R = a) En el caso de la primera serie, 1/n sines impar a n = 0 sines par

Tamaño: px
Comenzar la demostración a partir de la página:

Download "R = a) En el caso de la primera serie, 1/n sines impar a n = 0 sines par"

Transcripción

1 298 Series de potecias y fucioes elemetales 8.4. Ejercicios Ejercicios resueltos 8.4. Calcule las sumas de las siguietes series: a) x + x3 3 x5 5 +x b) x 3 3 x x7 5 7 x Solució: La primera operació a realizar es calcular el radio de covergecia de la serie para determiar el domiio de la fució que defie la correspodiete serie. El radio de covergecia viee dado por la fórmula R = lím sup a. a) E el caso de la primera serie, / sies impar a = 0 sies par Observése que o existe lím a, ya que los térmios pares tiee límite 0 mietras que los impares tiee límite. Afortuadamete la fórmula del radio de covergecia sólo requiere el límite superior, que siempre existe. Recordemos que el límite superior es el supremos de los putos que sea límite de algua subsucesió, y eso e este caso sigifica que lím sup a =. Por tato el radio de covergecia es y la serie a) defie ua fució f : (, ) R que se os pide determiar. Sabemos quef es cotiua y derivable e (, ) viedo su derivada dada por la derivació térmio a térmio, es decir, siedo f (x) = + x2 2 x4 4 +x6 + + ( )+x2 + = +g(x) 6 2 g(x) := x2 2 x4 4 +x6 + + ( )+x Si pudieramos calculargpodríamos calcularf, y por tato, mediate itegració, obtedríamos f. E cosecuecia, olvidamos temporalmete uestro problema iicial y tratamos de calcular g. Co razoamietos ideticos a los ateriores teemos queges derivable e (, ) y que g (x) =x x 3 +x 5 x 7 + = 298 x ( x 2 ) = x +x 2

2 8.4 Ejercicios 299 por tratarse de ua progresió geométrica idefiida de razó x 2. Por tato, itegrado, g(x) = 2 log( +x2 ) +C siedo C ua costate. Pero al ser g(0) = 0 (sumar la correspodiete serie) ha de serc= 0 y hemos coseguido uestro primer objetivo: calcularg. Así pues, f (x) = + 2 log( +x2 ) = f(x) =x + 2 log( +x2 ) lo que coduce ua vez calculada la primitiva que aparece e la fórmula aterior a f(x) =x +x log ( x 2 + ) 2 (x arctgx) +K siedok ua costate, cuyo valor es 0 ya quef(0) = 0 (sustituir e la serie correspodiete). Todas las cuetas que acabamos de hacer so legítimas parax (, ), siedo así que e dicho itervalo se cumple, segú hemos demostrado, que f(x) =x +x log ( x 2 + ) 2 (x arctgx). (8.5) Para acabar aalicemos el comportamieto de la serie e los extremos del itervalo. Parax=la serie es covergete porque lo garatiza el criterio de Leibiz. Parax= tambié lo es por el mismo motivo. Así que el domiio def es el itervalo (, ] siedof cotiua e dicho itervalo como cosecuecia del criterio de Abel 8..9 de covergecia e el borde. La fució h(x) :=x +x log ( x 2 + ) 2 (x arctgx) está defiida y es cotiua e todo R y coicide cof e (, ), pero al ser ambas cotiuas tambié coicide e [, ] ( por qué?) y la fórmula (8.5) es válida e [, ]. b) El radio de covergecia de la seguda serie es R = lím sup a = 2+ lím (2+)(2 ) = lím (2 + ) lím (2 ) = = Para ver que ambos límites vale observemos que el primero de ellos es ua subsucesió de ( ) y sabemos que lím = ; el segudo puede ser visto 299

