambos se representa por d. En la posición indicada, formando un ángulo θ con la vertical, el peso produce respecto a O un momento que se opone al aumento del ángulo. Se producen oscilaciones como consecuencia de desviaciones de la posición de equilibrio, ya que entonces el peso del cuerpo, aplicado en su centro de masas, produce un momento respecto del punto de suspensión que tiende a restaurar la posición de equilibrio. El momento respecto del punto de suspensión O es: τ = d m g (1) donde d es la distancia entre c.m. y el punto de suspensión y m es la masa del cuerpo. El módulo de este momento puede escribirse como: τ = - mgd sen θ () El signo negativo indica que se trata de un momento recuperador, es decir, actuando en sentido opuesto a las variaciones angulares. Este momento puede relacionarse por medio de la ecuación fundamental de la dinámica de rotación con la aceleración angular α del péndulo y su momento de inercia I respecto al punto de suspensión. En forma escalar la relación es: τ = I α (3) Teniendo en cuenta la ecuación (), esto puede escribirse como: Péndulo físico y momentos de inercia --

3 I α + mgd sen θ = 0 (4) La aceleración angular α es la derivada segunda del ángulo θ respecto al tiempo. En el caso (frecuente) de oscilaciones de pequeña amplitud, en las que se verifica que sen α α, la ecuación (4) puede reescribirse como una ecuación diferencial de segundo orden que corresponde a un movimiento armónico simple: d θ dt + mgd I θ = 0 (5) La frecuencia angular de este M.A.S. es: Y su periodo de oscilación vale: ω = mgd I (6) I T = π mgd (7) Oscilaciones de una varilla delgada Una varilla delgada en forma de paralelepípedo, larga en comparación con su anchura y grosor, puede utilizarse como péndulo físico para realizar medidas de periodos o de momentos de inercia. Aquí consideraremos una varilla homogénea como la mostrada en la figura. en la que se han practicado pequeños orificios a lo largo de su eje de simetría a intervalos regulares. Estos orificios sirven como puntos de suspensión. y y a L (c.m.) L d (a) (b) Figura. Varilla delgada de longitud L. (a) Vista frontal. Los agujeros para su suspensión se han practicado a intervalos regulares y. (b) Vista lateral. La distancia entre el punto de suspensión y el extremo superior es a. La distancia entre el punto de suspensión y el c.m. es d. Péndulo físico y momentos de inercia -3-

4 Se puede demostrar fácilmente que el periodo teórico de una varilla suspendida en la forma indicada en la figura oscilando con pequeñas amplitudes está dada por: Τ = π 1 L + d (8) g 1d Esto puede escribirse en forma similar a la ecuación que nos da el periodo de un péndulo simple: Τ = π k g (9) donde hemos llamado L k = + d (10) 1d Momentos de inercia El momento de inercia de una varilla delgada con respecto a un eje perpendicular que pase por su c.m. es (1/1)mL. donde m es su masa y L su longitud. Respecto de cualquier otro eje paralelo al primero, el momento de inercia puede obtenerse aplicando el teorema de Steiner. Así, el momento de inercia cuando la varilla está suspendida de un punto O situado a una distancia a de su extremo es: I m L O = + a(a L ) (11) 3 Supongamos que a la varilla se le coloca sobre su c.m. otro tramo más corto con la misma densidad lineal de masa, según muestra la figura 3. La masa de este tramo corto es x m, y su longitud x L, donde 1 x>0 es la fracción de longitud y masa del tramo corto con respecto a la varilla. El momento de inercia de este conjunto es la suma de los momentos de inercia de los dos elementos que lo componen, y se puede expresar como: I m L a(a L + x L x 1 total = + a(a L ) + ) (1) 4 Péndulo físico y momentos de inercia -4-

