El número real y complejo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El número real y complejo"

Transcripción

1 El número real y complejo Dpto. Matemática Aplicada Universidad de Málaga

2 Sistema de números reales Números naturales N = {0,1,2,3,...} Números enteros Z = {..., 3, 2, 1,0,1,2,3,...} { } p Números racionales Q = : p,q Z, con q 0 q Números irracionales R Q

3 Operaciones en R (R,+) es un grupo abeliano 1 Asociativa: a+(b +c) = (a+b)+c para cualesquiera a,b,c R 2 Elemento neutro: existe un elemento 0 R tal que 0+x = x = x +0 para todo x R. 3 Elemento opuesto: para cada x R existe x R tal que x +( x) = ( x)+x = 0. 4 Conmutativa: a+b = b +a para cualesquiera a,b R

4 Operaciones en R (R, ) es un grupo abeliano 1 Asociativa: a(bc) = (ab)c para cualesquiera a, b, c R 2 Elemento neutro: existe 1 R tal que 1x = x = x1 para todo x R. 3 Existencia de inverso: para cada 0 x R existe x 1 R tal que xx 1 = 1 = x 1 x. 4 Conmutativa: ab = ba para cualesquiera a,b R Propiedad distributiva: a(b +c) = ab +ac para cualesquiera a,b,c R (R,+, ) es un cuerpo. university-logo

5 R es un cuerpo totalmente ordenado Dados dos números reales cualesquiera a,b R, se verifica uno y sólo uno de los casos siguientes: a < b b < a a = b Propiedades: Si a < b entonces a+c < b +c para todo c R. Si a < b y c > 0, entonces ac < bc. Si a < b y c < 0, entonces ac > bc. Si a < b y c < d, entonces a+c < b +d.

6 Intervalos Dados dos números reales a,b con a b se definen Intervalo abierto de extremos a y b: (a,b) = {x R : a < x < b} Intervalo cerrado de extremos a y b: [a,b] = {x R : a x b} Intervalo semiabierto o semicerrado de extremos a y b: (a,b] = {x R : a < x b} [a,b) = {x R : a x < b} Semirrectas abiertas: (a,+ ) = {x R : a < x} (,b) = {x R : x < b} Semirrectas cerradas: [a,+ ) = {x R : a x} (,b] = {x R : x b}

7 Valor absoluto de un número real Dado un número real x se define el valor absoluto de x como el máximo de {x, x} y se le designa por x. Es decir, { x si x 0 x = x si x < 0 Propiedades: x 0 para todo x R. x = 0 si y sólo si x = 0. x = x para todo x R. x x x para todo x R. x ε si y sólo si ε x ε. x +y x + y (desigualdad triangular) para cualesquiera x,y R. xy = x y para cualesquiera x,y R. x y x y para cualesquiera x,y R. university-logo

8 Motivación para la definición de los complejos La idea de la construcción de los números complejos es ampliar el cuerpo R de los números reales a un conjunto que verifique las dos propiedades siguientes: 1 Contiene a R 2 existe un elemento,i, que cumple que i 2 es igual al número real 1, es decir, la ecuación x 2 +1 = 0 tiene solución.

9 Construcción de los números complejos Una vez definida la unidad imaginaria i como el elemento que cumple i 2 = 1 o abreviadamente i = 1, se construye el conjunto siguiente C = {a+bi : a,b R} en el que se definen las operaciones suma (a+bi)+(c +di) = (a+c)+(b +d)i y producto (a+bi)(c +di) = (ac bd)+(ad +bc)i

10 Parte real e imaginaria Dado un número complejo z = a+bi C, se dice que a es la parte real de z y b es la parte imaginaria de z. Los números reales están contenidos en los complejos pues se identifican con los números complejos cuya parte imaginaria es cero; Un número complejo cuya parte real es cero se llama imaginario puro.