3 300 Series de potecias y fucioes elemetales como ua subsucesió de ( m m 2) m y lím m m m 2 = lím m m+ 2 m 2 =. La fució f(x) := x3 3 x x7 5 7 x está defiida e (, ) y es derivable siedo La fucióg defiida por f (x) = x2 x4 3 +x6 5 x =x( x x3 3 +x5 5 x7...) =:xg(x) 7 g(x) = x x3 3 +x5 5 x tambié tiee radio de covergecia, como es fácil comprobar, y puede calcularse fácilmete derivado (para obteer ua geométrica) e itegrado sucesivamete como e el apartado aterior obteiedo queg(x) =x/(+x 2 ). Etoces f (x) = x2 = f(x) =x arctgx +C +x2 siedoc= 0 porquef(0) = 0 (haciedox = 0 e la serie que defief). Siguiedo las pautas del apartado aterior es secillo ver quef(x) =x arctgx para todox [, ] Escriba el desarrollo de la fucióf(x) = 2 log2 ( +x) como serie de potecias de x y determie el itervalo de covergecia del desarrollo. Idicació: calcule el desarrollo def. Solució: La derivada esf (x) = log( +x) +x siedo log( +x) = ( ) x+ =0 +, +x = ( ) x. =0 El radio de covergecia de ambas series es. Así pues para cadax (, ) es ( log( +x) )( = ( ) x ) ( ) x +x = debido a que ambas series so absolutamete covergetes e [ x,x] y a la proposició =0

4 8.4 Ejercicios 30 El coeficiete de gradode la serie producto es c = i+j= i 0 j ( ) i i ( )j = i+j= i 0 j Asíf (x) = = ( ) H x y por tato ( ) i = ( ) f(x) = ( ) H = + x+. i Para calcular el radio de covergecia de esta serie hacemos i = ( ) H lím sup H H = lím H = lím =, H co lo que el radio de covergecia es Dada la serie ( ) +x2 = 2 () Determie el radio de covergecia de la serie. (2) Seaf(x) el valor de la suma de la serie e los putos e que coverja. Aalice justificadamete el domiio y la cotiuidad def. Calculef(x). (3) Demuestre que ( ) + = 2 =π 4 (4) Aalice razoadamete la covergecia y covergecia absoluta de la serie siguiete Utilice el apartado aterior, etre otras cosas, para calcular la suma de esta serie. Solució: El radio de covergecia de la serie viee dado por lím sup a = lím /(2 ) = puesto que la sucesió aterior es ua subsucesió de cuyo límite sabemos que es. Utilizado teoremas geerales sabemos que la serie coverge e 30

5 302 Series de potecias y fucioes elemetales cada puto de (, ) y es ua fució cotiua e ifiitamete derivable e ese itervalo, cuyas derivadas se calcula derivado formalmete térmio a térmio la serie propuesta. Tambié coverge e x = como cosecuecia del teorema de Leibiz, porque la serie = ( ) + es alterada y el 2 valor absoluto del térmio geeral es ua sucesió moótoa decreciete. Parax = se trata de ( ) +( )2 = 2 = ( ) ( )2 = 2 = ( ) = 2 y co la misma argumetació aterior tambié es covergete. Por tato el domiio def es [, ] además utilizado el teorema de Abel sobre covergecia e el borde, sabemos quef es cotiua o sólo e (, ) sio e [, ]. Para calcular f derivaremos formalmete la serie e u puto arbitrario x (, ) obteiedo f (x) = ( ) + (2 ) x2 2 = 2 = ( ) + x 2 2 = = +x 2 por tratarse la última de ua serie geométrica cuya suma sabemos calcular. Así puesf es ua primitiva de /( +x 2 ), es decir,f(x) = arctgx +C. Para determiarc hemos de coocer el valor def e algú puto; pero a partir de la serie que defief es imediato quef(0) = 0, de modo quec= 0 y f(x) = arctgx para cadax (, ). Pero comof y arctg so ambas cotiuas e [, ] y, segú acabamos de ver, coicide e (, ) ecesariamete coicide tambié ex=±. E particular ( ) + = 2 = =f() =π 4. Esta fórmula permite calcular aproximacioes decimales de π co la precisió deseada, ya que al tratarse de ua serie alterada el criterio de Leibiz determia que el error cometido al tomar ua suma-esima es iferior al valor absoluto del sumado imediatamete posterior. Auque teóricamete la cuestió de obteer valores aproximados para ese úmero π itroducido de forma abstracta e 8.2. está zajada, el cálculo deπ co esta serie o es muy eficaz debido a que la covergecia es leta. 302