5 a O a d L (c.m.) L d (c.m.) (a) (b) Figura 3. Varilla con tramo corto superpuesto. (a) Vista frontal. (b) Vista lateral. Las distancias a y d tienen el mismo significado que en la figura.. Parte experimental Se dispone de una varilla homogénea de longitud L =180 cm, con orificios practicados cada 5 cm, y un cronómetro capaz de apreciar 0.01 s. Se dispone de dos tipos de tramo corto, uno de 30 cm y otro de 0 cm..1. Tómense lecturas de los periodos de las oscilaciones utilizando como puntos de suspensión los orificios situados a distancias a = 5 cm, 10 cm, 15 cm... del extremo de la varilla hasta llegar a a = 60 cm. Para determinar los periodos se medirá el tiempo invertido en 10 oscilaciones en cada uno de los orificios utilizados; cada medida de dicho tiempo se repetirá al menos seis veces (es decir, se miden seis tandas de diez oscilaciones cada vez, y el tiempo de oscilación sobre cada orificio es la media). Precaución: en todas las medidas debe asegurarse de que el péndulo oscila en un plano, sin movimientos de bamboleo. Péndulo físico y momentos de inercia -5-

6 .. Añadir a la varilla un tramo corto sobre su centro de masas empleando un tornillo y una tuerca como fijación. Determinar el factor x para dicho tramo corto por medida de longitudes. Mídase el periodo de oscilación del sistema suspendiéndolo del agujero situado a 5 cm del extremo superior. Esta medida también se repetirá seis veces al menos, y se tomará como tiempo de oscilación la media correspondiente. 3. Tratamiento de datos 1º) Con los datos obtenidos en el apartado.1 de la sección tratamiento de datos, realícense las siguientes tablas y representaciones gráficas: a) Construir una tabla donde figuren las siguientes columnas: i) valores de distancia a desde el punto de suspensión hasta el extremo; ii) valores de distancia d hasta el c.m. (d=[l/]-a); iii) valores de k calculados para cada d según ecuación (10); i4) valores del tiempo invertido en N oscilaciones (la media de los tiempos medidos en las tandas de 10 oscilaciones); i5) valores del periodo T medido para cada a (columna anterior dividida por el número de oscilaciones) y por último i6) valores del cuadrado del periodo T medido para cada a (semejante a la Tabla 1 de la sección 5). b) Construir una representación gráfica en papel milimetrado colocando los cuadrados del periodo en abcisas y los valores calculados de k en ordenadas. Medir gráficamente la pendiente de la recta obtenida. Qué valor para la aceleración de la gravedad se obtiene con esta pendiente? (expresar dicho valor con su error correspondiente). Emplear luego un ajuste por mínimos cuadrados para obtener la misma pendiente, y el valor de la aceleración de la gravedad. En qué ecuación de la parte teórica de esta práctica se basa este tratamiento de datos? c) Construir una representación gráfica en papel milimetrado colocando los valores de la distancia a en abcisas y los valores del cuadrado del periodo en ordenadas. º) Realizar los cálculos siguientes: Péndulo físico y momentos de inercia -6-

7 a) Calcular el momento de inercia de la varilla utilizada y del conjunto (varilla + tramo corto), ecuaciones (11) y (1), en función de la masa m de la varilla. Determinar los periodos de oscilación teóricos (según las dimensiones del péndulo físico utilizado) para ambos casos, utilizando el valor más exacto conocido de la gravedad en el lugar donde se lleva a cabo el experimento (consultar al profesor). Nota: no pase por alto que la masa del conjunto (varilla + tramo corto) es mayor que la de la varilla, y que en las ecuaciones (11) y (1) el símbolo m se refiere siempre a la masa de la varilla; la masa del conjunto (varilla + tramo corto) es m (1+x). b) Obtener los errores estandar de los tiempos medidos para la oscilación de la varilla y del conjunto (varilla + tramo corto) cuando a = 5 cm. Comprobar si los valores teóricos del periodo obtenidos en el apartado anterior coinciden dentro del margen de error experimental con los periodos medidos experimentalmente. 4. Preguntas 1. Aplicando el teorema de Steiner deducir la ecuación (8).. Aplicando el teorema de Steiner deducir la ecuación (11). 3. Aplicando el teorema de Steiner deducir la ecuación (1). 4. Cuál es el valor de la gravedad obtenido? A qué factores debe atribuirse la posible diferencia con el valor real de la gravedad en el laboratorio? 5. Cómo varía el periodo de oscilación a medida que el punto de suspensión se acerca al centro de masas? Aumenta o disminuye? Podría justificar esto? 6. A partir de la comparación de los periodos teóricos con los experimentales pedida en el apartado 3 º b), podría concluirse que los momentos de inercia son aditivos? Razone la respuesta. 5. Ejemplo Se presenta a continuación un ejemplo basado en medidas (que no se especifican) tomadas en el laboratorio, así como su tratamiento. Péndulo físico y momentos de inercia -7-

