Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones"

Transcripción

1 FEyN - U - Vno 204 onjuntos Álg I Páti - onjuntos, Rlions y Funions Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i) ii) {} iii) {2, } iv) {, 3} v) {2} 2. Do l onjunto = {, 2, {3}, {, 2}}, tmin uáls ls siguints imions son vs: i) 3 ii) {3} iii) {3} iv) {{3}} v) {, 2} vi) {, 2} vii) {{, 2}} viii) {{, 2}, 3} ix) x) xi) xii) 3. Dtmin si n uno los siguints sos i) = {, 2, 3}, = {5, 4, 3, 2, } ii) = {, 2, 3}, = {, 2, {3}, 3} iii) = {x R / 2 < x < 3}, = {x R / x 2 < 3} iv) = { }, = 4. i) Dsii los siguints suonjuntos R po ompnsión mint un sol uión: { 3,, 5}, (, 2] [7, + ) ii) Dsii los siguints suonjuntos R 2 po ompnsión mint un sol uión: i) ii) iii) iv) v) vi) 2 vii) (*) viii) 2 2

2 Álg I Páti Págin 2 5. Dos = {, 3, 5, 7, 8, } y = {, 3, 5, 7, 8, }, hll,, y. 6. Dos los suonjuntos = {, 2, 7, 3}, = {, {3}, 0} y = { 2, {, 2, 3}, 3} l onjunto nil V = {, {3}, 2, 7, 0, {, 2, 3}, 3}, hll i) ( ) ii) ( ) ( ) iii) 7. Dos suonjuntos,, un onjunto nil V, sii ( ) n téminos intsions y omplmntos, y ( ) n téminos unions y omplmntos. 8. Sn, y onjuntos. Rpsnt n un igm Vnn i) ( ) ii) ( ) iii) ( ) 9. Enont ómuls qu sin ls pts ys los siguints igms Vnn, utilizno únimnt intsions, unions y omplmntos. i) ii) iii) 0. Hll l onjunto P() pts n los sos i) = {} ii) = {, } iii) = {, {, 2}} iv) = {,, } v) = {,, { }} vi) =. Sn y onjuntos. Po qu P() P(). 2. Sn p, q poposiions Vs o Flss. omp ls tls v p q, q p, p q, (p q) (uno p po p q s pu n su lug q p s i qu s un mostión po ontípoo, mints qu uno s pu n su lug qu p q s lso (llv un ontiión), s i qu s un mostión po l suo). 3. Dii si son vs o lss i) () n N, n 5 () n N, n 5 () n N, n 5 n 8 () n N, n 5 n 8 () n N, m N, m > n () n N, m N, m > n ii) Ng ls poposiions ntios, y n so vii qu l poposiión ng tin l vlo v opusto l l oiginl. iii) En uno los sos siguints, ii si ls os poposiions tinn l mismo vlo v. D un ontjmplo uno no s l so. () x, y, p(x, y) y y, x, p(x, y) () x, y, p(x, y) y y, x, p(x, y) () x, y, p(x, y) y y, x, p(x, y) () x, p(x) y x, p(x) 4. Dtmin uáls ls siguints imions son vs ulsqui sn los suonjuntos, y un onjunto nil V y uáls no. P ls qu sn vs, un mostión, p ls ots un ontjmplo. FEyN - U - Vno 204

3 Álg I Páti Págin 3 i) ( ) = ( ) ( ) ii) ( ) ( ) iii) ( ) iv) = = 5. Sn, y suonjuntos un onjunto nil V. Po qu i) ( ) = ( ) ( ) ii) ( ) = ( ) ( ) iii) ( ) = iv) ( ) = ( ) v) = vi) vii) ( ) = ( ) ( ) viii) = ( ) = 6. Un miso nví sñls ints unis un pto tvés un l onuto. S ipon iltos qu jn ps uns sñls sí y ots no, pnino sus unis. ilto uno stos iltos tin un llv qu l ionl invit l spto unis qu l ilto j ps. ilto ilto invtio Los iltos pun onts n si o n pllo p om nuvos iltos. onxión si onxión pll S onsi ho n l onjunto tos ls unis y s intii ilto on l suonjunto omo po qulls unis qu ést j ps. Osv qu on l intiiión ién stli, s tinn ls siguints osponnis: Filto invtio omplmnto, onxión si Intsión, onxión pll Unión i) Disñ iuitos p l onstuión los siguints iltos pti los iltos, y () ( ) () ( ) () ( ) () ( ) ( ) () ( ) ( ) () ii) Disñ iuitos p l onstuión los siguints iltos pti los iltos,,, D () ( D ( ) ) () ( (D ) (D ) ) ( ( D) ) FEyN - U - Vno 204

