Vectores y Matrices. Curso a 11 a a 1n a 21 a a 2n. A = A = [a ij] 1 i m. a m1 a m2... a mn

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Vectores y Matrices. Curso a 11 a a 1n a 21 a a 2n. A = A = [a ij] 1 i m. a m1 a m2... a mn"

Transcripción

1 Vectores y Matrces Curso A = Notacón a a 2 a n a 2 a 22 a 2n a m a m2 a mn, A = [a j] m j n a j = elemento (, j) de A Tamaño u orden de A= m n S m = n, A cuadrada -sma fla y j-sma columna: a = [a a 2 a n ] y a j = Notacón de MATLAB: A(,:) y A(:,j) En general a j R, anllo conmutatvo con elemento R m n = cto de las matrces de tamaño m n con elementos en R 2 a j a 2j a mj,

2 Operacones con matrces S A = [a j ] R m n y B = [b j ] R m n : A + B = [a j + b j ] R m n MATLAB:A+B y s A = [a j ] R m n y B = [b j ] R n p, entonces [ n ] AB = a k b kj R m p MATLAB:A*B k= (R n n, +, ) es un anllo no conmutatvo con dentdad I n = = [δ matrz dentdad de orden n j], MATLAB:eye(n) 0 0 S x R y A = [a j ] R m n, xa = [xa j ] R m n MATLAB: x A o x A 3 S A = [a j ] Algunos tpos de matrces A T = [a j ] transpuesta de A MATLAB: A s R = R y A s R = C S R = C, A = [a j ] conjugada de A (z = x + y z = x y) S R = C, A = A T MATLAB: A 2 3 [ ] Smétrcas: A = A T : , Hermítcas: A = A : [ ] Skew-smétrcas: A T = A: 2 0 Skew-hermítcas: A = A 4

3 Más tpos de matrces d d 2 0 Dagonales: = Dag(d,, d n ) 0 0 d n Matlab: dag A A 2 0 Dagonal por bloques: 0 0 A p Matlab: blkdag a a 2 a n 0 a 22 a 2n Trangular superor: 0 0 a nn Matlab: tru Trangular nferor, por bloques, etc 5 Matlab: trl Matrces de permutacón P R n n matrz de permutacón s en cada fla y columna hay un elemento gual a y todos los demás son cero: Permutan flas y columnas P = 0 0 y P T = P 2 3 = 3 2 y [ 2 3 ] P T = [ 3 2 ] S σ = (, 2,, n ) S n ; e σ(k) = k, P σ = [δ σ(j) ]= matrz con un en (σ(), ) y todo lo demás cero En el ejemplo, σ = (2, 3, ) P T = P σ = P Matlab: P=eye(n); P=P(:,σ) P σ A = [a σ(j) ] y AP T = [a σ()j ] 6

4 Submatrces S A = [a j ] R m n, B = [b j ] R p q submatrz de A s exsten índces (,, p ) y (j,, j q ) tales que < < p m, j < < j q n y a r j s = b rs, r p, s q A = b b 2 b 3 b 2 b 3 b 4 b 22 b 32 b 42 b 23 b 33 b j j 2 j 3 Usaremos notacón de MATLAB: s u = (,, p ) y v = (j,, j q ): B=A(u,v) Hay confguracones que no son submatrces 7 Matrces y aplcacones lneales R = F f : V V 2 Fjadas bases B = {v,, v n }, B 2 = {u,, u m } f (v j ) = m a j u, = j =,, n determna A = [a j ] F m n : matrz de f respecto de B y B 2 Y recíprocamente A F m n puede verse como una aplcacón lneal entre los espacos vectorales F n y F m : A : F n F m x Ax La matrz de esta aplcacón lneal es A cuando en F m y F n se toman las bases canóncas 8

5 A F m n Rango y nuldad Im(A) = {y F m y = Ax para algún x F n } Ker(A) = {x F n Ax = 0} rang(a) = dm Im A ν(a)= nuldad de A= dm Ker A Prmer teorema de somorfía MATLAB: rank Im A = Fn Ker A Desgualdad de Sylvester (884) A F m n, B F n p ν(a) = n rang(a) rang(a) + rang(b) n rang(ab) mín(rang(a), rang(b)) 9 Matrces de rango completo A tene rango completo rang(a) = mín{m, n} Qué sgnfca que A es de rango completo? m n dm Im A = n Ker A = {0} A es nyectva (nvertble por la zquerda: BA = I n ) m n dm Im A = m Im A = F m A es suprayectva (nvertble por la derecha: AB = I m ) m = n A byectva (nvertble: AB = BA = I n ) 0