8 Tabla 1. Ejemplo de tabla para el procesado de datos. Los valores de la columna d están en cm, los de la columna T en s. Los asteriscos (*) indican los valores que deben medirse, mientras que los dobles asteriscos (**) representan los cálculos a realizar a partir de las medidas. La representación gráfica de una serie de medidas realizada en el laboratorio se encuentra en la figura 4. Longitud de la varilla: L = 1.80 m; número de oscilaciones N = 10. a (cm) d =(L/-a) K (m) t (s) T (s) T 1 5 (*) 85 (**) (**) (*) (**) (**) 10 (*) 80 (**) (**) (*) (**) (**) 3 15 (*) 75 (**) (**) (*) (**) (**) 4 0 (*) 70 (**) (**) (*) (**) (**) 5 5 (*) 65 (**) (**) (*) (**) (**) 6 30 (*) 60 (**) (**) (*) (**) (**) 7 35 (*) 55 (**) (**) (*) (**) (**) 8 40 (*) 50 (**) (**) (*) (**) (**) 9 45 (*) 45 (**) (**) (*) (**) (**) (*) 40 (**) (**) (*) (**) (**) (*) 35 (**) (**) (*) (**) (**) 1 60 (*) 30 (**) (**) (*) (**) (**) 1.5 k (m) T (s ) Figura 4. Representación gráfica de k frente a T. La pendiente experimental de la recta resultó m/s, lo que da para la gravedad un valor de 9.83 m/s (aquí no se presenta el cálculo de errores). El coeficiente de correlación de la recta es r = Péndulo físico y momentos de inercia -8-

9 5 4.8 ( s ) 4.6 T a (cm) Figura 5. Variación de T con la distancia a al extremo de la varilla. Péndulo físico y momentos de inercia -9-

PRÁCTICA 9: VELOCIDAD ANGULAR DE UN SÓLIDO RÍGIDO.

PRÁCTICA 9: VELOCIDAD ANGULAR DE UN SÓLIDO RÍGIDO. Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior ng. Agrónomos PRÁCTCA 9: VELOCDAD ANGULAR DE UN SÓLDO RÍGDO. MATERAL * Panel de montaje * Varilla delgada * Puerta

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN OBJETIVOS Determinar la constante de torsión de un péndulo. Estudiar la dependencia del período de oscilación con el momento de inercia. Determinar experimentalmente

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

MEDIDA DE g. EL PÉNDULO FÍSICO

MEDIDA DE g. EL PÉNDULO FÍSICO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Movimiento armónico. Péndulos físico y de torsión.

Movimiento armónico. Péndulos físico y de torsión. Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante

Más detalles

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado.

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. Departamento de Física Aplicada Universidad de Cantabria 3 Diciembre 013 Resumen

Más detalles

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos. Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Práctica 1. Momento de inercia. Implementos Soporte universal, nueces, varilla delgada (eje de rotación), barra rígida (regla de

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. Experimento 1

MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. Experimento 1 MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. 1 Introducción. La dinámica de cuerpos rígidos constituye el caso especial, en que un sistema de partículas

Más detalles

Estática y dinámica de un muelle vertical

Estática y dinámica de un muelle vertical Prácticas de laboratorio de Física I Estática y dinámica de un muelle vertical Curso 2010/11 1. Objetivos Determinación de la constante del muelle. Estudio de un muelle oscilante como ejemplo de movimiento

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

ESTUDIO DEL PÉNDULO SIMPLE Página 1

ESTUDIO DEL PÉNDULO SIMPLE Página 1 ESTUDIO DE PÉNDUO SIMPE Página 1 1. OBJETIVOS a. Estudiar la dependencia entre el período de oscilación y * la masa del péndulo. * la amplitud del movimiento. * la longitud del péndulo b. Medir el valor

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE. LEY DE HOOKE

MOVIMIENTO ARMÓNICO SIMPLE. LEY DE HOOKE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa.

Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa. Péndulo físico x Consideraciones generales En la Figura 1 está representado un péndulo físico, que consiste de un cuerpo de masa m suspendido de un punto de suspensión que dista una distancia d de su centro

Más detalles

Péndulo en Plano Inclinado

Péndulo en Plano Inclinado Péndulo en Plano nclinado Variación del Período en función de g Alejandra Barnfather: banfa@sion.com - Matías Benitez: matiasbenitez@fibertel.com.ar y Victoria Crawley: v_crawley@hotmail.com Resumen El

Más detalles

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR La condición general para que se repita un fenómeno es que se realice con las mismas condiciones iniciales... PRINCIPIO DE CAUSALIDAD. EXPERIENCIA

Más detalles

1.- LENTES. OBJETIVOS: MATERIAL:

1.- LENTES. OBJETIVOS: MATERIAL: 1.- LENTES. OBJETIVOS: - Comprobar experimentalmente el mecanismo de formación de imágenes con una lente convergente. - Identificar en el laboratorio los conceptos básicos de la óptica geométrica: lentes,

Más detalles

EL RESORTE ELÁSTICO DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE: MÉTODO ESTÁTICO

EL RESORTE ELÁSTICO DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE: MÉTODO ESTÁTICO 1 EL RESORTE ELÁSTICO DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE: MÉTODO ESTÁTICO 1. Comprobar la ley de Hooke y determinar la constante elástica de un resorte por el método estático. 2. Analizar

Más detalles

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE INGENIERÍA QUÍMICA 1 er curso FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 III. Péndulo simple

Más detalles

Un experimento con integración

Un experimento con integración Un experimento con integración numérica Se dispone de una varilla uniforme de madera dotada de unos agujeros situados simétricamente. Estos agujeros pueden ser centros de suspensión, lo cual permite variar

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

La Hoja de Cálculo en la resolución de problemas de Física.

La Hoja de Cálculo en la resolución de problemas de Física. a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de Albacete.jesusruiz@sociedadelainformacion.com

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión.

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. EL GIRÓSCOPO 1. OBJETIVOS Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. 2. FUNDAMENTO TEÓRICO. Un giróscopo es un disco en rotación construido

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Medición de la gravedad

Medición de la gravedad Medición de la gravedad Física Experimental 1 Noviembre de 006 Mac Intyre, Jonatan Portillo, Miguel jonamacintyre@hotmail.com miguelanibalportillo@hotmail.com Introducción En 1687, Sir Isaac Newton publicó

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Laboratorio de Física Universitaria 1. Péndulo Físico. Pimavera 2006 Domitila González PENDULO FÍSICO

Laboratorio de Física Universitaria 1. Péndulo Físico. Pimavera 2006 Domitila González PENDULO FÍSICO Laboratorio de Física Universitaria 1. Péndulo Físico. Pimavera 006 PENDULO FÍSICO Autor: M. en C. Patiño Fecha: Primaverao 006 OBJETIVOS Encontrar la relación que existe entre la longitud L, y El periodo

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE Y DEL MOMENTO DE INERCIA DE UN SÓLIDO RÍGIDO

DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE Y DEL MOMENTO DE INERCIA DE UN SÓLIDO RÍGIDO DETERINACIÓN DE LA CONSTANTE ELÁSTICA DE UN UELLE Y DEL OENTO DE INERCIA DE UN SÓLIDO RÍGIDO Santiago Ramírez de la Piscina illán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. CONSTANTE ELÁSTICA.

Más detalles

4. PROPIEDAD DE ÁREAS PLANAS Y LINEAS Centroides de áreas compuestas

4. PROPIEDAD DE ÁREAS PLANAS Y LINEAS Centroides de áreas compuestas 4. PROPIEDAD DE ÁREAS PLANAS Y LINEAS 4.1. Centroides de áreas compuestas 4.1.1. Centros de gravedad de un cuerpo bidimensional Para iniciar, considere una placa plana horizontal (figura 5.1). La placa

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

7. PÉNDULO DE TORSIÓN

7. PÉNDULO DE TORSIÓN 7. PÉNDULO DE TORSÓN OBJETVO El objetivo de la práctica es comprobar la dependencia del momento de inercia de un objeto respecto a la distancia al centro de rotación y realizar la medición del momento