6 8.4 Ejercicios 303 Puesto que máxima puede hacer sumas fiitas podemos obteer valores aproximados para π co bastate comodidad. Cocretamete sum ( (4*(-)^(+))/(2*-),,,000),umer; proporcioa el valor E cambio utilizado la serie (véase el ejercicio?? e la págia??). π = 6 ( ) (2 + ) ( ) (2 + ) =0 =0 que tiee ua covergecia más rápida, el resultado para sum ( (6*(-)^)/((2*+)*5^(2*+)) - (4*(-)^)/((2*+)*239^(2*+)),,0,4),umer; es La serie propuesta e el último apartado puede escribirse e la forma ( ) k+ k= 2k(2k + )(2k + 2) y el estudio de la covergecia absoluta de la misma equivale a estudiar la covergecia de (2k) = 3 8 k 3 k= que resulta ser covergete por tratarse de ua armóica de orde 3. Para hacer la suma realizaremos la descomposició e fraccioes simples obteiedo (co uas secillas cuetas) que k= 2k(2k + )(2k + 2) = 4k 2k + + 2(2k + 2). Maxima puede realizar la descomposició mediate la orde partfrac(/( 2* * (2*+) * (2*+2) ),); que da como resultado ( + ) + 4 Ahora podemos escribir la serie e la forma ( ) k+ 2k(2k + )(2k + 2) = k= ( ( ) k+ k= 4k ) 2k + + = 2(2k + 2) ( ) k+ 4k= k ( ) k+ k= 2k + + ( ) k+ 4k= k + = 4 log 2 +π 4 4 (log 2 ) =π

7 304 Series de potecias y fucioes elemetales obteiedo así la suma buscada Desarrolle e serie de potecias la fucióf(x) = log +x y pruebe que si x es u etero co>0 se tiee log + = 2 k=0 (2k + )(2 + ) 2k+ Utilizado dicha serie determie cuatos térmios hay que tomar para obteer ua aproximació del valor de log 2 co error iferior a 0 3. Cooce otra serie para log 2? Cuatos térmios hay que tomar para obteer el mismo tamaño de error? Solució: Sabemos que si x < log( +x) =x x 2 /2 +x 3 /3 + + ( ) +x + = ( ) +x. Lo cual os permite escribir el desarrollo de log( x) = log( + ( x)) para x < y, por tato, el desarrollo de log +x x E particular la suma = log( +x) log( x) = (x x 2 /2 +x 3 /3 + + ( ) +x +...) ( x x 2 /2 x 3 /3 + + x +...) = 2x + 2 x x x2k+ 5 2k + + = 2 k 0 2 k=0 (2k + )(2 + ) 2k+ x 2k+ 2k +. correspode a hacerx =, que ciertamete cumple x < siempre que 2+. Por tato la suma de esta serie es log = log + E particular, tomado = se obtiee la fórmula log 2 = 2 k=0 304 (2k + )(3) 2k+ (8.6)

8 8.4 Ejercicios 305 que permite calcular log 2 de forma aproximada sumado u cierto úmero de térmios. Otra fórmula para calcular log 2, como ya sabemos, es log 2 = ( )+ + = ( ) + (8.7) Para obteer ua aproximació a log 2 podemos sumar los primerosptérmios e dichas series. El error que cometemos es, exactamete, log 2 S p, que coicide co la suma p+a. Si deseamos que el error sea meor que 0 3, podemos () Utilizar la fórmula (8.7): e cuyo caso al tratarse de ua serie alterada sabemos (teorema de Leibiz) que el error cometido al sumar los primerosptérmios es meor que el valor absoluto del térmiop + y por cosiguiete habremos de realizar la suma de los 999 primeros térmios!! (2) Utilizar la fórmula (8.6): e cuyo caso para estimar el error cometido o os sirve el teorema de Leibiz y tedremos que elegirppara que se tega 2 03 (2k + )(3) 2k+< Pero 2 k=p+ k=p+ (/3) 2k+ (2k + ) < 2 (2p + ) k=p+ ( 3 ) 2k+ = ) 2 9 2p+3, (2p + ) 8( 3 por lo que la covergecia de la serie es muy rápida ahora. ( 2 9 Coseguir determiar u úmero etero positivo p tal que 2p+3 (2p+) 8 3) puede hacerse maualmete esayado cop =,p = 2, etc. Pero co ayuda de Maxima el proceso es muy secillo. Defiimos la fució f(p):=9/(4*(2*p+)*3^(2*p+3)); y luego podemos calcular el valor f(p) para valores de p crecietes hasta que f(2); os proporcioa /4860. Así que log 2 es aproximadamete sum (2/((2*k+)*3^(2*k+)), k, 0, 2),umer; cuyo valor segú Maxima es co error iferior a /000. Realizadas de forma maual, la dificultad de las cuetas e uo y otro caso es muy sigifitativa. 305