11 Parte real e imaginaria Dado un número complejo z = a+bi C, se dice que a es la parte real de z y b es la parte imaginaria de z. Los números reales están contenidos en los complejos pues se identifican con los números complejos cuya parte imaginaria es cero; Un número complejo cuya parte real es cero se llama imaginario puro.

12 Forma binómica de un número complejo Producto de un número real por un complejo λ(a+bi) = λa+λbi Es posible establecer una correspondencia biunívoca entre los números complejos y los puntos del plano. Más concretamente, a+bi (a,b)

13 Conjugado de un número complejo Dado un número complejo z = a+bi, se define el conjugado de z como el número complejo z = a bi Propiedades z = z z +w = z +w z w = z w z +z = 2Re(z) z z = 2i Im(z)

14 Conjugado de un número complejo Dado un número complejo z = a+bi, se define el conjugado de z como el número complejo z = a bi Propiedades z = z z +w = z +w z w = z w z +z = 2Re(z) z z = 2i Im(z)

15 División de números complejos Inverso de un número complejo Dado z = a+bi, se verifica que z z = a 2 +b 2 por tanto, se define el inverso de z como 1 z = z a 2 +b 2 División de números complejos Dados z = a+bi,w = c +di se define z del siguiente modo: w z w = z w w w ac bd +bc = c 2 +iad +d2 c 2 +d 2

16 División de números complejos Inverso de un número complejo Dado z = a+bi, se verifica que z z = a 2 +b 2 por tanto, se define el inverso de z como 1 z = z a 2 +b 2 División de números complejos Dados z = a+bi,w = c +di se define z del siguiente modo: w z w = z w w w ac bd +bc = c 2 +iad +d2 c 2 +d 2

17 Forma polar de un número complejo El módulo de un número complejo z = a+bi es la distancia del punto del plano P = (a,b) al origen de coordenadas O, es decir z = a 2 +b 2 El argumento de z es el ángulo α que forma el vector OP con el eje de abcisas. arctg(b/a) si a > 0 ±π/2 si a = 0 α = arctg(b/a)+π si a < 0,b 0 arctg(b/a) π si a < 0,b < 0 Forma polar: z = z (cosα+isenα), abreviadamente, z α.

18 Forma polar de un número complejo El módulo de un número complejo z = a+bi es la distancia del punto del plano P = (a,b) al origen de coordenadas O, es decir z = a 2 +b 2 El argumento de z es el ángulo α que forma el vector OP con el eje de abcisas. arctg(b/a) si a > 0 ±π/2 si a = 0 α = arctg(b/a)+π si a < 0,b 0 arctg(b/a) π si a < 0,b < 0 Forma polar: z = z (cosα+isenα), abreviadamente, z α.

19 Forma exponencial de un número complejo Fórmula de Euler e iα = cosα+isenα Forma exponencial de un número complejo z = z e iα La forma exponencial permite simplificar las operaciones producto y cociente de números complejos, pues se deducen de las propiedades de las potencias.

20 Forma exponencial de un número complejo Fórmula de Euler e iα = cosα+isenα Forma exponencial de un número complejo z = z e iα La forma exponencial permite simplificar las operaciones producto y cociente de números complejos, pues se deducen de las propiedades de las potencias.

21 Forma exponencial de un número complejo Fórmula de Euler e iα = cosα+isenα Forma exponencial de un número complejo z = z e iα La forma exponencial permite simplificar las operaciones producto y cociente de números complejos, pues se deducen de las propiedades de las potencias.

22 Raíces de números complejos Se dice que w es raís n-ésima de z si w n = z. Usando la forma exponencial, se deduce w = z 1/n = z 1/n e i α n Debido a la periodicidad de las razones trigonométricas, cada número complejo tiene n raíces n-ésimas: { ( ( ) ( )) } z 1 α+2kπ α+2kπ n cos +isen : k = 0,...,n 1 n n

23 Polinomios. Raíces Un polinomio de grado n con coeficientes en C es una expresión del tipo P n (x) = a n x n +a n 1 x n 1 + a 1 x +a 0 donde a i C Las raíces de un polinomio P n (x) son las soluciones de la ecuación P n (x) = 0. Si a es raíz del polinomio P n (x), entonces P n (x) es divisible por (x a). Luego P n (x) = (x a)p n 1 (x). donde P n 1 (x) tiene grado n 1. Si P n (x) es divisible por (x a) k, pero no es divisible por (x a) k+1, se dice que a tiene multiplicidad k como raíz de P n (x). Una raíz simple es la que tiene multiplicidad uno y una raíz múltiple la que tiene multiplicidad mayor que uno. university-logo

24 Teorema fundamental del Álgebra Teorema (fundamental del Álgebra) Todo polinomio con coeficientes reales o complejos de grado n tiene n raíces reales o complejas, donde cada raíz múltiple se cuenta según su multiplicidad. Factorización de un polinomio Dado un polinomio P n (x) de raíces z 1,z 2,...,z k con multiplicidades m 1,m 2,...,m k, respectivamente, se tiene que P n (x) = a n (x z 1 ) m1 (x z 2 ) m2 (x z k ) m k

25 Teorema fundamental del Álgebra Teorema (fundamental del Álgebra) Todo polinomio con coeficientes reales o complejos de grado n tiene n raíces reales o complejas, donde cada raíz múltiple se cuenta según su multiplicidad. Factorización de un polinomio Dado un polinomio P n (x) de raíces z 1,z 2,...,z k con multiplicidades m 1,m 2,...,m k, respectivamente, se tiene que P n (x) = a n (x z 1 ) m1 (x z 2 ) m2 (x z k ) m k

26 Ecuaciones con coeficientes reales Sea P n (x) = a n x n +a n 1 x n 1 + a 1 x +a 0 un polinomio con coeficientes reales, es decir, a i R. Entonces, si z es raíz de P n (x), el conjugado z también es raíz y además tienen la misma multiplicidad. Como (x z) (x z) = x 2 +px +q para p = 2Re(z) y q = z, el polinomio admite una descomposición con factores reales P n (x) = a n (x a 1 ) m1 (x a l ) ml (x 2 +p 1 x+q 1 ) r1 (x 2 +p s x+q s ) rs donde a 1,a 2,...,a l son las raíces reales del polinomio y p i,q i R.

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos Números complejos Sesión teórica 2 (págs. 10-15) 21 de septiembre de 2010 Llamaremos números complejos a los elementos del conjunto: C = {a + bi a, b R}. La expresión a + bi se denomina forma binómica

Más detalles

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4 NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Números complejos. Números complejos 28/02/2016 CURSO

Números complejos. Números complejos 28/02/2016 CURSO Números complejos CURSO 2015-2016 Números complejos 1) Definición números complejos 2) Representación gráfica de un número complejo ( Afijo, módulo, argumento). Conjugado 3) Operaciones con números complejos.

Más detalles

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. Índice general II. UNIDAD 2 3 1. Trigonometría.................................. 3 1.1. Razones trigonométricas de un ángulo................. 3 2. Números complejos................................ 5 2.1.

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

TEMA 7 NÚMEROS COMPLEJOS

TEMA 7 NÚMEROS COMPLEJOS TEMA 7 NÚMEROS COMPLEJOS La unidad imaginaria i. Hay ecuaciones que no se pueden resolver en. Por ejemplo: x + 1 = 0 x = - 1 x = ± -1 En el siglo XVI se inventaron un número para resolver esta i = -1 ecuación.

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

NÚMEROS COMPLEJOS. El plano geométrico precisamente es R x R. Que abreviadamente escribimos R 2.

NÚMEROS COMPLEJOS. El plano geométrico precisamente es R x R. Que abreviadamente escribimos R 2. ºBAC CNyS NÚMEROS COMPLEJOS. PRODUCTO CARTESIANO DE DOS CONJUNTOS. CONJUNTO PRODUCTO. NÚMEROS IMAGINARIOS. NÚMEROS COMPLEJOS 4. OPERACIONES 5. OPERACIONES EN FORMA POLAR. PRODUCTO CARTESIANO DE DOS CONJUNTOS.

Más detalles

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa.

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa. DEFINICIÓN:Los Números Imaginarios surgen de la necesidad de resolver ecuaciones cuadráticas sin solución en el campo real. Este conjunto se representa por I Este conjunto posee elementos que se obtienen

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

El cuerpo de los números complejos

El cuerpo de los números complejos Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Números complejos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Sería conveniente realizar un ejercicio

Más detalles

4.1. Qué es un número complejo. Representación geométrica.

4.1. Qué es un número complejo. Representación geométrica. Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1 I E S Fray Luis de León Jesús Escudero Martín Pág 1 II2 NÚMEROS COMPLEJOS 1 Introducción 2 Definición 3 Representación gráfica de los números complejos 4 Igualdad de números complejos 5 Operaciones con

Más detalles

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada Tema 1. Números reales y funciones reales de variable real. Números complejos Departamento de Análisis Matemático Universidad de Granada Números reales Números reales Universidad de Granada Septiembre,

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1.

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1. Contenido Apunte de Números complejos o imaginarios: Suma y producto de números complejos. División. Raíz cuadrada. Conjugado. Módulo y argumento. Fórmula De Moivre. Raíces. Primera parte NUMEROS COMPLEJOS

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

Definición 1 Se definen los siguientes conceptos: (3) El conjunto de los números complejos. (a) la parte real de z es Re(z) = a.

Definición 1 Se definen los siguientes conceptos: (3) El conjunto de los números complejos. (a) la parte real de z es Re(z) = a. UNIVERSIDAD ARTURO PRAT FACULTAD DE INGENIERIA Y ARQUITECTURA 1 Conceptos Básicos Sabemos que las soluciones de la ecuación x 2 1 = 0 son x 1 = 1 y x 2 = 1. Una forma de determinar dichas soluciones es

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

5. Efectúa las siguientes operaciones con números complejos:

5. Efectúa las siguientes operaciones con números complejos: 17. Expresa en forma binómica el complejo 4 4π 1. Calcular i. Efectúa la siguiente operación con números complejos: 5 + i 5 i. Efectúa el siguiente cociente de complejos en forma polar, expresando el resultado

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

pero por otra parte la suma de sus lados debe ser 12

pero por otra parte la suma de sus lados debe ser 12 UNIDAD 1: NUMEROS COMPLEJOS. 1.1 Origen de los números Complejos y definiciones. 1.1.1 Un poco de historia. El gran matemático Diofanto (275 d.c) construyó un triángulo con una cuerda en la que había realizado

Más detalles

Introducción a los números reales

Introducción a los números reales Grado en Matemáticas Curso 2010-2011 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 4 Objetivos Objetivos

Más detalles

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro Índice Tema 1: El cuerpo de los números complejos Marisa Serrano José Ángel Huidobro Universidad de Oviedo 6 de octubre de 2008 email: mlserrano@uniovi.es jahuidobro@uniovi.es Nota histórica El cuerpo

Más detalles

Capítulo. Multiplicación y división de enteros. Copyright 2013, 2010, and 2007, Pearson Education, Inc.

Capítulo. Multiplicación y división de enteros. Copyright 2013, 2010, and 2007, Pearson Education, Inc. Capítulo 5 Multiplicación y división de enteros Definición informal de la multiplicación de enteros Modelo de fichas Interpretación del signo: 3 grupos de 2 fichas rojas Modelo de cargas Interpretación

Más detalles

Capítulo 1: Números y funciones

Capítulo 1: Números y funciones (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Curso 2016/2017 Contenidos Primeras clases de números reales Operaciones con números reales Ecuaciones e

Más detalles

Tema 1. Números Complejos

Tema 1. Números Complejos Tema 1. Números Complejos Prof. William La Cruz Bastidas 27 de septiembre de 2002 Capítulo 1 Números Complejos Definición 1.1 Un número complejo, z, es un número que se expresa como z = x + iy o, de manera

Más detalles

Números imaginarios. Unidad imaginaria. Números imaginarios. Un número imaginario se denota por bi, donde: besunnúmeroreal i es la unidad imaginaria

Números imaginarios. Unidad imaginaria. Números imaginarios. Un número imaginario se denota por bi, donde: besunnúmeroreal i es la unidad imaginaria Números Complejos Números imaginarios Unidad imaginaria Launidadimaginariaeselnúmero ysedesignaporlaletrai. Números imaginarios Un número imaginario se denota por bi, donde: besunnúmeroreal i es la unidad

Más detalles

Números Complejos. Contenido. Definición

Números Complejos. Contenido. Definición U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Números Complejos William La Cruz Números Complejos...3

Más detalles

TEMA 3: NÚMEROS COMPLEJOS

TEMA 3: NÚMEROS COMPLEJOS APUNTES DE MATEMÁTICAS TEMA 3: NÚMEROS COMPLEJOS 1º BACHILLERATO _ ÍNDICE Tema 3 Introducción... 3 1. Cómo se maneja 1?... 3. Un nuevo campo numérico C... 4 3. CONJUGADO DE UN NÚMERO COMPLEJO.... 5 4.

Más detalles

NÚMEROS COMPLEJOS, C

NÚMEROS COMPLEJOS, C NÚMEROS COMPLEJOS, C CPR. JORGE JUAN Xuvia-Narón En determinadas ocasiones pueden aparecer en el desarrollo de una expresión algebraica ó en la solución de una ecuación, raíces cuadradas ó de índice par

Más detalles

MATEMÁTICAS I EJERCICIOS NÚMEROS COMPLEJOS

MATEMÁTICAS I EJERCICIOS NÚMEROS COMPLEJOS . De los siguientes números complejos, indica: a) z 5 i Su opuesto: z b) z + i Su conjugado: z c) z i Su parte real: Su parte imaginaria: d) z 5i Su afijo: (, ). Expresa como números complejos: a) 4 b)

Más detalles

N Ú M E R O S C O M P L E J O S

N Ú M E R O S C O M P L E J O S N Ú M E R O S C O M P L E J O S. N Ú M E R O S C O M P L E J O S E N F O R M A B I N Ó M I C A Al intentar resolver la ecuación x 6x 0, obtenemos como soluciones + y que carecen de sentido porque no es

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Números complejos (lista de problemas para examen)

Números complejos (lista de problemas para examen) Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS Para una mirada sobre el origen y desarrollo histórico de los números complejos leer el siguiente documento páginas 8-13 CANTIDADES IMAGINARIAS Definición: Las cantidades imaginarias

Más detalles

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

2. Números Complejos. Presenta: Eduardo Hernández Huerta. Universidad del Valle de México (UVM). Campus Coyoacán 9 de septiembre de 2017

2. Números Complejos. Presenta: Eduardo Hernández Huerta. Universidad del Valle de México (UVM). Campus Coyoacán 9 de septiembre de 2017 ÁLGEBRA 2. Números Complejos Presenta: Eduardo Hernández Huerta Universidad del Valle de México (UVM). Campus Coyoacán 9 de septiembre de 2017 Contenido 1 Números complejos Complejo conjugado Representación

Más detalles

ÍNDICE. Capítulo 1 Relaciones y funciones. Capítulo 2 Números reales

ÍNDICE. Capítulo 1 Relaciones y funciones. Capítulo 2 Números reales ÍNDICE Capítulo 1 Relaciones y funciones 1.1 LÓGICA... 7 1.2 CONJUNTOS... 19 1.2.1 Conceptos básicos... 19 1.2.2 Operaciones entre conjuntos... 25 1.3 RELACIONES... 32 1.3.1 Conceptos básicos... 32 1.3.2