Más detalles

7. Práctica. 7.1.Estudio de Levas Introducción

7. Práctica. 7.1.Estudio de Levas Introducción 7. Práctica 7.1.Estudio de Levas 7.1.1. Introducción El principal objetivo de la práctica es observar cual es el funcionamiento de las levas y cual es la función que realizan dentro de los mecanismos en

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Ramírez López-Para, P; Loizaga Garmendia, M; López Soto, J

Ramírez López-Para, P; Loizaga Garmendia, M; López Soto, J Ejercicio 2, pag.1 lanteamiento El disco de la figura está soldado a la barra acodada y ésta lo está a su vez a la barra B. El conjunto gira con una velocidad angular ω rad/s y una aceleración angular

Más detalles

DINÁMICA DE ROTACIÓN DE UN SÓLIDO

DINÁMICA DE ROTACIÓN DE UN SÓLIDO Laboratorio de Física General Primer Curso (Mecánica) DINÁMICA DE ROTACIÓN DE UN SÓLIDO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la ley de la dinámica de rotación de un sólido rígido alrededor

Más detalles

1. Identificar y determinar las frecuencias propias de oscilación para un sistema de dos grados de libertad.

1. Identificar y determinar las frecuencias propias de oscilación para un sistema de dos grados de libertad. Laboratorio 2 Péndulos Acoplados 2.1 Objetivos 1. Identificar y determinar las frecuencias propias de oscilación para un sistema de dos grados de libertad. 2. Determinar el valor de aceleración de la gravedad.

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

27 de octubre de 2010

27 de octubre de 2010 Pontificia Universidad Católica de Chile Facultad de Física FIZ 11 Mecánica Clásica Profesor: Andrés Jordán Ayudantes: Eduardo Bañados T. eebanado@uc.cl Ariel Norambuena ainoramb@uc.cl Torque, Momento

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Coeficiente dinámico de rozamiento

Coeficiente dinámico de rozamiento Coeficiente dinámico de rozamiento Fundamento Cuando un cuerpo desliza sobre otro aparece una fuerza resistente al movimiento que conocemos con el nombre genérico de fuerza de rozamiento. El estudio de

Más detalles

Fig. 1. P Exp. Campo magnético de un imán y campo magnético terrestre.

Fig. 1. P Exp. Campo magnético de un imán y campo magnético terrestre. P Exp. Campo magnético de un imán y campo magnético terrestre. Objetivos Como bien sabe, el campo gravitatorio creado por una partícula decrece con el cuadrado de la distancia. Pero, sabe con qué potencia

Más detalles

Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω

Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω Relación de problemas: MEDIDAS Y ERRORES. 1) En la medida de 1 m se ha cometido un error de 1 mm, y en 300 Km, 300 m. Qué error relativo es mayor?. ) Como medida de un radio de 7 dm hemos obtenido 70.7

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

SISTEMA MASA-RESORTE

SISTEMA MASA-RESORTE SISTEMA MASA-RESORTE OBJETIVOS. Determinar la fuerza en función del alargamiento de un resorte.. Obtener la constante de rigidez del resorte.. Determinar el periodo en función de la masa m.. Determinar

Más detalles

Anexo 1 ( Momentos de segundo orden )

Anexo 1 ( Momentos de segundo orden ) .1 neo 1 ( Momentos de segundo orden ) 1. Momento de inercia En muchas de las fórmulas empleadas en ingeniería aparecen epresiones analíticas de la forma ρ d, siendo ρ la distancia de un elemento diferencial

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

FORMACIÓN DE IMÁGENES CON LENTES

FORMACIÓN DE IMÁGENES CON LENTES Laboratorio de Física General (Optica) FORMACIÓN DE IMÁGENES CON LENTES Fecha: 09/09/2014 1. Objetivo de la práctica Estudio de la posición y el tamaño de la imagen de un objeto formada por una lente delgada.