9 306 Series de potecias y fucioes elemetales Propuestos 8.) Determie el radio de covergecia de las series de potecias cuyo térmio geeral se señala a cotiuació. ( ) a! x (!) 2 (2)! x k! x a+ x log a x h 2 x <h< ( (2+) )2 x (!) 3 (3)! x 8.2) Desarrolle e serie de potecias la fució log(x + +x 2 ), arc tgx y calcule el radio de covergecia de la serie obteida. Desarrolle e serie de potecias dex la fució 2x+3 x+ 8.3) Estudie el domiio de covergecia y la suma de las series ( ) x3 = = x ( + 2)!. 8.4) Estudie la covergecia y calcule las sumas de las series siguietes. =0 = x x! ( ) x 2 = 2(2 ) =0 (3 2 +)x 8.5) Determie el radio de covergecia de la serie de potecias ( ) a x =0 Seaf(x) el valor de la suma de dicha serie. Demuestre quef (x)( +x) = af(x) y determief(x). 8.6) Calcule las sumas de las siguietes series: a) 2 +x 5 +x2 8 +x3... b) x x Idicació: Para el primero haga el cambio variablex =t 3 8.7) Sea la serie ( ) x 2+ (2 + )(2 ). 306

10 8.4 Ejercicios 307 a) Determie el radio de covergecia de la serie b) Seaf(x) el valor de la suma de la serie e los putos e que coverja. Estudie el domiio def y la cotiuidad. Calculef(x). c) Deduzca la suma de la serie ( ) ) Es coocido que las calculadoras os proporcioa el valor de ciertas fucioes a través del cálculo itero de uos pocos térmios de las series de potecias que las represeta. Así, por ejemplo, podría ofreceros los valores de las fucioes arc tgx o log( +x) a través de sus represetacioes: arc tgx = ( ) x2+ =0 2 + log( +x) = ( ) +x = Si embargo el radio de covergecia de dichas series es y, por tato, las represetacioes dadas sólo tiee setido e el itervalo (, ) (icluyedo, quizás, alguo de los extremos). Puede idear algú procedimieto por el cual sea posible evaluar aproximadamete dichas fucioes e putos que o esté e dicho itervalo? 8.9) Se cosidera la serie 0( ) 3+. a) Estudie la covergecia. b) Pruebe que ( ) = 0 +x 3dx. c) Calcule el valor de la suma de la serie. 307

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

Convergencia absoluta y series alternadas

Convergencia absoluta y series alternadas Tema 11 Covergecia absoluta y series alteradas Ua vez que dispoemos de diversos criterios de covergecia para series de térmios o egativos, abordamos el estudio de la covergecia de series de úmeros reales

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales - Ferado Sáchez - - 7 Sucesioes Cálculo I y series de úmeros reales Sucesioes de úmeros reales 20 205 De maera similar a como se hizo para sucesioes de úmeros racioales, se defie ua sucesió de úmeros reales

Más detalles

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3 Tema 3 Cálculo de ites El presete tema tiee u iterés emietemete práctico, pues su pricipal fialidad es aportar los ejemplos que se echaba de meos e el tema aterior. Empezaremos estableciedo las reglas

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos Cálculo I ( o de Grado e Iformática, 202-3) Aputes sobre series uméricas: pregutas frecuetes y ejemplos resueltos ) Pregutas frecuetes. Coceptos, teoremas y ejemplos básicos P-. Ua serie ifiita es ua suma

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE Departameto de Aálisis Matemático Curso 00/003 Profesores resposables Oscar Blasco Atoio Galbis Jesús García Josep Martíez Aíbal Moltó Carme de las Obras Sergio Segura

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6 . SUCESIONES Se puede cosiderar que ua sucesió es ua lista de úmeros escritos e u orde defiido: a, a 2, a 3, a 4,..., a,... El úmero a recibe el ombre de primer térmio, a 2 es el segudo térmio y, e geeral,

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

TEMA 2: RESOLUCIÓN DE ECUACIONES NO LINEALES

TEMA 2: RESOLUCIÓN DE ECUACIONES NO LINEALES Tema : Resolució de ecuacioes o lieales. TMA : RSOLUCIÓN D CUACIONS NO LINALS.1.- Itroducció La resolució de ecuacioes e ua variable es uo de los problemas clásicos de la aproximació umérica. Se trata