6 Matrces nvertbles Para A F n n (F cuerpo) las sguentes condcones son equvalentes: A tene nversa A (MATLAB: nv) 2 rang(a) = n 3 Im A = F n 4 ν(a) = 0 5 Ker A = {0} 6 0 no es un valor propo (autovalor) de A (MATLAB: eg) 7 det(a) 0 (MATLAB: det) A no sngular: det(a) 0 A no sngular A nvertble (F cuerpo) λ C valor propo de A F n n : x C n (x 0) tal que Ax = λx x= vector propo de A asocado a λ Qué sgnfca Ax = b? b es la magen de x por A b es el resultado de multplcar A por x n b = a j x j, =,, m b b 2 b m = a a 2 a m j= x + a 2 a 22 a m2 x a n a 2n a mn x n b = x a + x 2 a x n a n b es una combnacón lneal de las columnas de A cuyos coefcentes son las componentes del vector x n b Im A b = x a para algún vector x = 2

7 Notacón: S a,, a n F n La Imagen y el Span { n } < a,, a n >= Span (a,, a n ) = x a x F Im(A) es es subespaco de F m generado por las columnas de A; e, s A = [ a a 2 a n ], Im A =< a,, a n > = rang(a) = dm < a,, a n > Ker A está formado por los vectores cuyas componentes son los coefcentes del vector 0 como combnacón lneal de las columnas de A: 0 = x a + x 2 a x n a n 3 Producto de matrces Qué sgnfca C = AB? C es la matrz de la composcón R p C es el resultado de multplcar A por B B R n A R m c j = a b j + a 2 b 2j + + a n b nj, c j a a 2 a n b j c 2j c j = = a 2 a 22 a 2n b 2j = Ab j, j =,, p c mj a m a m2 a mn b nj [ ] [ ] c c 2 c p = Ab Ab 2 Ab p, c = a B A actúa sobre B: combnacones lneales en las flas de B, y B actúa sobre A: combnacones lneales 4 en las columnas de A

8 Producto nterno y externo de vectores S u, v R n : Producto nterno: u T v v v 2 u T v = [ ] u u 2 u n = u n v n n u v R producto externo: uv T R n n u u v uv T u 2 [ ] u 2 v = v v 2 v n = = [ v u v 2 u v n u ] u n v = uv T es una matrz de rango y todas las matrces de rango son así 5 Otra vez el producto de matrces (AB) j = n k= a k b kj = a b j = (a )T b j, a es la -ésma columna de A T y b j la j-ésma columna de B (a k b k ) j = a k b kj AB = a (b ) T + a 2 (b 2) T + + a n (b n) T, 6

9 Matrces elementales Tpo I j E (α) = I n + E j (α) = α j E (α)a = a a + αa j a j a m, AE (α) = [ a a a j + αa a n ] 7 Matrces elementales Tpo II E 2 (α) = α E 2 (α)a = a αa a m y AE 2 (α) = [ a αa a n ] 8

10 Matrces elementales Transposcones P = a a j PA = a a m j 0 0 y AP = [ a a j a a n ] 9 j Elmnacón Gaussana (EG) Ax = b, A F n n, b F n [ A b ] = [ A () b ()] = [ A (n) b (n)] A (n) = U trangular superor n etapas y en cada etapa k = : n [ ] A (k) A (k) = A (k) 2 0 A (k), A (k) F(k ) (k ) trangular 22 Objetvo en la etapa k: susttur por ceros los elementos de A (k) (k + : n, k) restando a la fla = k + : n la fla k multplcada por m k = a(k) k a (k) kk (MULTIPLICADOR): a (k+) j b (k+) = a (k) j = b (k) m k a (k) kk,, j = k +,, n m k b (k) k,, j = k +,, n 20

11 Factorzacón LU S m k = [ 0 0 m k+k m nk ] T y Mk = I n m k e T k : Entonces M k A (k) = A (k+) M n M n 2 M 2 M A = A (n) = U trangular superor A = M M 2 M L := M M 2 M n = M k = I m + m k e k m 2 m 32 m n m n2 m nn n U, A = LU Factorzacón LU de A 2 Algortmo LU Factorzacón LU Dato: A F n n Objetvo: calcular factorzarón LU de A L =eye(n) for k = : n for = k + : n l k = a k /a kk a k = 0 for j = k + : n a j = a j l k a kj for for for U = A Coste: 2 3 n3 22