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #4: El rodamiento y el Teorema de trabajo-energía I. Objetivos. Determinar el trabajo

Más detalles

Prácticas de Electromagnetismo

Prácticas de Electromagnetismo Prácticas de Electromagnetismo Curso 2015/16 Dpto. de Física Aplicada ETSII UPM Guión práctica 2.- Medida del campo magnético terrestre. Coordinador: Profesores: Dª Sara Lauzurica Santiago D. Miguel Castro

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Importancia de la elasticidad del hilo en el péndulo simple

Importancia de la elasticidad del hilo en el péndulo simple Importancia de la elasticidad del hilo en el péndulo simple Experiencia de aboratorio, Física Experimental I, 8 Garcia, Daiana arregain, Pedro Machado, Alejandro dana_e7@hotmailcom pedrolarregain@yahoocom

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

Guías de Prácticas de Laboratorio

Guías de Prácticas de Laboratorio Guías de Prácticas de Laboratorio Laboratorio de: (5) FÍSICA CALOR Y ONDAS Número de Páginas: (2) 6 Identificación: (1) Revisión No.: (3) 0 Fecha Emisión: (4) 2011/08/31 Titulo de la Práctica de Laboratorio:

Más detalles

Disco de Maxwell Dinámica de la rotación

Disco de Maxwell Dinámica de la rotación Laboratori de Física I Disco de Maxwell Dinámica de la rotación Objetivo Estudiar las ecuaciones de la dinámica de rotación del sólido rígido mediante el movimiento de un disco homogéneo. Material Soporte

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

Movimiento Relativo. Velocidad relativa constante

Movimiento Relativo. Velocidad relativa constante Movimiento Relativo Consideremos un sistema inercial S. El vector posición de una partícula respecto a S es. Queremos describir el movimiento de la partícula relativo a un sistema S que se mueve respecto

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999

María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 En el presente trabajo nos proponemos estimar el valor de la aceleración de la

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría. PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III 9.1. Objeto de la práctica Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 9. Disco de Faraday Se pretende estudiar un generador

Más detalles

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.).

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.). 1 ESTATICA MOMENTO DE UNA FUERZA Dada una fuerza F situada a una distancia d de un punto o, se denomina (definición matemática) momento de la fuerza con respecto a un punto o, al producto de la intensidad

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

, la ley anterior se convierte en la ecuación de movimiento de la partícula: una ecuación diferencial para la posición r,

, la ley anterior se convierte en la ecuación de movimiento de la partícula: una ecuación diferencial para la posición r, Repaso de la mecánica de Newton Arrancamos de la segunda ley de Newton sin aclaraciones que vendrán más tarde. (1.1) Especificada la fuerza, la ley anterior se convierte en la ecuación de movimiento de

Más detalles

Momento de Torsión Magnética

Momento de Torsión Magnética Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

COEFICIENTES DE DILATACIÓN

COEFICIENTES DE DILATACIÓN PRÁCTICA 3 COEFICIENTES DE DILATACIÓN OBJETIVO Determinación del coeficiente de dilatación del agua a temperatura ambiente utilizando un picnómetro. Determinación del coeficiente de dilatación lineal de

Más detalles

Experiencia P22: Momento de Inercia Sensor de Movimiento rotatorio

Experiencia P22: Momento de Inercia Sensor de Movimiento rotatorio Sensor de Movimiento rotatorio Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento rotatorio P22 Rotational Inertia.DS Equipo necesario Cant. Equipo necesario Cant. Sensor de Movimiento

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Preliminares y Tema 1 Departamento de Física

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Preliminares y Tema 1 Departamento de Física I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos 2009-10-reliminares y Tema 1 Departamento de Física 1) Dado el campo escalar V ( r) = 2zx y 2, a) determine el vector

Más detalles

Determinación del módulo de Young mediante flexión

Determinación del módulo de Young mediante flexión Práctica 1 Determinación del módulo de Young mediante flexión 1.1 Objetivo Se trata de calcular el módulo de elasticidad a partir de la deformación que experimenta una varilla de un determinado material.

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

CURSO DE HIDRÁULICA 2010

CURSO DE HIDRÁULICA 2010 CURSO DE HIDRÁULICA 2010 LECCIÓN 5. MOVIMIENTO DEL AGUA EN CAUCES ABIERTOS EN RÉGIMEN PERMANENTE NO UNIFORME. ECUACIONES DE APROXIMACIÓN AL MOVIMIENTO: MÉTODO DE ZURICH; MÉTODO GEOMÉTRICO. ECUACIÓN DEL

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles