( 3.c) INTRODUCCIÓN A LOS MODELOS NO EXPONENCIALES Y REDES DE COLAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "( 3.c) INTRODUCCIÓN A LOS MODELOS NO EXPONENCIALES Y REDES DE COLAS"

Transcripción

1 (.c) INTRODUCCIÓN A LOS MODELOS NO EXONENCIALES Y REDES DE COLAS INTRODUCCIÓN A LAS REDES DE COLAS. Cocepto de red abierta y cerrada. Redes abiertas y Teorema de Jackso. MODELOS NO EXONENCIALES Cola M/G/: Fórmula de ollaczeck-khitchie. Cola G/M/: casos Ek/M/, Hip/M/, Hyp/M/. Uso de QTS_EXCEL. AROXIMACIONES ARA COLAS GI/G/s. Aproximació de Alle-Cuee. Aproximacioes para colas cogestioadas (Heavy Traffic) UC

2 - - ( ) ( ) ( ) ( ) M M M M emergete Tasa icidete Tasa Estado Hay tatas ecuacioes como valores pueda presetar N(t), por tato, si e el S.E. sólo puede haber como máximo K clietes, habrá K ecuacioes.

3 UC UC ; C C K K K,, K K K,, C C C < C Las probabilidades de estado estacioario queda defiidas si: E caso de que el S.E. pueda coteer sólo K clietes como máximo, el sumatorio se extiede de a K y siempre será fiito.

4 EJEMLO DE LA EVOLUCIÓN DE UNA COLA M/M/ COMORTAMIENTO: uede presetarse dos situacioes:. E promedio la afluecia de clietes al S.E. sobrepasa la capacidad de trabajo del Sistema de Servicio: N(t) N(t) RESENTA UNA TENDENCIA CRECIENTE t. El Sistema de Servicio tiee suficiete capacidad de trabajo frete a la afluecia de clietes: N(t) < N(t) puede crecer e ocasioes, pero el S.E. siempre retora al estado (vacío) t UC

5 Tiempos etre llegadas τ i.i.d. de ley exp. co parámetro. s > servidores iguales. Tiempo de servicio x i.i.d. segú ua ley exp. de parámetro. K K K,,,,,,,, s s s s MODELO M/M/s s- s s s s s

6 El modelo M/M/s/K Sistema de espera co limitació de capacidad que presupoe:. Tiempos etre llegadas τ i.i.d. exp. de parámetro.. Tiempos de servicio x i.i.d. exp. de parámetro.. U cojuto de servidores e paralelo s >. 4. El úmero de clietes al sistema de espera es K. El úmero máximo de clietes N(t) presetes e el S.E. debe ser K Si el S.E. está lleo al llegar u cliete éste se pierde: s s- s s s s Siempre alcazará régime estacioario. K U C

7 MODELO M/M/s/./N S.E. co població fiita (N) que presupoe: Tiempo de permaecia e la població de los clietes i.i.d segú ley exp. de parámetro Tiempos de servicio por servidor i.i.d. segú ley exp. de parámetro. U cojuto de servidores e paralelo s >. Ua població fiita de clietes limitado al valor N. ara simplificar se supoe N > s. Es u S.E. cerrado: Hay siempre N clietes (poblaciós.e.) Tras salir del S.E. el cliete se reitegra e la oblació oblació Sistema de Espera

8 REDES DE COLAS EXONENCIALES Sistemas de colas expoeciales formado ua red de motaje de ordeadores o coches, por ejemplo. odemos cosiderar dos tipos de redes de S.E.: a) ABIERTAS. recibe etradas de clietes procedetes de ua o varias poblacioes exteras y que tiee salidas hacia el exterior;. b) CERRADAS. No recibe etradas de poblacioes exteras i tiee salidas al exterior. Número costate de clietes circulado detro de la red. Ejemplo. Red abierta de S.E. obl. Exter. Ejemplo. Ssitema M/M/s/./N: obl. U C