12 Pvoteo parcal por columnas al comenzo de la etapa k, se ntercamban las flas k y r estando r determnada por la condcón: a (k) rk = máx k n a(k) k M n P n M n 2 P n 2 M 2 P 2 M P A = U, U = M 4 P 4 M 3 P 3 M 2 P 2 M P A = M 4 P 4 M 3 P }{{} 4 P 4 P 3 M 2 P 3 P 4 P }{{} 4 P 3 P 2 M P 2 P 3 P 4 P }{{} 4 P 3 P 2 P A }{{} = M 3 M 2 M P M 4 M 3 M 2 M PA M k = P n P n 2 P k+ (I n m k ek T )P k+ P n 2 P n = (I n P n P n 2 P k+ m k ek T = I n m k et k, m 2 PA = LU, L = M M 2 M n 2 M n = m m n m n2 m nn Algortmo Factorzacón LU con pvoteo Versón Factorzacón LU con pvoteo parcal Versón Dato: A F n n, det A 0 Objetvo: calcular P,L U tales que PA = LU L =eye(n) for k = : n Calcúlese el máx A(k : n, k) y su poscón, r Permútense las flas k y r de A, L y P for = k + : n l k = a k /a kk a k = 0 for j = k + : n a j = a j l k a kj for for for U = A 24

13 Algortmo Factorzacón LU (LUTXFOR) Versón functon [L,U,P] = lutxforv(a) %LUTXFORV, para una matrz nvertble dada A, devuelve matrces L, %trangular nferor con en la dagonal, %U, trangular superor y P de permutacón %tal que PA=LU En vez trabajar con la matrz P se trabaja %con un vector p que almacena las transposcones y a partr %del cual se construye P La matrz L se defne %y actualza de forma explícta y se utlzan bucles FOR para %todos los contadores % Calculamos el tama~no de A [n,n] = sze(a); %Incamos p=[ 2 n]^t p = (:n) ; % y L L=eye(n); %Transformacones elementales en las columnas, 2,, n- for k = :n- %Calculamos el máxmo, r, (en valor absoluto) de los elementos % A(k,k), A(k,k+),,A(k,n), y la poscón, m, donde se encuentra [m,r] = max(abs(a(k:n,k))); % Calculamos la poscón del máxmo en toda la columna k-ésma de A r = r+k-; %S el máxmo fuera cero es porque toda la columna es cero y A no sería %nvertble f (A(r,k) ~= 0) %S el máxmo no está en la dagonal permutamos f (r ~= k) %permutamos las flas k y r en A, L y p A([k r],k:n) = A([r k],k:n); L([k r],:k-) = L([r k],:k-); p([k r]) = p([r k]); 25 Algortmo Factorzacón LU (LUTXFOR) Versón Cont %L está fromada por los multplcadores for = k+:n; L(,k) = A(,k)/A(k,k); % Por debajo de (k,k) los elementos de A en la columna k serán 0 A(,k)=0; % Realzamos sobre las flas =k+,,n la transformacón elemental for j = k+:n; A(,j) = A(,j) - L(,k)*A(k,j); %A se ha convertdo en trangular superor: es la U U=A; % Construímos P a partr de p: las flas :n de P son las de la permutacón P=eye(n); P=P(p,:); 26

14 Algortmo Factorzacón LU (LUTXFOR) Fnal functon [L,U,P] = lutxfor(a) [n,n] = sze(a); p = (:n) ; for k = :n- [m,r] = max(abs(a(k:n,k))); r = r+k-; f (A(r,k) ~= 0) f (r ~= k) A([k r],:) = A([r k],:); p([k r]) = p([r k]); for = k+:n; A(,k)=A(,k)/A(k,k); for j = k+:n; A(,j) = A(,j) - A(,k)*A(k,j); %En la parte trangular nferor de A (sn la dagonal) está L L = trl(a,-) + eye(n,n); %Y en la parte trangular superor (ncluyo la dagonal) está U U = tru(a); P=eye(n); P=P(p,:); 27 El algortmo de la factorzacón LU functon [L,U,p] = lutx(a) [n,n] = sze(a); p = :n; for k = :n- [r,m] = max(abs(a(k:n,k))); m = m+k-; f (A(m,k) = 0) f (m = k) A([k m],:) = A([m k],:); p([k m]) = p([m k]); = k+:n; A(,k) = A(,k)/A(k,k); j = k+:n; A(,j) = A(,j) - A(,k)*A(k,j); L = trl(a,-) + eye(n,n); U = tru(a); 28