4 Álg I Páti Págin 4 () ( ) (D ) iii) Risñ l siguint iuito onstuyno oto quivlnt po qu utili únimnt os iltos. qué onjunto ospon l ilto sultnt? iv) Son los siguints iuitos quivlnts? En so imtivo sii l inti onjuntos qu sult y mostl. 7. Sn = {, 2, 3}, = {, 3, 5, 7}. Hll,, ( ) ( ). 8. Sn, y onjuntos. Po qu i) ( ) = ( ) ( ) ii) ( ) = ( ) ( ) iii) ( ) = ( ) ( ) iv) ( ) = ( ) ( ) Rlions 9. Sn = {, 2, 3} y = {, 3, 5, 7}. Vii si ls siguints son lions n y n so imtivo gils po mio un igm on lhs n, y po mio puntos n l pouto tsino. i) R = {(, ), (, 3), (, 7), (3, ), (3, 5)} ii) R = {(, ), (, 3), (2, 7), (3, 2), (3, 5)} iii) R = {(, ), (, 3), (2, 7), (3, 3), (3, 5)} iv) R = {(, ), (, 3), (, 7), (3, ), (3, 3), (3, 7)} v) R = {(, ), (2, 7), (3, 7)} vi) R = {(, 3), (2, ), (3, 7)} vii) R = viii) R = 20. Sn = {, 2, 3} y = {, 3, 5, 7}. Dsii po xtnsión un ls lions siguints n : i) (, ) R ii) (, ) R > iii) (, ) R s p iv) (, ) R + > 6 2. S = {,,,,,, g, h}. P uno los siguints gáios sii po xtnsión l lión n qu psnt y tmin si s lxiv, siméti, ntisiméti o tnsitiv. FEyN - U - Vno 204

5 Álg I Páti Págin 5 i) ii) g g h h iii) g iv) g h h 22. S = {, 2, 3, 4, 5, 6}. Gi l lión R = {(, ), (, 3), (3, ), (3, 3), (6, 4), (4, 6), (4, 4), (6, 6)} omo stá hho n l jiio ntio. 23. S = {,,,,, } y s R l lión n psnt po l gáio Hll l mínim nti ps qu s n gg R mn qu l nuv lión otni s i) lxiv, ii) siméti, iii) tnsitiv, iv) lxiv y siméti, v) siméti y tnsitiv, vi) lxiv y tnsitiv vii) quivlni. 24. En uno los siguints sos tmin si l lión R n s lxiv, siméti, ntisiméti, tnsitiv, quivlni o on. i) = {, 2, 3, 4, 5}, R = {(, ), (2, 2), (3, 3), (4, 4), (5, 5)} ii) = {, 2, 3, 4, 5, 6}, R = {(, ), (2, 2), (3, 3), (4, 4), (5, 5)} iii) = {, 2, 3, 4, 5}, R = {(, ), (2, 2), (3, 3), (4, 4), (5, 5), (, 2), (, 3), (2, 5), (, 5)} iv) = N, R = {(, ) N N / + s p} v) = Z, R = {(, ) Z Z / } vi) = N, R ini po R s múltiplo vii) = P(R), R ini po X R Y X {, 2, 3} Y {, 2, 3} 25. S un onjunto. Dsii tos ls lions n qu son l vz i) simétis y ntisimétis ii) quivlni y on Pu un lión n no s ni siméti ni ntisiméti? FEyN - U - Vno 204

6 Álg I Páti Págin S = {,,,,, }. D l lión quivlni n : R = {(, ),(, ),(, ),(, ),(, ),(, ),(, ),(, ),(, ),(, ),(, ),(, ),(, ),(, )} hll l ls, l ls, l ls, l ls, y l ptiión soi R. 27. S = {, 2, 3, 4, 5, 6, 7, 8, 9, 0}. Hll y gi l lión quivlni n soi l ptiión { {, 3}, {2, 6, 7}, {4, 8, 9, 0}, {5} }. uánts lss quivlni istints tin? Hll un psntnt p ls. 28. En l onjunto Z númos ntos, s l lión quivlni po l pi: os númos stán lionos si y solo si tinn l mism pi (son mos ps o mos imps). uánts lss quivlni istints tin? Hll l psntnt más simpl posil p ls. 29. En l onjunto Z númos ntos, s l sigunt lión: os númos stán lionos si tminn n l mismo ígito. Vii qu s un lión quivlni. uánts lss quivlni istints tin? Hll l psntnt más simpl posil p ls. 30. En l onjunto toos los suonjuntos initos N, s l lión quivlni po l inl (s i, l nti lmntos): os suonjuntos stán lionos si y solo si tinn l mism nti lmntos. uánts lss quivlni istints tin? Hll l psntnt más simpl posil p ls. Funions 3. Dtmin qué lions l jiio 9 son unions n, y qué lions l jiio 24 son unions n. 32. Dtmin si R s un unión n n los sos i) = {, 2, 3, 4, 5}, = {,,, }, R = {(, ), (2, ), (3, ), (4, ), (5, ), (3, )} ii) = {, 2, 3, 4, 5}, = {,,, }, R = {(, ), (2, ), (3, ), (4, )} iii) = R, = N, R = {(, ) R N / = 2 3} iv) = Z, = Z, R = {(, ) Z Z / + s ivisil po 5} 33. Dtmin si ls siguints unions son inytivs, soytivs o iytivs. P ls qu sn iytivs hll l invs y p ls qu no sn soytivs hll l imgn. i) : R R, (x) = 2x 2 5 ii) : R R, (x) = 2x 3 5 iii) : R 2 R, (x, y) = x + y iv) : R R 3, (x) = (2x, x 2, x 7) { n v) : N N, (n) = 2 si n s p n + si n s imp { n si n s p vi) : N N, (n) = 2n si n s imp vii) : Z Z Z, (, ) = 3 2 { 2 si > 0 viii) : Z N, () = 2 si i) Ds ls unions : N N, (n) = { n 2 2 si n s ivisil po 6 3n + n los otos sos lul ( g)(3, 4), ( g)(2, 5) y ( g)(3, 2). y g : N N N, g(n, m) = n(m+), FEyN - U - Vno 204

7 Álg I Páti Págin 7 ii) Ds ls unions : R R, (x) = { x 2 si x 7 2x si x > 7 y g : N R, g(n) = n, hll toos los n N tls qu ( g)(n) = 3 y tls qu ( g)(n) = Hll g n los sos i) : R R, (x) = 2x 2 8 y g : R R, g(x) = x + 3 ii) : R R, (x) = x + 3 y g : R R, g(x) = 2x 2 8 { n 2 si n s ivisil po 4 iii) : N N, (n) = y g : N N, g(n) = 4n n + si n no s ivisil po 4 iv) : R R R, (x) = (x + 5, 3x) y g : N R, g(n) = n 36. Hll os unions : N N y g : N N tls qu g = i N y g i N, on i N : N N not l unión inti l onjunto N. 37. Sn, y onjuntos. Po qu si : y g : son unions ntons vln i) si g s inytiv ntons g s inytiv. ii) si g s soytiv ntons s soytiv iii) si y g son inytivs ntons g s inytiv iv) si y g son soytivs ntons g s soytiv v) si y g son iytivs ntons g s iytiv 38. S l onjunto toos los yts, s i tos ls xpsions l om , on i = 0 o, 0 i 7, s lo qu s llm un it. Po jmplo 0000 y son yts. S onsin ls siguints unions n : i) R (po ight): splz it un lug hi l h, pon un 0 n l it 7 y st l it 0. Po jmplo R(0000) = 0000 y R( ) = ii) L (po lt): splz it un lug hi l izqui, pon un 0 n l it 0 y st l it 7. Po jmplo L(0000) = y L( ) = iii) (po n) tú un y lógio ( ) it it on un yt o (0 0 = 0, 0 = 0, 0 = 0, = ). Po jmplo si = 000, (0000) = y ( ) = iv) O (po o tú un o lógio ( ) it it on un yt o (0 0 = 0, 0 =, 0 =, = ). Po jmplo si = 000, O (0000) = 0 y O ( ) = 000. v) X (po xo) tú un o lógio xlusivo ( ) it it on un yt o (0 0 = 0, 0 =, 0 =, = 0). Po jmplo si = 000, X (0000) = 000 y X ( ) = lul R L, L R, y o,, O, O, X X. Un sol sts unions s iytiv: sui uál y nont su invs. omintoi onjuntos, lions y unions. 39. Si un onjunto tin n lmntos uántos suonjuntos on lmnto pos y uántos suonjuntos on n lmntos pos? FEyN - U - Vno 204

8 Álg I Páti Págin Do l onjunto nil V = {n N / n s múltiplo 5}, tmin l inl l omplmnto l suonjunto V inio po = {n V / n 32}. 4. uántos númos ntuls hy mnos o iguls qu 000 qu no son ni múltiplos 3 ni múltiplos 5? 42. Dos suonjuntos initos,, un onjunto nil V, lul #( ) n téminos los inls,, y sus intsions. 43. i) Un ompñí tin 420 mplos los uls 60 otuvion un umnto y un snso, 240 otuvion solo un umnto y 5 otuvion solo un snso. uántos mplos no otuvion ni umnto ni snso? ii) En l listo insipions un gupo 50 stuints, igun 83 insipions n nálisis y 67 n Álg. más s s qu 45 los stuints s noton n ms mtis. uántos los stuints no stán insiptos n ningún uso? iii) En un instituto iioms on hy 0 lumnos, ls lss inglés tinn 63 insiptos, ls lmán 30 y ls nés 50. S s qu 7 lumnos stuin los ts iioms, 30 solo stuin inglés, 3 solo stuin lmán y 25 solo stuin nés. uántos lumnos stuin xtmnt os iioms? uántos inglés y lmán po no nés? uántos no stuin ninguno sos iioms? 44. Si s un onjunto on n lmntos, uál s l inl l onjunto P()? 45. Si s qui po mint un tl v un nunio, omo n los jiios so onjuntos, qu involu k onjuntos,..., k, uánts ils v tn l tl v? 46. Si s un onjunto on n lmntos y s un onjunto on m lmntos, uál s l inl l onjunto? 47. Sn,..., k onjuntos, on k N. S in l onjunto k omo l onjunto k-upls ons on pim lmnto n, sguno lmnto n 2, t. Es i: k = {(,..., k ) :,..., k k }. Si,..., k son toos onjuntos initos, uál s l inl k? 48. Si hy 3 uts istints p i unos is Rosio, 4 uts istints p i Rosio Snt F, y 2 p i Snt F Ronquist uántos oms istints hy p i unos is Ronquist psno po ls os ius intmis? 49. Si s un onjunto on n lmntos y s un onjunto on m lmntos, uánts lions n hy? Y n? 50. Si s un onjunto on n lmntos uánts lions n hy? uánts lls son lxivs? uánts lls son simétis? uánts lls son lxivs y simétis? 5. S X = {, 2, 3, 4, 5, 6, 7, 8, 9, 0}. S in l lión R n P(X) n l om R {, 2, 3} = {, 2, 3}. i) Po qu R s un lión quivlni y sii po ompnsión l ls = {, 3, 5}. ii) uántos lmntos tin l ls = {, 3, 5}? 52. S X = {, 2,..., 20}. S in l siguint lión R n P(X): i) Po qu R s un lión on. R = ii) uántos onjuntos P(X) umpln qu {, 2, 3, 4, 5, 6} R? FEyN - U - Vno 204

9 Álg I Páti Págin i) Hll tos ls ptiions los onjuntos = {}, = {, 2}, = {, 2, 3}. uánts lions quivlni istints hy n, y? ii) S (n) l nti ptiions qu tin un onjunto n lmntos. Exps (4) n unión (), (2) y (3), y lul (4). ((n) s llm l n-ésimo númo ll, po Ei Tmpl ll, , mtmátio y uto ini iión soés.) 54. Sn = {, 2, 3, 4, 5} y = {, 2, 3, 4, 5, 6, 7, 8, 9, 0,, 2}. S F l onjunto tos ls unions :. i) uántos lmntos tin l onjunto F? ii) uántos lmntos tin l onjunto { F : 0 / Im()}? iii) uántos lmntos tin l onjunto { F : 0 Im()}? iv) uántos lmntos tin l onjunto { F : () {2, 4, 6} }? 55. Sn = {, 2, 3, 4, 5, 6, 7} y = {8, 9, 0,, 2, 3, 4}. i) uánts unions iytivs : hy? ii) uánts unions iytivs : hy tls qu ({, 2, 3}) = {2, 3, 4}? 56. D uánts oms s pun pmut los númos, 2, 3, 4, 5 y 6? Po jmplo, tos ls pmutions, 2, 3 son, 2, 3;, 3, 2; 2,, 3; 2, 3, ; 3,, 2; 3, 2,. 57. uántos ngms tin l pl stuio? Po jmplo, toos los ngms l pl o son o, o, o, o, o y o. 58. Sn = {, 2, 3, 4, 5, 6, 7} y = {, 2, 3, 4, 5, 6, 7, 8, 9, 0}. i) uánts unions inytivs : hy? ii) uánts lls son tls qu () s p? iii) uánts lls son tls qu () y (2) son ps? 59. uánts unions iytivs : {, 2, 3, 4, 5, 6, 7} {, 2, 3, 4, 5, 6, 7} tls qu ({, 2, 3}) {3, 4, 5, 6, 7} hy? 60. S = { : {, 2, 3, 4} {, 2, 3, 4, 5, 6, 7, 8} tl qu s un unión inytiv}. S R l lión n ini po: R g () + (2) = g() + g(2) i) Po qu R s un lión quivlni. ii) S l unión ini po (n) = n + 2. uántos lmntos tin su ls quivlni? FEyN - U - Vno 204

Álgebra I Práctica 1 - Conjuntos

Álgebra I Práctica 1 - Conjuntos FEyN - U - Sguno utimst 03 Álg I Páti - onjuntos Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto =,, 3}, tmin uáls ls siguints imions son vs i) ii) } iii), } iv), 3} v) }.

Más detalles

Álgebra I Práctica 1 - Conjuntos

Álgebra I Práctica 1 - Conjuntos FEyN - U - Sguno utimst 203 Álg I Páti - onjuntos Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i) ii) {} iii) {2, } iv)

Más detalles

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones FEyN - U - uso Vno 206 onjuntos Álg I Páti - onjuntos, Rlions y Funions Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i)

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

3A,,. Prueba que M es un subespacio

3A,,. Prueba que M es un subespacio .- Dtin os tis us X Y on tls qu: Y X Y X.- Estui l inpnni linl ls tis C.- Pu qu ls siguints tis son un s l spio vtoil ls tis us on.- S onsi l onjunto } R. Pu qu s un suspio vtoil.- Hll os tis us on os

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1 Blu I. Álg Mtmátis II Autvluión Págin D l mti M m m : ) Hll ls vls m u ls vts il M sn linlmnt innints. ) Estui l ng M sgún ls vls m. ) P m, lul l invs M. ) P u ls vts il M sn linlmnt innints, n (M ) tin

Más detalles

MÉTODO INDUCTIVO. Capítulo TRILCE

MÉTODO INDUCTIVO. Capítulo TRILCE pítulo É V l É V r lys prtir l osrvión los hhos, mint l gnrlizión l omportminto osrvo; n rli, lo qu rliz s un spi gnrlizión, sin qu por mio l lógi pu onsguir un mostrión ls its lys o onjunto onlusions.

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

Números Racionales 1. INTRODUCCIÓN

Números Racionales 1. INTRODUCCIÓN Númros Rionls Título: Númros Rionls Trgt: PROFESORES DE MATEMÁTICAS Asigntur: Mtmátis Autor: Emilin Oliván Clz Lini n Mtmátis Prosor Mtmátis n Euión Sunri 1 INTRODUCCIÓN En l ominio intgri (DI) los númros

Más detalles

Matemáticas II Bloque VI Carlos Tiznado Torres

Matemáticas II Bloque VI Carlos Tiznado Torres Mtmátis II loqu VI rlos Tizno Torrs IRUNFERENI El írulo y l irunfrni son os ojtos gométrios qu hn llmo l tnión y hn sio l ojto stuio un grn númro mtmátios s timpos ntiguos, sino más grn utili práti pr

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERIIOS PROPUESTOS 0. Do l onjunto: = {4; 3; {6}; 8} y ls proposiions: * { 3} * { 4} * { 6} * { 6} * 8 * * * { 3 ; 8} Iniqu l númro proposiions vrrs: ) 7 ) 6 ) 5 ) 4 ) 3 0. Dos los onjuntos iguls: 3 ;

Más detalles

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1 Ruión stos quivlnts Mrio Min. mriomin@u.l Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi

Más detalles

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro.

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro. CAMINOS Y CIRCUITOS En un grfo s pu rorrr l informión ifrnts mnrs pr llgr un punto otro. Cmino Ciruito (Cilo) Ciruito simpl longitu n Cmino simpl longitu n ulquir suni noos n l qu pr son ynts. Es un mino

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID JUNIO El mn pnt o opcion, B. El lumno bá lgi UN Y SÓLO UN ll olv lo cuto jcicio qu cont. No pmit l uó clculo con cpci pntción gáfic. PUNTUCIÓN: L clificción

Más detalles

r,, R r exp exp 1 cos cos 1

r,, R r exp exp 1 cos cos 1 Como obtn función on y su ngí tvés cución Schöing. Rcomos qu función on s un cución mtmátic, qu cump citos quisitos, n cu s ncunt to infomción sistm, n st cso s tt infomción cion con ctón o núco. st función

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

OPERACIONES MATEMÁTICAS

OPERACIONES MATEMÁTICAS Cpítulo OPERACIONES MATEMÁTICAS OPERACIÓN MATEMÁTICA E un poo qu onit n l tnfoión un o á nti n ot ll ulto, jo it gl o oniion n l ul fin l opión. To opión táti pnt un gl finiión y un íolo qu l intifi llo

Más detalles

PRUEBA EXTRAMUROS Instrucciones. (ii) La Parte I (dos cuestiones disertivas) corresponde a 25% de la puntuación total de la prueba.

PRUEBA EXTRAMUROS Instrucciones. (ii) La Parte I (dos cuestiones disertivas) corresponde a 25% de la puntuación total de la prueba. +1/1/60+ PRUEBA EXTRAMUROS - 018 NOMBRES Y APELLIDOS: DOCUMENTO DE IDENTIDAD (O PASAPORTE): FIRMA: Instruions (i) El timpo stino pr st pru s 5 hors. (ii) L Prt I (os ustions isrtivs) orrspon 5% l puntuión

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE DEPRTMENTO DE MTEMÁTIS lumno/ 4º ESO Nº TRIGONOMETRI 1º PRTE 84 Introuión Un rinto poligonl simpr lo pomos iviir n triángulos. omo por jmplo Lo pomos iviir n triángulos D E F G H I J K L M N Ñ O P Q R

Más detalles

B B B B B a) Siguiendo el orden establecido arriba, los subconjuntos se corresponden con los bloques

B B B B B a) Siguiendo el orden establecido arriba, los subconjuntos se corresponden con los bloques 4 Álgr Bool 4 Álgr Bool 1 Sn B = {0, 1} y f: B 4 B un funión lógi utro vrils,,, y. Si n B 4 sustituimos B por lguno sus suonjuntos no víos {0} o {1} o B s otinn suonjuntos B 4. Así tnmos qu {1} {0} {0}

Más detalles

LÓGICA PROPOSICIONAL CLASES DE PROPOSICIONES: INTRODUCCIÓN

LÓGICA PROPOSICIONAL CLASES DE PROPOSICIONES: INTRODUCCIÓN LÓGICA PROPOSICIONAL INTRODUCCIÓN L lógi tui l fom zonminto. E un iilin u utiliz tmin i un gumnto válio, tin liión n too lo mo l ; n l filoofí, tmin i un zonminto válio o no, u un f u tn ifnt inttion;

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

un vector unitario orientado a lo largo del radio vector r en sentido de su crecimiento y e

un vector unitario orientado a lo largo del radio vector r en sentido de su crecimiento y e .. lo lón n Coons pols S l movmnto un ptíul s l n l plno XOY l tto pu sbs tnto n ls oons tsns (t) (t) omo n pols =(t) = (t). S n l punto P l tto un vto unto onto lo lgo l o vto n snto su mnto l vto u s

Más detalles

Univerdidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática

Univerdidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Univdidad d unos is - Facultad d incias Exactas y Natuals - Dpatamnto d Matmática LGER I - Páctica N - Pim cuatimst d 00. onjuntos: nocions lmntals Ejcicio. Dcidi, n cada uno caso d los siguints casos,

Más detalles

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6 TRILCE Cpítulo CONTEO DE FIGURAS INTRODUCCIÓN El srrollo l tnologí n los últimos ños, h sio rlmnt vrtiginoso, ls pizs, y omponnts los prtos mornos s hn ruio notlmnt su tmño y quirio un sin fin forms, puino

Más detalles

Bajo petición, se pueden suministrar otros tipos de ganchos. La mayoría de los ganchos vienen suministrados con lengüeta de seguridad.

Bajo petición, se pueden suministrar otros tipos de ganchos. La mayoría de los ganchos vienen suministrados con lengüeta de seguridad. Gnhos Apliions Los nhos s utilizn n sistms lvión omo un onxión ntr l r y l l o n. Aln Vn Bst or un mpli m nhos, s nhos normls orjos ro l rono hst nhos irtorios ro lo, qu son tmplos y rvnios. Bjo ptiión,

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.

Más detalles

TRABAJO PRÁCTICO N 5 AÑO 2017 TEORÍA DE GRAFOS Y ÁRBOLES

TRABAJO PRÁCTICO N 5 AÑO 2017 TEORÍA DE GRAFOS Y ÁRBOLES Pr l grfo l Fig., trmin: TRABAJO PRÁCTICO N 5 AÑO 27 TEORÍA DE GRAFOS Y ÁRBOLES ) un mino - qu no s un rorrio; ) un rorrio qu no s un mino simpl; ) un mino simpl - ; ) un mino rro - qu no s un iruito;

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD : INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los vlos,,

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 6/7 Energía electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 6/7 Energía electrostática Tm : Pincipios d l lctostátic, Antonio Gon nzálz Fná ándz Antonio Gonzálz Fnándz Dptmnto d Físic Aplicd III nivsidd d Svill Pt 6/7 Engí lctostátic Engí, tbjo y clo: l pim pincipio i i d l tmodinámic i

Más detalles

OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado.

OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado. UNIVERSIDDES ÚBLICS DE L COUNIDD DE DRID RUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Cuso -5 TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN Dsués l tntnt tos ls gunts, l luno á sog un ls

Más detalles

Cómo se transportan segmentos y ángulos (1/2)

Cómo se transportan segmentos y ángulos (1/2) ómo se tnspotn segmentos y ángulos (1/2) Tnspote de segmentos. Los segmentos se tnspotn llevndo su longitud on el ompás. Vemos un ejemplo. Dtos Pso 1 Pso 2 (soluión) Polem: tnspot el segmento '' l et de

Más detalles

4πε. q r 2. q r C 2 2

4πε. q r 2. q r C 2 2 . ) A un distnci d. cm dl cnto d un sf conducto con cg cuyo dio s d. cm, l cmpo léctico s d 48 N/. uál s l cmpo léctico.6 cm dl cnto d l sf? ) A un distnci d. cm dl j d un cilindo conducto muy lgo con

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ (Positiv [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

TEMA 9: DETERMINANTES

TEMA 9: DETERMINANTES más º llo. Ál Lnl TE : DETERNNTES. DETERNNTE DE UN TRZ UDRD. PROPEDDES DE LOS DETERNNTES. ENOR OPLEENTRO Y DJUNTO DE UN ELEENTO DE UN TRZ UDRD. DESRROLLO DE UN DETERNNTE POR LOS ELEENTOS DE UN LÍNE. ENORES

Más detalles

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas Colo L Conpón EJERCICIOS REPASO PARA SEPTIEMBRE º BACHILLERATO-B 00-0 NOMBRE:.- Rsolvr utlzno l métoo Guss l unt stm. z z z 8.- Rsulv os ls unts uons 7.- Rsulv trs ls unts uons ponnls lortms lo lo 7 8

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide IES Mditáno d Málg Solución Sptimb Jun los lonso Ginontti Ejcicio.- liicción máim puntos Dd l unción: 7 s pid ( 7 puntos Hll ls síntots d dich gic OPIÓN b ( 7 puntos Dtmin los intlos d cciminto dcciminto

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul

Más detalles

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

Teoría Problemas Total

Teoría Problemas Total Funmntos Físios l Infomáti Ingnií Téni n Infomáti istms (ITI) Exmn Pil. TEORÍA 3 myo 4 Apllios y Nom: oluión Titulión: Toí Polms Totl LA NOTA DE TEORÍA CONTITUYE EL % DE LA NOTA TOTAL DEL EXAMEN. CADA

Más detalles

Ejercicios PSU. Guía Función inversa Bloque 32

Ejercicios PSU. Guía Función inversa Bloque 32 PROGRAMA EGRESADOS Guí Funión invrs Bloqu 32 Ejriios PSU A ontinuión, s prsntn los siguints jriios, los uls sugrimos rsponr l máimo posil y lugo, junto tu profsor(), rvisr tllmnt ls prgunts más rprsnttivs,

Más detalles

CONICAS ESTUDIO DE SUS FORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE 2º GRADO EN DOS VARIABLES

CONICAS ESTUDIO DE SUS FORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE 2º GRADO EN DOS VARIABLES CONICAS ESTUDIO DE SUS ORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE º GRADO EN DOS VARIABLES Lug Goétio: Consios l plno oo onjunto puntos llos lug goétio n l plno too suonjunto puntos l iso finio

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

Aquauno Video 2 Plus

Aquauno Video 2 Plus Cont l progrmor l grifo. Aquuno Vio 2 Plus Pág. 1 Guí uso 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 Cli! Pr Aquuno Vio 2 (ó.): 8454-8428 Pr Aquuno Vio 2 Plus (ó.): 8412 Ar l móulo progrmión, prsionno

Más detalles

Solución de la ecuación de Schödinger para una partícula libre.

Solución de la ecuación de Schödinger para una partícula libre. Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO TRILCE Cpítulo DESIGUALDADES E INECUACIONES VALOR ABSOLUTO DESIGUALDADES Torms l Dsigul Dfiniión S nomin sigul l omprión qu s stl ntr os prsions rls, mint los signos rlión >,

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.S. diáno álg Junio Jun Clo lono Ginoni OPCIÓN.- ) Pon un jplo i iéi on oo i niiéi on. ) S un i iéi on on () -. Clul onndo l pu l inn indo l i pu. ) Clul un i iéi ngo qu iiqu ) Un i iéi qull n qu l

Más detalles

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes.

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes. TEM : MONOMIOS Y OLINOMIOS MONOMIOS Es l prouto un númro por un o vris ltrs. Too monomio onst vris prts. El ro un monomio s l númro ltrs qu tin s lul sumno los ponnts ls ltrs. El ro l monomio ntrior srá.

Más detalles

Estrategia FOVISSSTE en productos

Estrategia FOVISSSTE en productos Estt FOVISSSTE n poutos Inmnt l númo otomnto étos Hoy usos popos lmtos Más usos FOVISSSTE qun más lo nst Los usos los étoonls s pln p los smntos tos qu ms los nstn Búsqu nnmnto Mo l vvn lobos Los smntos

Más detalles

CERTEZAS - MÁXIMOS Y MÍNIMOS

CERTEZAS - MÁXIMOS Y MÍNIMOS Cpítulo 5 CERTEZAS - MÁXIMOS Y MÍNIMOS CERTEZAS INTRODUCCIÓN En un omptni hili mntl, s prsntron 3 onursnts : Jun Crlos, Mrth y Gri. L omptni onsistí n inir uánts vs omo mínimo hrí qu xtrr un ol pr tnr

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTEAR BADAJOZ PRUEBA DE ACCESO (OGSE) UNIVERSIDAD DE A RIOJA JUNIO (GENERA) (RESUETOS po Antonio Mnguiano) MATEMÁTICAS II Timpo máimo: hoas y minutos El alumno contstaá a los jcicios d una d las

Más detalles

v = (área de la base)(altura) = (ab)h

v = (área de la base)(altura) = (ab)h El volumn dl paallpípdo d la figua siguint s v = (áa d la bas)(altua) = (ab)h IGURA El volumn dl cilindo cicula cto d la figua 4, a) siguint s (m )h. h a) ~---------------v~---------------- IGURA 4 TI

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMBRE INSTRUCCIONES El mn psnt os opcions B; l lumno bá lgi un lls contst zonmnt los cuto jcicios qu const ich opción n h. min. OPCIÓN Ejcicio. Clificción máim puntos. Dtmin l cución ctsin l lug gomético

Más detalles

47. Contesta a les qüestions següents referents a l àtom d hidrogen.

47. Contesta a les qüestions següents referents a l àtom d hidrogen. .6 Àtom d hidogn 7. Contst ls qüstions sgünts fnts l àtom d hidogn. n l ón l nom dls obitls cosponnts ls obitls qu s spcifiqun tvés dls nombs quàntics d l tul. b Assign cdscun d lls ls sus nombs quàntics

Más detalles

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces :

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces : TRILCE Cpítulo 2 JUEGOS DE INGENIO. TRNSMISIONES : orrio ; : ntihorrio Como s más grn qu, Entons : mnos vults qu mos rorrn l mism nti ints Ls rus uis n un mismo j girn l mism vloi y n l mismo sntio Ejmplo

Más detalles

Qué pasa? 2. Vocabulario. Ejercicios. Ht Actualidades

Qué pasa? 2. Vocabulario. Ejercicios. Ht Actualidades PROGRAMNR 100100/r4 Atulis Qué ps? 2 Ht 2006 Voulrio ingrso inkomst l Dí los Murtos ll hlgons g (murto= vlin ö) numrosos mång, tlrik prsons myors älr (prsonr) volvr åtrvän hl on ll tl m hnn stá uso (hn)

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

7. CONDICIÓN DE COPLANARIDAD

7. CONDICIÓN DE COPLANARIDAD UNIVEIDAD DE ALAMANCA MATE DE GEOTECNOLOGÍA CATOGÁFICA EN INGENIEÍA AQUITECTUA 7. CONDICIÓN DE COPLANAIDAD Jvi Góm Lho Dtmnto d Ingnií Ctogái dl Tno Esul Politéni uio d Ávil 7.Condiión d olnidd. INDICE.

Más detalles

DETERMINACIÓN DE LOS ELEMENTOS DE ORIENTACION INTERIOR Y LAS DISTORSIONES DEL OBJETIVO DE LAS CÁMARAS FOTOGRÁFICAS NO MÉTRICAS

DETERMINACIÓN DE LOS ELEMENTOS DE ORIENTACION INTERIOR Y LAS DISTORSIONES DEL OBJETIVO DE LAS CÁMARAS FOTOGRÁFICAS NO MÉTRICAS DETERMINCIÓN DE LOS ELEMENTOS DE ORIENTCION INTERIOR LS DISTORSIONES DEL OBJETIVO DE LS CÁMRS FOTOGRÁFICS NO MÉTRICS B D. Díz Ríuz, Gl Ház S S Hé Gzáls Gí Jsé Mul Cvz P GEOCUB IC,, Pl. C.P. 00, CH, Cu,

Más detalles

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010 Emn Introuión l Invstigión Oprions Fh: 4 Diimr 00 INDICACIONES Durión l mn: 4 hrs. Esriir ls hojs un solo lo. Numrr ls hojs. Ponr nomr y éul inti n l ángulo suprior rho hoj. Esriir n l primr hoj l totl

Más detalles

Tema 13: INTEGRALES DEFINIDAS

Tema 13: INTEGRALES DEFINIDAS Tem : INTEGRALES DEFINIDAS REFLEXIONA Ls gnnis de l ompñí RAMSES S.L. dunte los meses de un ño, en deens de miles de euos, se dn en l siguiente gái: 5 ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC Si

Más detalles

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador Prsntión Curso 0-07, grupo Iván Cntor Dspho: B.8 E-mil: ivn.ntor@um.s Págin w: http://www.ps.um.s/~ntor - trnsprnis ls Mool: https://mool.um.s/ours/viw.php?i=8 - guí ont, punts, jriios y prolms, prátis

Más detalles

3,2. 2) Determina la ecuación ordinaria y el resto de los elementos de las elipses con las siguientes ecuaciones generales:

3,2. 2) Determina la ecuación ordinaria y el resto de los elementos de las elipses con las siguientes ecuaciones generales: REPASO EXAMEN SEMESTRAL MATEMATICAS GRUPO 0 TEMA: ELIPSE ) Dtrmin l uión orinri, uión gnrl y l rsto los lmntos ls lipss on los siguints lmntos: *Horizontl C, 7 V ', B, ) Dtrmin l uión orinri y l rsto los

Más detalles

CONTROL DEL PAR Calidad Precisión Productividad

CONTROL DEL PAR Calidad Precisión Productividad CONTROL DEL PAR Cli Pisión Putivi SOLUCIONES PARA LOS PROCESOS DE MONTAJE Puts Mntnimint Puts Mntnimint NUESTROS SERVICIOS ORIGINAL GARANTIZAMOS AL 100% EL PRODUCTO OFICIAL y sim n l m. ORIGINAL SERVICIO