9 Redes abiertas. Teorema de Jackso Codicioes bajo las que las redes abiertas de S.E. preseta propiedades para efectuar u aálisis por descomposició.. El S.E. (odo) i tiee u úmero de servidores s i de características idéticas etre sí. Los tiempos de servicio de cada servidor tiee distribució expoecial de probabilidades co capacidad idividual de servicio i.. La capacidad de la cola e cada S.E. es ilimitada.. Los clietes que ha estado servidos e el odo i se reparte etre los odos j E(i), emergetes del i y, co probabilidades p ij > costates a lo largo de toda la evolució del sistema. 4. el tiempo asociado al arco (i,j) es cero. Si todas las llegadas exteras está distribuidas poissoiaamete y se verifica las codicioes ateriores etoces se llama redes de Jackso y sobre ellas puede aplicarse el resultado del teorema de Jackso (957). U C

10 U C Teorema de Jackso. Sea ua red abierta de S.E. verificado las codicioes para la descomposició ateriores, co solucioes del sistema: N j p r N i ij i j j,, K tales que i i i s < para todo S.E. i,,n. Etoces cada S.E. se comporta como ua cola M/M/s i co etradas de clietes co tasa i y que presetará e estado estacioario ua distribució de probabilidades propia de las colas M/M/s e idepediete de la de los otros sistemas detro de la red. N NN N N N N N p p p p p p r r M L M O M M L M M

11 U C 45 / / / 5 5 / / / / / / 5 obl. obl. Exter. / / / / r r 5 Se dispoe de servidores co tasa idividual de servicio. Determiar e cada odo el úmero míimo de servidores de forma que la red de S.E. presete estado estacioario. Calcular las demoras medias e todos los S.E. de la red.

12 U C Las etradas e los S.E., y so respectivamete:,, 45. or tato:. ara el odo, si s, / / <.. ara el odo, si s, / / <.. ara el odo, hay que dotarlo de s 4 servidores: /(s ) 45/(4) <. Los odos y co u solo servidor so colas de tipos M/M/ co las mismas tasas de etrada: - -/ /6; El odo se comporta como ua cola M/M/4; Si θ / 45/ etoces: / 5, L W W L L , ) (!,!! i i θ θ θ θ ( ) 88 57,,.! q q s q L s L W

13 MODELOS DE COLAS NO EXONENCIALES Los modelos de colas que se ha visto hasta el mometo estaba basados e los procesos de acimieto y muerte. Supoía tiempo etre llegadas y tiempo de servicio de tipo expoecial. Las hipótesis puede resultar iapropiadas para modelizar determiadas situacioes:. Las llegadas programadas a la cosulta de u médico.. Las colas que se forma cíclicamete e los semáforos de las ciudades.. E el caso del servicio, si el tiempo que requiere cada cliete es más o meos costate, por ejemplo e ua cadea de motaje U C

14 El modelo M/G/ Los S.E. que respode a modelos M/G/ so aquellos que:. Las llegadas tiee ua tasa costate igual a. Los tiempos etre llegadas al sistema so i.i.d. expoecialmete.. Los tiempos de servicio tiee ua distribució de probabilidad comú cualquiera y so mútuamete idepedietes, de esperaza matemática / y variaza σ.. El sistema de espera dispoe de u úico servidor: s. ara coseguir u estado estacioario es suficiete que el factor de carga del sistema / <. U C

15 La fórmula de ollaczek-khitchie determia la esperaza matemática de la logitud de cola e régime estacioario: L q. L q σ ( ) ( ) σ ( ) L q A partir de las fórmulas de Little se obtiee el resto de magitudes, L, W, W q. La fórmula refleja la ifluecia de la dispersió de los tiempos de servicio (variaza σ ) e el comportamieto del S.E.: A mayor σ mayor será la logitud media de cola L q a igualdad de y. U C

16 Caso particular M/M/, teemos σ y la fórmula de ollaczek-khitchie se covierte e, L q σ ( ) ( ) ( ) ( ) coicidiedo co el resultado ecotrado ateriormete. Caso particular M/E k /: la distribució de los tiempos de servicio es Erlag de parámetros k y /E[x], su variaza es /k, al aplicar la fórmula de ollaczek-khitchie: L q σ k ( ) ( ) k ( ) k U C

17 E el caso M/D/, la distribució de los tiempos de servicio es costate, de media uidades de tiempo ( servicios por uidad de tiempo) y variaza σ, la fórmula de ollaczek- Khitchie determia la expresió de la logitud media de la cola como, L q σ ( ) ( ). L q L q L q D E k M U C

18 QTS_EXCEL: CASOS M/Ek/, M/D/ M/E(k)/ system-size probabilities probability,,,8,6,4,, size M/D/ system-size probabilities probability,5,,5,,5,,5, size

19 COLA G/M/

20 COLA G/M/ UC

21 UC

22 E(k)/M/ system-size probabilities CDF for E(k)/M/ lie waitig times CDF for E(k)/M/ system waitig times probability,,5,,5,,5, size cdf,,8,6,4,,,,,, time cdf,,8,6,4,,,,,, time

23 AROXIMACIÓN DE LA COLA GI/G/s Exacta para M/M/s, M/G/ UC

24 AROXIMACIÓN DE LA COLA GI/G/s UC

25 Tiempo etre averías de u motor: τ' (τ' 4),88 Tiempo etre icidecias (revisió o avería) de u motor: τ 4 τ τ τ τ k- τ k t Simulació de períodos: (τ' 4),88 88% de las icidecias: revisioes

26 Se procede a u aálisis aproximado para cada año mediate u modelo de colas tipo G/M/. Se adopta ua distribució de los tiempos etre llegadas τ para cada año del tipo: oblació Sistema de Espera Exterior

27 Opció: o reovar taller E[x],5 semaas Distribució del tiempo de permaecia e el taller W,4 σ w,5 Ocupació media UC

28 ráctica 4: QTS_EXCEL: Aproximació de Alle-Cuee

Sistemas de colas: clase 1. Amedeo R. Odoni 10 de octubre de 2001

Sistemas de colas: clase 1. Amedeo R. Odoni 10 de octubre de 2001 Sistemas de colas: clase Amedeo R. Odoi de octubre de 2 Temas de teoría de colas 9. Itroducció a las colas: ley de Little; M/M/. olas de acimieto y muerte de Markov. ola M/G/ y extesioes 2. olas de prioridad:

Más detalles

Convergencia de variables aleatorias

Convergencia de variables aleatorias Capítulo Covergecia de variables aleatorias El objetivo del presete capítulo es estudiar alguos tipos de covergecia de variables aleatorias. Iiciaremos co la defiició de los distitos modos de covergecia...

Más detalles

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS Població E el cotexto de la estadística, ua població es el cojuto de todos los valores que puede tomar ua característica medible e particular, de u cojuto correspodiete

Más detalles

INTRODUCCIÓ ALS MODELS NO EXPONENCIALS I XARXES DE CUES

INTRODUCCIÓ ALS MODELS NO EXPONENCIALS I XARXES DE CUES INTRODUCCIÓ ALS MODELS NO EXPONENCIALS I XARXES DE CUES INTRODUCCIÓ A LES XARXES DE CUES. Concepte de xarxa oberta i tancada. Xarxes obertes i Teorema de Jackson. MODELS NO EXPONENCIALS Cua M/G/: Fòrmula

Más detalles

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t.

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t. PROCESOS ROBABILIDADES ESTOCÁSTICOS (ITEL-3005) (80807) Tema 4. Los Procesos Tema. de Fudametos Poisso y otros de Estadística procesos asociados Descriptiva Semaa Distribució 5 Clase 07 de frecuecias Lues

Más detalles

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R Capítulo 3. El modelo de regresió múltiple. Jorge Feregrio Feregrio Idetificació del modelo La idetificació del objeto de ivestigació permitirá realizar ua búsqueda exhaustiva de los datos para llevar

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

Se utilizan los datos puntuales de altura de precipitación o intensidades máximas de lluvia registradas en una estación

Se utilizan los datos puntuales de altura de precipitación o intensidades máximas de lluvia registradas en una estación .. Tormetas putuales Aspectos geerales Se utiliza los datos putuales de altura de precipitació o itesidades máximas de lluvia registradas e ua estació So válidas para áreas cuya extesió este defiida por

Más detalles

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE Objetivos Comprobar que la suma de variables aleatorias idepedietes y co la misma distribució es aproximadamete ormal. Estudiar la robustez de la aproximació frete

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Desigualdad de Tchebyshev

Desigualdad de Tchebyshev Desigualdad de Tchebyshev Si la Esperaza y la variaza de la variable X so fiitas, para cualquier úmero positivo k, la probabilidad de que la variable aleatoria X esté e el itervalo La probabilidad de que

Más detalles

Análisis de resultados. Independencia de las muestras

Análisis de resultados. Independencia de las muestras Aálisis de resultados Clase ro. 8 Curso 00 Idepedecia de las muestras Los resultados de ua corrida de simulació, so muestras de algua distribució. Esos resultados los llamamos "respuestas". Las respuestas

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

Teoría de colas. Andrés Ramos Universidad Pontificia Comillas http://www.iit.comillas.edu/aramos/ Andres.Ramos@comillas.edu TEORÍA DE COLAS 1

Teoría de colas. Andrés Ramos Universidad Pontificia Comillas http://www.iit.comillas.edu/aramos/ Andres.Ramos@comillas.edu TEORÍA DE COLAS 1 Teoría de colas Adrés Ramos Uiversidad Potificia Comillas http://www.iit.comillas.edu/aramos/ Adres.Ramos@comillas.edu TEORÍA DE COLAS 1 Ua cola se produce cuado la demada de u servicio por parte de los

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2005

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2005 Solució del exame de Ivestigació Operativa de Sistemas de septiembre de 5 Problema (,5 putos): E ua serie de lazamietos de u dado, se observa cuatos resultados diferetes ha aparecido hasta cada mometo.

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

SUMA DE VARIABLES ALEATORIAS

SUMA DE VARIABLES ALEATORIAS SUMA DE VARIABLES ALEATORIAS do C. 018 Clase Nº 9 Mg. Stella Figueroa Teorema Cetral del Límite El teorema afirma que la distribució de la suma de u gra úmero de variables aleatorias tiee aproximadamete

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496.

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496. GRADO GESTIÓN AERONÁUTICA: EXAMEN ESTADÍSTICA TEÓRICA 9 de Eero de 015. E-7. Aula 104 1.- La fució de desidad de ua variable aleatoria es: a b 0 f() 0 e el resto sabiedo que 1 P 1 0,1666. Determiar a y

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Introduccion. TEMA 6: MODELOS DE FILAS DE ESPERA (Waiting Line Models) (Capítulo 12 del libro) Modelos de Decisiones

Introduccion. TEMA 6: MODELOS DE FILAS DE ESPERA (Waiting Line Models) (Capítulo 12 del libro) Modelos de Decisiones Modelos de Decisioes TEMA 6: MODELOS DE FILAS DE ESPERA (Waitig Lie Models) (Capítulo 2 del libro) Itroduccio.. Estructura de u Sistema de Filas de Espera 2. Modelo Sigle-Chael co tasa de llegadas tipo

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Itroducció a la Iferecia Estadística. Método Estadístico. Defiicioes previas. 5.2. Estimació putual 5.3. Métodos de obteció de estimadores: 5.3.1. Método de los

Más detalles

UNIDAD 4 MODELOS PROBABILÍSTICOS

UNIDAD 4 MODELOS PROBABILÍSTICOS Uiversidad Nacioal del Litoral Facultad de Igeiería y Ciecias Hídricas ESTADÍSTICA Igeiería Iformática TEORÍA Mg.Ig. Susaa Valesberg Profesor Titular UNIDAD 4 MODELOS PROBABILÍSTICOS Estadística - Igeiería