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor Tema 7 (IV) Aplicacioes de las derivadas () Represetació gráfica de curvas y fórmula de Taylor Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

Ejercicios de Análisis Matemático Sucesiones y series de funciones

Ejercicios de Análisis Matemático Sucesiones y series de funciones Ejercicios de Aálisis Matemático Sucesioes y series de fucioes. Estudia la covergecia uiforme e itervalos de la forma Œ; a y Œa; CŒ dode a >, de la sucesió de fucioes ff g defiidas para todo > por: f./

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Introducción a las sucesiones. y series numéricas

Introducción a las sucesiones. y series numéricas UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Itroducció a las sucesioes y series uméricas Ramó Bruzual Marisela Domíguez Caracas, Veezuela

Más detalles

Series de potencias y funciones elementales

Series de potencias y funciones elementales 8 Series de potecias y fucioes elemetales 8.. Series de potecias 8.2. Fucioes elemetales 8.3. El teorema fudametal del Álgebra 8.4. Ejercicios Coteidos Competecias Saber calcular el radio de covergecia

Más detalles

Olimpiadas Matem aticas, U. de A.

Olimpiadas Matem aticas, U. de A. OLIMPIADAS DE MATEMATICA, 04 Uiversidad de Atioquia Cotextos AVISO: Los textos aquí publicados so resposabilidad total de sus creadores Estos so materiales e costrucció Errores y/o cometarios por favor

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros Cap ³tulo 6 Series Num ericas. Problemas resueltos Salvador Vera Ballesteros www.satd.uma.es/matap/svera 6. Series um ericas. De icioes De ici o 6. (Serie) Dada ua sucesi o um erica i ita: fa g fa ;a ;a

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 008 (Modelo 6) Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 008 (MODELO 6) OPIÓN A EJERIIO 1_A (3 putos) Ua empresa produce botellas de leche etera

Más detalles

4. Series, Taylor y límites indeterminados

4. Series, Taylor y límites indeterminados 4 Series, Taylor y ites idetermiados 4 Series de úmeros reales Queremos hacer sumas de ifiitos úmeros reales, llamadas series: a + a + a + = a = Por ejemplo, sumemos /5+/5 +/5 +/5 4 +/5 5 + Sumar u úmero

Más detalles

Prácticas Matlab ( 1) Práctica 7. Objetivos

Prácticas Matlab ( 1) Práctica 7. Objetivos PRÁCTICA SERIES DE POTENCIAS Prácticas Matlab Práctica 7 Objetivos Estudiar la covergecia putual de ua serie de potecias. Estimar gráficamete el itervalo de covergecia de ua serie de potecias. Aproimar

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

La contribución de la clase de Computación a la introducción y desarrollo de conceptos elementales de Matemática Numérica en el nivel medio.

La contribución de la clase de Computación a la introducción y desarrollo de conceptos elementales de Matemática Numérica en el nivel medio. La cotribució de la clase de Computació a la itroducció y desarrollo de coceptos elemetales de Matemática Numérica e el ivel medio. MsC. Rubé Rodríguez Ramos Lic. Eric Crespo Hurtado Dr. C. Tomás Crespo

Más detalles

denomina longitud de paso, que en un principio se considera que es constante,

denomina longitud de paso, que en un principio se considera que es constante, 883 Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 3 Métodos uméricos de u paso El objetivo de este capítulo es itroducir los métodos uméricos de resolució

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles

3.1 DEFINICIÓN DE PENDIENTE DE RECTA

3.1 DEFINICIÓN DE PENDIENTE DE RECTA Cap. La derivada. DEFINICIÓN DE PENDIENTE DE RECTA TANGENTE.. VELOCIDAD INSTANTÁNEA. DEFINICIÓN DE DERIVADA. FORMA ALTERNATIVA.5 DIFERENCIABILIDAD.6 DERIVACIÓN.6. FÓRMULAS DE DERIVACIÓN.6. REGLAS DE DERIVACIÓN.6.

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA Cálculo Diferecial Ejercicios y Problemas resueltos Juliá Rodríguez Ruiz (Catedrático de Ecoomía Aplicada. UNED) Mariao Matilla García (Profesor Titular

Más detalles