15 Jerarquía en la memora de los ordenadores y BLAS Regstros Caché RAM Dsco Basc Lnear Algebra Subroutnes (BLAS) Operacón Defncón flops (f ) memory ref (m) Rato q = f /m BLAS y = αx + y 2n 3n + 2/3 BLAS2 y = Ax + y 2n 2 n 2 + 3n 2 BLAS3 C = AB + C 2n 3 4n 2 n/2 BLAS (saxpy): productos nternos, escalar por vector, BLAS2: matrz por vector, sstemas trangulares, A + xy t, BLAS3: matrz por matrz, sstemas trangulares con muchos vectores ndepentes, f t art + m t mem = f t art ( + m f 29t mem t art ) = f t art ( ) + t mem q t art A F m n, B F n p rang A + rang B n () < rang(ab) (2) < mín{rang A, rang B} (2) () rang A + dm(ker A Im B) < n { rang B dm(ker A Im B) < rang B dm(ker A Im B) > 0 rang B < rang A + dm(kera Im B) rang B < rang A + dm(ker A Im B) < n, dm(ker A Im B) > B = , A = So m = n = p debe ser n 5 Ker A Im B =< e > 30

8. Espacio vectorial con producto escalar

8. Espacio vectorial con producto escalar Depto de Álgebra, curso 7-8 8 Espaco vectoral con producto escalar Productos escalares Ejercco 8 Demuestre que s P es una matrz nvertble n n sobre C y P es su matrz traspuesta conjugada entonces la aplcacón

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Resolución de sistemas lineales por métodos directos

Resolución de sistemas lineales por métodos directos Resolucón de sstemas lneales por métodos drectos Descomposcón LU S la matr del sstema Ax = b se expresa como producto de una matr trangular nferor, L, de una superor, U, la resolucón del msmo se reduce

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

Tema 9: Otros temas de aplicación

Tema 9: Otros temas de aplicación Tema 9: Otros temas de aplcacón. Introduccón Exsten muchos elementos nteresantes y aplcacones del Matlab que no se han comentado a lo largo de los temas. Se nvta al lector a que nvestgue sobre ellos según

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

Ampliación de Métodos. Ion Zaballa Departamento de Matemática Aplicada y Estadística e Investigación Operativa Euskal Herriko Unibertsitatea

Ampliación de Métodos. Ion Zaballa Departamento de Matemática Aplicada y Estadística e Investigación Operativa Euskal Herriko Unibertsitatea Ampliación de Métodos Numéricos Ion Zaballa Departamento de Matemática Aplicada y Estadística e Investigación Operativa Euskal Herriko Unibertsitatea 2 Capítulo 1 Vectores y Matrices 1.1. Matrices y Aplicaciones

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

5. DIAGONALIZACIÓN DE MATRICES

5. DIAGONALIZACIÓN DE MATRICES Dagonalzacón Herraentas nforátcas para el ngenero en el estudo del algebra lneal 5. DIAGONALIZACIÓN DE MATRICES 5.1. INTRODUCCIÓN 5.2. VALORES Y VECTORES PROPIOS 5.3. MATRICES DIAGONALIZABLES 5.4. DIAGONALIZACIÓN

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

Prácticas de Mathematica. Diplomatura de Óptica y Optometría. Cuando el programa se cuelga.

Prácticas de Mathematica. Diplomatura de Óptica y Optometría. Cuando el programa se cuelga. Práctcas de Mathematca. Dplomatura de Óptca Optometría. Segunda Práctca Cuando el programa se cuelga. En ocasones, por la dfcultad o la mala escrtura de las operacones que le pedmos, el programa no responde.

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia 2014 Ejemplo Solución de sistemas de ecuaciones lineales, usaremos

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo

Más detalles

CAPITULO 2 VALORES, VECTORES PROPIOS y SVD. Ing. Diego A. Patiño M.Sc., Ph.D.

CAPITULO 2 VALORES, VECTORES PROPIOS y SVD. Ing. Diego A. Patiño M.Sc., Ph.D. CAPITULO VALORES, VECTORES PROPIOS y SVD Ing. Dego A. Patño M.Sc., Ph.D. Valores y Vectores Propos Muchas de las transformacones que se necestan en el dseño de sstemas de control se realzan sobre vectores

Más detalles

UNIDAD N 1 ESPACIOS VECTORIALES

UNIDAD N 1 ESPACIOS VECTORIALES UNIDAD N ESPACIOS VECTORIALES ESPACIOS VECTORIALES DEFINICIÓN Nº : Un CUERPO F es un conjunto con dos operacones (denotadas por + y ) que satsface las sguentes propedades: + ) La adcón es conmutatva, o

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.

Más detalles

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule,

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule, Mecánca Cambo de Coordenadas En coordenadas Cartesanas estamos acostumbrados a pensar a los vectores base como versores (vectores de norma 1 o untaros) drgdos a lo largo de los correspondentes ejes, en

Más detalles

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K Sesión 8: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K ) Calculamos los valores propios de A y sus multiplicidades algebraicas con: d A λ = det A λi nxn = Si d A

Más detalles

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel...

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel... CONTENIDO 5 Métodos teratvos para la resolucón de ecuacones algebracas lneales 95 5.1 Método de Gauss-Jacob................................ 95 5.2 Método de Gauss-Sedel................................

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

Unidad 2 Representación Algebráica

Unidad 2 Representación Algebráica Undad Representacón lgebráca Gráfcas no drgdas Matrz de Incdenca La matrz de ncdenca de una gráfca G se denota como (G) y se defne como: a, S el vértce v ncde en la línea e n cada columna hay exactamente

Más detalles

SUCESIONES RECURSIVAS LINEALES

SUCESIONES RECURSIVAS LINEALES SUCESIONES RECURSIVAS LINEALES Juan Saba Susana Tesaur 1 Introduccón Una forma usual de defnr sucesones de números es nductvamente Por ejemplo, s alguen conoce la sucesón de Fbonacc, es probable que la

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green Propedades efectvas de medos peródcos magneto-electroelástcos a través de funcones de Green utores: Lázaro Makel Sto Camacho Julán Bravo Castllero LOGO Renaldo Rodríguez Ramos Raúl Gunovart Díaz Introduccón

Más detalles

Análisis en Componentes Principales

Análisis en Componentes Principales Análss en Componentes Prncpales ACP ACP: resumen Stuacón: se tene una tabla de datos cuanttatvos Obetvo: obtener una representacón en pocas dmensones de los obetos, perdendo el mínmo de nformacón obtener

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Taller III: Álgebra Matricial

Taller III: Álgebra Matricial Fundacón Msón Sucre Colego Unverstaro de Caracas Taller III: Álgebra Matrcal MATRICES Defncón: Conunto de números o símbolos algebracos colocados en líneas horzontales y vertcales dspuestos en forma de

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

Estimación no lineal del estado y los parámetros

Estimación no lineal del estado y los parámetros Parte III Estmacón no lneal del estado y los parámetros 1. Estmacón recursva El ltro de Kalman extenddo 12 es una técnca muy utlzada para la la estmacón recursva del estado de sstemas no lneales en presenca

Más detalles

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROFESORAS: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROFESORAS: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROFESORAS: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 MATEMÁTICA AÑO Undad N I: Epresones algebracas PROGRAMA DE MATEMÁTICA 0 TERCER AÑO

Más detalles

Determinación de H-matrices. R. Bru, C. Corral, I. Gimenez, J. Mas

Determinación de H-matrices. R. Bru, C. Corral, I. Gimenez, J. Mas XX Congreso de Ecuacones Dferencales y Aplcacones X Congreso de Matemátca Aplcada Sevlla, 24-28 septembre 2007 (pp. 1 8) Determnacón de H-matrces R. Bru, C. Corral, I. Gmenez, J. Mas Insttut de Matemàtca

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

6.9 El trazador cúbico

6.9 El trazador cúbico 4.9 El trazador cúbco El polnomo de nterpolacón es útl s se usan pocos datos y que además tengan un comportamento polnomal, así su representacón es un polnomo de grado bajo y adecuado. S no se cumplen

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García Herramentas Matemátcas para la localzacón espacal Contendo I. Justfcacón 2. Representacón de la poscón 2. Coord. Cartesanas 2.2 Coord. Polares y Clíndrcas 2.3 Coord. Esfércas 3. Representacón de la orentacón

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

TEMA 11. Conceptos básicos de la Teoría de Conjuntos. Estructuras algebraicas.

TEMA 11. Conceptos básicos de la Teoría de Conjuntos. Estructuras algebraicas. Tema 11- onceptos báscos Teoría de onjuntos. Estructuras lgebracas TEM 11. onceptos báscos de la Teoría de onjuntos. Estructuras algebracas. 1. Introduccón. La teoría de conjuntos es una rama de las matemátcas

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

ISSN en trámite. Notas de matemática. Fascículo 2. Juan Sabia Susana Tesauri. Sucesiones recursivas lineales

ISSN en trámite. Notas de matemática. Fascículo 2. Juan Sabia Susana Tesauri. Sucesiones recursivas lineales Fascículo Notas de matemátca ISSN en trámte Juan Saba Susana Tesaur Sucesones recursvas lneales Departamento de Matemátca Facultad de Cencas Exactas y Naturales Unversdad de Buenos Ares 014 Notas de matemátca

Más detalles

Geometría diferencial de superficies en el espacio

Geometría diferencial de superficies en el espacio Geometría dferencal de superfces en el espaco Marano Suárez-Álvarez 31 de agosto, 2015 1 Superfces en el espaco 1 1.1 Cartas y superfces..................... 1 1.2 Funcones dferencables..................

Más detalles

Adaptación: Julio J. Águila G. 1 Autores: Enriques Arias 2, Diego Cazorla 1

Adaptación: Julio J. Águila G. 1 Autores: Enriques Arias 2, Diego Cazorla 1 Adaptación: 1 Autores: Enriques Arias 2, Diego Cazorla 1 1 Departamento de Ingeniería en Computación-UMAG 2 Departamento de Sistemas Informáticos-UCLM martes 10 de marzo de 2015 (UMAG) martes 10 de marzo

Más detalles

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1 Valores singulares Curso 2017-18 1 Producto escalar y ortogonalidad < x, y >= n y i x i = y T x si F = R, n y i x i = y x Si x C n x x = n x i 2 = x 2 2. si F = C Si x, y C n x y = y x, pero si x, y R

Más detalles

Comportamiento asintótico del núcleo asociado a polinomios ortogonales en varias variables. Wilmer Merardo Gómez Blanco Código:

Comportamiento asintótico del núcleo asociado a polinomios ortogonales en varias variables. Wilmer Merardo Gómez Blanco Código: Comportamento asntótco del núcleo asocado a polnomos ortogonales en varas varables Wlmer Merardo Gómez Blanco Códgo: 01830509 Unversdad Naconal de Colomba Facultad de Cencas Departamento de Matemátcas

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

Lección 8. Matrices y Sistemas de Ecuaciones Lineales

Lección 8. Matrices y Sistemas de Ecuaciones Lineales Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En

Más detalles

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 2017 ÁLGEBRA II (LSI PI) UNIDAD Nº 5 RANSFORMACIONES LINEALES Facultad de Cecas Exactas y ecologías UNIERSIDAD NACIONAL DE SANIAGO DEL ESERO aa Error! No hay texto co el estlo especfcado e el documeto

Más detalles

Repaso de algebra matricial

Repaso de algebra matricial Clase No. 3 (Parte 1): MAT 251 Repaso de algebra matricial Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín

Más detalles

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN RANSFORMACIONES LINEALES 1 RANSFORMACIONES NÚCLEO E IMAGEN DEFINICION : Sean V W espacios vectoriales Una transformación lineal de V en W es una función que asigna a cada vector v V un único vector v W

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

ALGEBRA y ALGEBRA LINEAL

ALGEBRA y ALGEBRA LINEAL 520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios

MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios Pontificia Universidad Católica de Chile Facultad de Matemáticas MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios 1. Determine los valores y vectores propios de 0 3 A + I = 1 3 A

Más detalles

Tema I. Matrices y determinantes

Tema I. Matrices y determinantes Tema I. Matrices y determinantes 2007 Carmen Moreno Valencia 1. Matrices sobre un cuerpo 2. Operaciones con matrices 3. Determinante de una matriz cuadrada 4. Menor complementario y adjunto 5. Cálculo

Más detalles

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n. Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................

Más detalles

MATRIZ Una matriz de orden (tamaño) mxn sobre el campo de los complejos es un arreglo rectangular de la forma a 11 a 12 a 1n a ] a m1 a m2 a mn

MATRIZ Una matriz de orden (tamaño) mxn sobre el campo de los complejos es un arreglo rectangular de la forma a 11 a 12 a 1n a ] a m1 a m2 a mn MATRIZ Una matriz de orden (tamaño) mxn sobre el campo de los complejos es un arreglo rectangular de la forma a 11 a 12 a 1n a [ 21 a 22 a 2n ] a m1 a m2 a mn con m renglones y n columnas, donde los a

Más detalles

REGLAMENTO PARA LA GESTIÓN DE RIESGO POR TIPO DE CAMBIO

REGLAMENTO PARA LA GESTIÓN DE RIESGO POR TIPO DE CAMBIO CAPÍTULO XVIII: REGLAMENTO PARA LA GESTIÓN DE RIESGO POR TIPO DE CAMBIO Artículo - Objeto.- El presente Reglamento tene por objeto establecer las dsposcones que deben ser cumpldas para la gestón del resgo

Más detalles

Rancagua, Agosto 2009

Rancagua, Agosto 2009 cvalle@inf.utfsm.cl Departamento de Informática - Universidad Técnica Federico Santa María Rancagua, Agosto 2009 1 / 28 Temario 1 2 3 4 2 / 28 Temario 1 2 3 4 3 / 28 Los nombre y arreglos son equivalentes.

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

Vectores y matrices. Problemas para examen

Vectores y matrices. Problemas para examen Vectores y matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.

Más detalles

Conceptos Preliminares

Conceptos Preliminares Conceptos Preliminares Igualdad de matrices Definición: Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan la misma posición en ambas son iguales. Estas matrices cumplen

Más detalles

Algoritmos matemáticos para:

Algoritmos matemáticos para: Algortmos matemátcos para: sstemas de ecuacones lneales, nversón de matrces y mínmos cuadrados Jose Agular Inversón de matrces Defncón(Inversadeunamatrz):SeaAunamatrz nxn.unamatrzcde nxn esunanversadeascaaci.

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

OCW-V.Muto Técnicas iterativas para resolver sistemas lineales Cap. XVII CAPITULO XVII. TECNICAS ITERATIVAS PARA RESOLVER SISTEMAS LINEALES

OCW-V.Muto Técnicas iterativas para resolver sistemas lineales Cap. XVII CAPITULO XVII. TECNICAS ITERATIVAS PARA RESOLVER SISTEMAS LINEALES CAPITULO XVII. TECNICAS ITERATIVAS PARA RESOLVER SISTEMAS LINEALES. INTRODUCCION Y METODO Una técnca teratva para resolver un sstema lneal A x = b de n n empeza con una aproxmacón ncal x (0) a la solucón

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS:

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS: SUBESPACIOS FINITAMENTE GENERADOS: Teorema S G={v, v,, v } es u sstema fto de geeradores de u subespaco S V K-EV, etoces G`= {v, v,, v,w} sedo w combacó leal de vectores de G, també geera a S. Demostracó

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

CONECTIVIDAD EN LOS MUNICIPIOS Y REGIONES DE JALISCO

CONECTIVIDAD EN LOS MUNICIPIOS Y REGIONES DE JALISCO ONETIVIDD EN LOS MUNIIPIOS Y REGIONES DE JLISO Introduccón Desde el año 2005 el tlas de amnos y arreteras está regstrando para el Sstema Informacón Terrtoral del Estado de Jalsco (SITEJ), el nventaro de

Más detalles

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

Unidad Nº III Unidad Aritmética-Lógica

Unidad Nº III Unidad Aritmética-Lógica Insttuto Unverstaro Poltécnco Santago Marño Undad Nº III Undad Artmétca-Lógca Undad Artmétca-Lógca Es la parte del computador que realza realmente las operacones artmétcas y lógcas con los datos. El resto

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto

Más detalles

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices 3. Matrices. Verónica Briceño V. agosto 2012 3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n a A = 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A CI4A: ANALISIS ESTRUCTURAL Prof.: Rcardo Herrera M. Programa CI4A NÚMERO NOMBRE DE LA UNIDAD OBJETIVOS DURACIÓN 4 semanas Prncpo de los trabajos vrtuales y teoremas de Energía CONTENIDOS.. Defncón de trabajo

Más detalles