Más detalles

1.-SUAVIZADORES DE RANGO DE ORDEN INTRODUCCIÓN

1.-SUAVIZADORES DE RANGO DE ORDEN INTRODUCCIÓN 1.-SUAVIZADORES DE RANGO DE ORDEN 1.1.- INTRODUCCIÓN Cosiderado que el "filtro mediaa" es o-lieal, el térmio "filtro, que ha sido implícitamete asociado co el cocepto de liealidad, es iapropiado. Quedaría

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística Tema 14: Iferecia estadística La iferecia estadística es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. 1. Estimació de parámetros Cuado descoocemos

Más detalles

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II)

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II) Semaa 0 [/24] 2 de mayo de 2007 Sadwich de sucesioes Semaa 0 [2/24] Límites y Orde. Teorema Sea u ) y w ) sucesioes covergetes a u y w, respectivamete. Si 0 tal que para 0 se cumple que etoces u w. u w

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

EJERCICIO 1. , a partir de las frecuencias observadas, nij. , que se dan en la tabla del ejercicio.

EJERCICIO 1. , a partir de las frecuencias observadas, nij. , que se dan en la tabla del ejercicio. EJERCICIO () Es u problema de idepedecia de criterios y se tedrá que costruir la tabla de cotigecia de frecuecias teóricas (esperadas), t ij, a partir de las frecuecias o observadas, ij, que se da e la

Más detalles

Mg. Ing. Susana Vanlesberg Profesor Titular

Mg. Ing. Susana Vanlesberg Profesor Titular Uiversidad Nacioal del Litoral Facultad de Igeiería y Ciecias Hídricas ESTADÍSTICA Igeierías: Recursos Hídricos-Ambietal-Agrimesura- Iformática Mg. Ig. Susaa Valesberg Profesor Titular MODELOS PARA VARIABLES

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

Estimadores Puntuales: Propiedades de estimadores Sebastián Court

Estimadores Puntuales: Propiedades de estimadores Sebastián Court Estadística Estimadores Putuales: Propiedades de estimadores Sebastiá Court 1.Motivació Cosideremos ua variable aleatoria X co ciertas características, como por ejemplo, u parámetro θ, y ua muestra aleatoria

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1 Demostracioes de Regresió Simple. Estimació La distribució de y es y i N 0 x i, Estimació Máximo Verosímil La fució de verosimilitud, sabiedo que y i es ua variable ormal será L exp y i 0 x i ya que la

Más detalles

Explicación de la tarea 10 Felipe Guerra. Para la explicación de esta tarea veamos primeramente que es lo que nos están pidiendo.

Explicación de la tarea 10 Felipe Guerra. Para la explicación de esta tarea veamos primeramente que es lo que nos están pidiendo. Explicació de la tarea 0 Felipe Guerra Para la explicació de esta tarea veamos primeramete que es lo que os está pidiedo. Ya hemos visto a lo largo del curso que la variaza es el error cuadrado medio de

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

TEMA 4- MODELOS CONTINUOS

TEMA 4- MODELOS CONTINUOS TEMA 4- MODELOS CONTINUOS 4.1. Itroducció. 4.2. Distribució uiforme cotiua de parámetros a y b. X Ua, b 4.3. Distribució Gamma de parámetros y. X, Casos particulares: 4.3.1.Distribució Expoecial. X Exp

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

FIGURAS Y TABLAS (Teoría)

FIGURAS Y TABLAS (Teoría) FIGURAS Y TABLAS (Teoría) Tema.- Itroducció a la Simulació de Evetos Discretos TEMA.- INTRODUCCIÓN A LA SIMULACIÓN DE EVENTOS DISCRETOS SISTEMA ENTIDADES ATRIBUTOS ACTIVIDADES RECURSO EVENTOS VARIABLES

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES omparació de Reactores Ideales y Reactores Múltiples PITULO 4 OMPRIÓN DE RETORES IDELES Y RETORES MÚLTIPLES 4. INTRODUIÓN E este capítulo se comparará los reactores T y. Se diseñará baterías de reactores

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva 1, Ejercicio 4, Opció A Reserva 1, Ejercicio 4,

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

2.2. Una versión elemental de la ley fuerte de los números grandes

2.2. Una versión elemental de la ley fuerte de los números grandes 34 CAÍTULO 2. LEY DE LOS NÚMEROS GRANDES Demostració. or el Teorema 2.0, vemos que basta probar que ( ) 2 2E (X,k E(X,k )) = 0. La esperaza e esta expresió se puede escribir como V ar(x,k ) + or la hipótesis

Más detalles

(3.b) MODELOS EXPONENCIALES de COLAS

(3.b) MODELOS EXPONENCIALES de COLAS (.b) MODEOS EXOEIAES de OAS ITRODUIÓ A OS ROESOS DE AIMIETO Y MUERTE. Ecuacioe de euilibrio. odició de E.E. AIAIÓ DE AS EUAIOES DE EQUIIBRIO: a cola M/M/. Ilutració del comportamieto. MODEOS DE OAS EXOEIAES.

Más detalles

Distribución Multinomial

Distribución Multinomial Uiversidad de Chile. Rodrigo Assar Facultad de Ciecias Físicas y Matemáticas M A34B 3 Adrés Iturriaga Departameto de Igeiería Matemática. Víctor Riquelme Distribució Multiomial Resume E el presete artículo

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

Evolución del concepto de Átomo (Resumen)

Evolución del concepto de Átomo (Resumen) Evolució del cocepto de Átomo (Resume) Tomposo Propuso u p[átomo co cargad positive distribuida e ua esfera de 0-8 cm de diámetro co pequeñas partículas co carga egativa distribuidas e capas. La teoría

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces.

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces. Statistics Review Variable Aleatoria o Ua variable aleatoria es ua variable cuyo valor está sujeto a variacioes que depede de la aleatoriedad. o Debe tomar valores uméricos, que depede del resultado del

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN. (i) Efectuando el producto, tenemos. (ii) De forma semejente, si z 2 6= 0, tenemos

162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN. (i) Efectuando el producto, tenemos. (ii) De forma semejente, si z 2 6= 0, tenemos 162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN (i) Efectuado el roducto, teemos z 1 z 2 = jz 1 jjz 2 j (cos ' 1 + i se ' 1 )(cos ' 2 + i se ' 2 ) = jz 1 jjz 2 j [(cos ' 1 cos ' 2 se ' 1 se ' 2 )+(se ' 1 cos

Más detalles

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una Tema 2 Combiatoria 2.1 Pricipios básicos de recueto 2.1.1 Cardial de u cojuto Defiició 2.1.1. Diremos que el cardial de u cojuto A es si se puede establecer ua biyecció f : {1,..., } A. Se deota A. Se

Más detalles

Identificación de Sistemas

Identificación de Sistemas Departameto de Electróica Facultad de Ciecias Eactas Igeiería y Agrimesura Uiversidad Nacioal de osario Idetificació de Sistemas Coceptos Fudametales de robabilidad Variables Aleatorias y rocesos Aleatorios

Más detalles

INVESTIGACIÓN DE OPERACIONES II. JULIO CÉSAR LONDOÑO ORTEGA

INVESTIGACIÓN DE OPERACIONES II. JULIO CÉSAR LONDOÑO ORTEGA INVESTIGACIÓN DE OPERACIONES II JULIO CÉSAR LONDOÑO ORTEGA Email: julio.lodoo@correouivalle.edu.co jclodoor@gmail.com MODELOS DE FILAS DE ESPERA El Papel de la Distribució Expoecial Ua variable que sirva

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2.001-2.002 - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios 69 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució Biomial Cosideremos los siguietes

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas ESTADÍSTICA. Ingenierías RH-Amb-Ag TEORÍA

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas ESTADÍSTICA. Ingenierías RH-Amb-Ag TEORÍA Uiversidad Nacioal del Litoral Facultad de Igeiería Ciecias Hídricas ESTADÍSTICA Igeierías RH-Amb-Ag TEORÍA Mg. Susaa Valesberg Profesor Titular INFERENCIA ESTADÍSTICA TEST DE HIPÓTESIS INTRODUCCIÓN Geeralmete

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

T o e r o ía í a d e d e C ol o a l s

T o e r o ía í a d e d e C ol o a l s Teoría de Cola Joé María Ferrer Caja Uiveridad Potificia Comilla Itroducció Cola: Cojuto de cliete e eera de recibir u ervicio Se roduce cuado lo cliete llega a u ervidor ocuado y ermaece e eera Teoría

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander Rudimetos 5: Teorema del Biomio Profesor Ricardo Satader Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros

Tema 3. Series de Fourier. Análisis de Espectros Tema 3. Series de Fourier. Aálisis de Espectros Idice: Series de Fourier Serie Trigoométrica de Fourier Aálisis gráfico. Primeras compoetes de frecuecia Ejemplo Serie de Fourier e forma de Expoeciales

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como:

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como: SOLUCIÓN DE ECUACIONES DIFERENCIALES Autor: Keith Gregso Traducció: José Alfredo Carrillo Salazar Muchos sistemas diámicos puede represetarse e térmios de ecuacioes difereciales. Por ejemplo, la tasa de

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias.

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias. Sesió 27 Series de potecias Temas Series de potecias. Itervalo y radio de covergecia de ua serie de potecias. Capacidades Coocer y compreder el cocepto de serie de potecias. Determiar el itervalo y el

Más detalles

9.3. Contrastes de una proporción

9.3. Contrastes de una proporción 9.3. CONTRASTES DE UNA PROPORCIÓN 219 y el criterio que sumiistra el cotraste es si a teo χ 2 exp b teo = o rechazamos H 0 ; si χ 2 exp < a teo ó χ 2 exp > b teo = rechazamos H 0 y aceptamos H 1. Cotrastes

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis del caso promedio El pla: Probabilidad Aálisis probabilista Árboles biarios de búsqueda costruidos aleatoriamete Tries, árboles digitales de búsqueda y Patricia Listas skip Árboles aleatorizados

Más detalles

FORMULARIO TEORIA DE FILAS

FORMULARIO TEORIA DE FILAS FORMULARIO TEORIA DE FILAS Proceso geeral de acimieto y muerte. Tasas de etrada: λ 0,λ 1,..., λ 1 clietes or uidad de tiemo. Tasas de salida: µ 1,µ 2,..., µ clietes or uidad de tiemo. =1, 2,... Razó etrada/salida:

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene:

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene: 9 TEORÍA DE TRÁFIO La teoría de tráfico es ua herramieta ampliamete utilizada para el aálisis del comportamieto de las redes de comuicacioes, las cuales puede ser de comutació de circuitos, como las redes

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la ANEXO B B.. Regresió Se defie como Regresió al estudio de la fuerza, cosistecia o grado de asociació de la correlació de variables idepedietes [6]. B... Regresió Lieal Simple El objeto de u aálisis de

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

R E S O L U C I Ó N. a) La distribución de las medias muestrales es: N, N 8'1, N 8'1, 0'3. Como el nivel de confianza es del 97%, podemos calcular

R E S O L U C I Ó N. a) La distribución de las medias muestrales es: N, N 8'1, N 8'1, 0'3. Como el nivel de confianza es del 97%, podemos calcular El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media días y desviació típica 3 días. a) Determie u itervalo de cofiaza para estimar, a u ivel del 97%, co ua muestra aleatoria

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

InIn Sistemas de Control de Calidad

InIn Sistemas de Control de Calidad Desity Desity II 78- Sistemas de Cotrol de Calidad Pla - Repaso de cotrol de calidad Gráficos de Cotrol - Herramieta que moitorea ua o más variables a lo largo del tiempo. (El sistema requiere itervecioes

Más detalles