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

Distribución de corriente

Distribución de corriente Ensyo tipo sgún DN EN 439-1 Durnt un nsyo tipo sistm s rlizron los siguints nsyos n los sistms rrs RiLin, sí omo n omponnts montj rprsnttivos RiLin: Distriuión orrint Digrms rsistni l ortoiruito sgún EC

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

PROBLEMAS DEL TEMA 1.- LÓGICA

PROBLEMAS DEL TEMA 1.- LÓGICA Tm - Lógi PROBLEMAS DEL TEMA.- LÓGICA Ejriio Sn ls proposiions p h rio y q stá llovino. Formulr ls siguints irmions lógis:. p. p q. p q 4. q p 5. p q 6. q Ejriio Esriir ls sntnis lógis orrsponints :. Un

Más detalles

Experimentos factoriales con factores aleatorios

Experimentos factoriales con factores aleatorios Expimntos factoials con factos alatoios Intoducción Si considamos la situación d xpimntos factoials n los cuals s studian dos factos A y B, s pudn psnta dos modlos altnativos: MODELO DE EFECTOS ALEATORIOS:

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

Ejercicio 1. x a. Ejercicio 2.

Ejercicio 1. x a. Ejercicio 2. Sptim 5 - Opción A (Molo 6) Ejcicio. D un función f: R R s s qu f() y qu f (. () [ punto] Dtmin f. () [ 5 puntos] Clcul l á l ión limit po l áfic f, po l j sciss y po ls cts cucions - y. () Aplicno l Tom

Más detalles

Centro Medico Nacional Siglo XXI Hospital de Especialidades. Alergia e Inmunología Clínica

Centro Medico Nacional Siglo XXI Hospital de Especialidades. Alergia e Inmunología Clínica t Md N S XXI Hspt d Espdds I INMUNOGLOBULINS R3I D. Pt M O F Rs Méx, D.F. J d 2012 Dfó J 2012 F d pts ds, p déts. I I bás y Psw T t, 2004 D. Rs. R3 I S s pps dds d dd h ft td tp d ss. Ls tbts bós sftvs

Más detalles

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la José Aulio Pin Romo JULIO MII www.pin.s EXAMEN DE ELECTIVIDAD JULIO. MATEMÁTICA II OPCIÓN A Poblm A.. Obtn ondmnt scibindo todos los psos dl onminto utilido: ) El vlo dl dtminnt d l mti ( puntos) l mti

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

Integrales impropias.

Integrales impropias. IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls

Más detalles

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( )

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( ) SEPTIEMRE 5 INSTRUCCIONES El mn psn os opcions ; l lumno bá lgi un sólo un lls solv los cuo jcicios qu cons. No s pmi l uso clculos con cpci psnción gáfic. PUNTUCIÓN L clificción máim c jcicio s inic n

Más detalles

Pagina inicial de Solicitud de Registro de Marcas, A la cual podrá acceder desde

Pagina inicial de Solicitud de Registro de Marcas, A la cual podrá acceder desde Ci 1. Iii...2 2. Mú piipl...4. Cii U...4 b. Cá...4. Rgí...5 3. Olvi ñ...7 4. A l Sim...9. Opi Mú,...10 i. D Uui...10 ii. Gió Sliiu...11 iii. Pñ Slii...12 iv. Pñ M...15 v. Pñ Pii / Ié Rl,...17 vi. Pñ Aju

Más detalles

FACTORIZACIÓN. Capítulo TRILCE

FACTORIZACIÓN. Capítulo TRILCE TRILCE Cpítulo FACTORIZACIÓN Ftorizr un polinomio s somponrlo n os o más polinomios llmos ftors, tl moo qu, l multiplirlos, s otng l polinomio originl. Ejmplo : y ( y)( y) Ants ftorizr y ftorizo ftors

Más detalles

Juegos para la clase de español. Superdrago. Carolina Caparrós Charlie Burnham

Juegos para la clase de español. Superdrago. Carolina Caparrós Charlie Burnham Jugo o Sugo 1 Coin Có Chi Bunhm 1. Enunt b Eib 10 númo ágin ibo umno n tozo y iz t, o jmo: A, J, R, C, S, E, T, H, O, L. Póng o o n o quo monton. Divi o umno o j o n guo quo. Invit uno o og un númo y oto,

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3 TEMA : ECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu solo s umpl pr irtos vlors trminos. A stos vlors qu hn irt l uión s ls llm soluions. 0 tin omo soluión X.. Un igul lgri qu s váli pr ulquir

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

Es fácil ver que la criptoaritmética es un procedimiento de cifrar por sustitución y que la clave es una regla matemática.

Es fácil ver que la criptoaritmética es un procedimiento de cifrar por sustitución y que la clave es una regla matemática. TILC Cpítulo CIPTOITÉTIC L riptoritméti s un rt qu smpñó un importnt ppl n l snvolviminto l Histori. L riptoritméti no s más qu un jugo. No s s n qué épo s invntó; pro los fiionos ls vris omnzron intrsrs

Más detalles

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia Un ct B s mu n dicción ppndicul su dicción cn lcidd cnstnt. En su mimint, ct un cicunfnci fij d cnt di n l punt ibl. Supnind qu l ct l cicunfnci pmncn n un pln únic n td instnt: B Hll l lcidd clción dl

Más detalles