Más detalles

Módulo 1 - Diapositiva 7 Números Complejos. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales

Módulo 1 - Diapositiva 7 Números Complejos. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales Módulo 1 - Diapositiva 7 Números Complejos Facultad de Ciencias Exactas y Naturales Temas Números complejos C Axiomas de campo para C Plano complejo y módulo Solución de ecuaciones lineales y cuadráticas

Más detalles

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la aritmética de Diofanto (año 275). 56 8i 14 + 10i 1. Trata la

Más detalles

1 Los números complejos, operaciones y propiedades

1 Los números complejos, operaciones y propiedades TEMA 1 LOS NÚMEROS COMPLEJOS, ESTRUCTURA ALGEBRAICA TOPOLOGÍA 1 Los números complejos, operaciones y propiedades 11 El cuerpo C de los números complejos 1 El espacio vectorial normado de los números complejos

Más detalles

Los números complejos

Los números complejos Los números complejos 1. Necesidad de los números complejos Resolución de la ecuación x -6x+1=0 Cuando resolvemos esta ecuación queda:.x = 6± 6 5 = 6± 16 = 6± 16 1 = 6±4 1 = ± 1. Es evidente que no hay

Más detalles

BLOQUE 1. LOS NÚMEROS

BLOQUE 1. LOS NÚMEROS BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números

Más detalles

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}.

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}. Material de Apoyo 1. Notación Usual N Los números naturales {1, 2, 3,...}. Z Los enteros {..., 3, 2, 1, 0, 1, 2, 3,...}. Q Los números racionales (fracciones). R Los números reales. P Los números primos

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Unidad 7 Números Complejos! 1 PROBLEMAS PROPUESTOS (! "#$) Matemáticas 1. " Completa estas operaciones entre números complejos:

Unidad 7 Números Complejos! 1 PROBLEMAS PROPUESTOS (! #$) Matemáticas 1.  Completa estas operaciones entre números complejos: Unidad 7 Números Complejos! PROBLEMAS PROPUESTOS (! "#$) " Completa estas operaciones entre números complejos: (5-i)- z -+i (b) ( + i) ( - + 0i) z (c) -7i-i (-+5)z a) ( 5 i ) z - + i z 5 i + i 8 i. b)

Más detalles

ETS Minas: Métodos matemáticos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Tema 1 Preliminares ETS Minas: Métodos matemáticos Tema 1 Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre 2008, versión 1.7 Contenido 1.

Más detalles

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales.

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales. Números complejos. Necesidad de ampliar el conjunto de los números reales. En ocasiones cuando resolvemos ecuaciones como la siguiente x 1=0 Nos encontramos, si despejamos la incógnita x, con que x=± 1

Más detalles

Matemáticas I Tema 6. Números Complejos

Matemáticas I Tema 6. Números Complejos Matemáticas I Tema 6. Números Complejos Índice 1. Introducción 2 2. Números 2 2.1. Unidad imaginaria............................... 3 2.2. Soluciones de ecuaciones de segundo grado.................. 3

Más detalles

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así:

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así: Capítulo 1 Números Reales 1.1. Introducción Llamaremos número real a cualquier fracción decimal. Ejemplos:, 0;, 3333...;, 5; 0,785; 3, 14159...;,718818...; 1,414136... Las fracciones decimales periódicas

Más detalles

TEMA 1. NÚMEROS REALES Y COMPLEJOS

TEMA 1. NÚMEROS REALES Y COMPLEJOS TEMA 1. NÚMEROS REALES Y COMPLEJOS 1.1 DEFINICIÓN AXIOMATICA DE LOS NÚMEROS REALES 1.1.1 Axiomas de cuerpo En admitimos la existencia de dos operaciones internas la suma y el producto, con estas operaciones

Más detalles

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 Tema: Números Complejos (C). 1. Clasifica los siguientes números complejos en reales e imaginarios. Mencionar, para cada uno,

Más detalles

Números complejos. por. Ramón Espinosa Armenta

Números complejos. por. Ramón Espinosa Armenta Números complejos por Ramón Espinosa Armenta En el siglo XVI, el matemático italiano Gerolamo Cardano se preguntó si tenía sentido considerar raíces cuadradas de números negativos. Tal raíz cuadrada debería

Más detalles

Números complejos ( 1)(25) =

Números complejos ( 1)(25) = Números complejos Introducción Podemos pensar en las progresivas ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así,

Más detalles

Capítulo 1: Números Reales

Capítulo 1: Números Reales Cálculo I Capítulo 1: Números Reales 1 Definición de R Axiomas de cuerpo conmutativo Axiomas de orden Valor absoluto 2 Subconjuntos destacados de R Números naturales Números enteros Números racionales

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z UNIDAD NÚMEROS COMPLEJOS Página 0 El paso de N a Z 0 Imagina que solo se conocieran los números naturales, N. Sin utilizar otro tipo de números, intenta resolver las siguientes ecuaciones: a) x + b) x

Más detalles

Sistemas Numéricos, Polinomios

Sistemas Numéricos, Polinomios Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 04 Prof. K. Chang. Sistemas Numéricos,

Más detalles

Unidad 6 Números complejos

Unidad 6 Números complejos Unidad Números complejos PÁGINA 11 SOLUCIONES 1. Las soluciones de las ecuaciones dadas son: x = 0 x=± x + = 0 x=± i. En cada uno de los casos: 1) a + b = 5, a = 0,8 unidades a = 1,8 u o a b = 1, b = 1,8

Más detalles

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a

Más detalles

C alculo Septiembre 2010

C alculo Septiembre 2010 Cálculo Septiembre 2010 Funciones reales de variable real Conjuntos de números Números complejos Funciones reales de variable real Valor absoluto Funciones polinómicas y racionales Función exponencial

Más detalles

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA I NUMEROS COMPLEJOS. Imaginario: guardia que no efectúa rondas, pero se encuentra en un lugar fijo dispuesto a intervenir si fuera necesario.

Más detalles

******* Enunciados de Problemas *******

******* Enunciados de Problemas ******* ******* Enunciados de Problemas ******* CÁLCULO ESCUELA SUPERIOR DE LA MARINA CIVIL DIPLOMADO EN MÁQUINAS NAVALES DIPLOMADO EN NAVEGACIÓN MARÍTIMA ISIDORO PONTE ESMC EL NÚMERO REAL Sea o un número racional

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

Señales y Sistemas. Grado en Ingeniería de Computadores. Revisión matemáticas

Señales y Sistemas. Grado en Ingeniería de Computadores. Revisión matemáticas Señales y Sistemas Grado en Ingeniería de Computadores Revisión matemáticas José Sáez Landete Departamento de Teoría de la Señal y Comunicaciones Universidad de Alcalá Curso 2015-16 Contenidos 1 Numeros

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

Complejos, C. Reales, R. Fraccionarios

Complejos, C. Reales, R. Fraccionarios NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar

Más detalles

MATEMÁTICAS UNIDAD 4 GRADO 8º. Números complejos, Inecuaciones y desigualdades

MATEMÁTICAS UNIDAD 4 GRADO 8º. Números complejos, Inecuaciones y desigualdades 1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 8º Números complejos, Inecuaciones y desigualdades 1 2 Franklin Eduardo Pérez Quintero LOGRO: Identifica los conjuntos de números que pertenecen

Más detalles

Los números complejos

Los números complejos Los números complejos Algo de historia La fórmula para resolver ecuaciones de segundo grado ax 2 +bx+c = 0 es conocida desde tiempos de los griegos. Se sabía que algunas de estas ecuaciones tienen 2 soluciones,

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

TEMA 1: EL CUERPO DE LOS NÚMEROS REALES.

TEMA 1: EL CUERPO DE LOS NÚMEROS REALES. TEMA 1: EL CUERPO DE LOS NÚMEROS REALES. 1.0. INTRODUCCIÓN. Al empezar un curso de Cálculo surge la polémica: cómo empezar?, cómo introducir los números reales? Creemos que la mejor forma de resolver este

Más detalles

Álgebra I Práctica 5 - Polinomios

Álgebra I Práctica 5 - Polinomios Números complejos Álgebra I Práctica 5 - Polinomios 1. Para los siguientes z C, hallar Re(z), Im(z), z, Re(z 1 ), Im(z 1 ), Re( i z) e Im(i z). i) z = (2 + i)(1 + 3 i). ii) z = 5 i(1 + i) 4. iii) z = (

Más detalles

CIRCUITOS ELECTRICOS Y REDES

CIRCUITOS ELECTRICOS Y REDES CIRCUITOS ELECTRICOS Y REDES NÚMEROS COMPLEJOS: Forma binómica Representación de un número complejo Forma polar Operaciones aritméticas Uso de la calculadora 4 B ELECTRÓNICA el punto de partida de la moderna

Más detalles

MATEMÁTICAS 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA I.E.S. ALBERT EINSTEIN DEPARTAMENTO DE MATEMÁTICAS

MATEMÁTICAS 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA I.E.S. ALBERT EINSTEIN DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA I.E.S. ALBERT EINSTEIN DEPARTAMENTO DE MATEMÁTICAS ESQUEMAS TEÓRICOS I.E.S. ALBERT EINSTEIN DEPARTAMENTO DE MATEMÁTICAS NÚMEROS REALES RELACIÓN DE ORDEN

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007 Álgebra Lineal Departamento de Matemáticas Universidad de Los Andes Primer Semestre de 2007 Universidad de Los Andes () Álgebra Lineal Primer Semestre de 2007 1 / 50 Texto guía: Universidad de Los Andes

Más detalles

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,

Más detalles

Funciones reales de una variable real. 29 de Marzo de 2016

Funciones reales de una variable real. 29 de Marzo de 2016 Cálculo Funciones reales de una variable real 29 de Marzo de 2016 Funciones reales de una variable real Conjuntos de números Números complejos Funciones reales de una variable real Valor absoluto Funciones

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Repaso de Álgebra Colegio Molière Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Operaciones aritméticas a + b b + a ab ba (Ley Conmutativa) (a + b) + c a

Más detalles

1 Símbolos y Conjuntos 1

1 Símbolos y Conjuntos 1 ÍNDICE 1 Símbolos y Conjuntos 1 LOS NUMEROS Y SUS RELACIONES. 1-1 Representación de los números en una recta: Relaciones de orden, 1. 1-2 Comparación de los números: EI signo de igualdad, 5. 1-3 Comparación

Más detalles

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia Módulo 4-Diapositiva 25 Trigonometría en Complejos Facultad de Ciencias Exactas y Naturales Temas Números complejos Módulo de un número complejo Forma polar de un número complejo Producto y cociente de

Más detalles

Números Reales. Hermes Pantoja Carhuavilca. Matematica I. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Números Reales. Hermes Pantoja Carhuavilca. Matematica I. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Introducción Intervalos Valor Absoluto Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Introducción Intervalos Valor Absoluto Contenido 1 Introducción 2 3 Intervalos

Más detalles

Cálculo 10. Semestre A Aritmética. Polinomios. Inecuaciones.

Cálculo 10. Semestre A Aritmética. Polinomios. Inecuaciones. Cálculo 0. Semestre A-07 Prof. José Prieto Correo: prieto@ula.ve. Aritmética. Polinomios. Inecuaciones. Problema. Obtenga el valor de:. 4 5 =. ) 4 = 9. 5 4 5 4 + + 4 5 5 4 = 40 7 + + 5 6 + 8 = 4 70 Problema.

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles