Nombre/Código: Febrero Examen I. 5 /10pts. Total: /50pts

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Nombre/Código: Febrero 21 2015. Examen I. 5 /10pts. Total: /50pts"

Transcripción

1 1 Álgebra abstracta II Guillermo Mantilla-Soler Nombre/Código: Febrero Examen I Problemas Puntuación 1 /10pts 2 /10pts 3 /10pts 4 /10pts 5 /10pts Total: /50pts

2 2 Preguntas Problema 1[10 pts]: Sea R un anillo conmutativo con identidad. Muestre que: (i) 2pts Si 0 es un ideal primo de R entonces R es un dominio integral. (ii) 2pts Si 0 es un ideal maximal de R entonces R es un cuerpo. (iii) 2pts Si R es finito muestre que todo ideal primo es maximal. (iv) 2pts Si R es un anillo Booleano i.e., para todo r R se tiene que r 2 = r, muestre que todo ideal primo es maximal. (v) 2pts Si R[x], el anillo de polinomios sobre R, es un D.I.P entonces R es un cuerpo. Sol: Recuerde que un anillo conmutativo con identidad tenemos lo siguiente: (a) un ideal P es primo sii R/P es un dominio, (b) un ideal M es maximal sii R/M es un cuerpo y (c) si R es un dominio finito entonces R es un cuerpo. (i) Dado que R/0 = R el resultado se sigue de (a). (ii) Dado que R/0 = R el resultado se sigue de (b). (iii) Si P es un ideal primo de R tenemos por (a) que R/P es un dominio, y como R es finito, también es un dominio finito. Se sigue de (c) que R/P es un cuerpo y gracias a (b) concluimos que P es un ideal maximal. (iv) Sea P un ideal primo y sea x R/P. Como x es la imagen de algún r R bajo la proyección canónica, y como r 2 = r para todo r, se tiene que x 2 = x o equivalentemente x(x 1) = 0. Como P es un ideal primo R/P es un dominio, por lo tanto x = 0 ó x = 1. En particular, todo x 0 es una unidad i.e., R/P es un cuerpo y gracias a (b) concluimos que P es maximal. (v) Como R[x] es un D.I.P todo elemento irreducible genera un ideal primo, más aun todo ideal primo no trivial es maximal. Dado que x es irreducible (esto se sigue ya que R[x] es dominio y el grado de x es 1) tenemos que R[x]/ x es un cuerpo, pero este último es isomorfo a R.

3 3 Problema 2[10 pts]: Considere el anillo R := Z/2310Z. (i) 2pts Muestre que R no es un dominio entero. (ii) 2pts Muestre que R es isomorfo al producto de 5 cuerpos. (iii) 2pts Muestre que R no es un grupo cíclico. (iv) 2pts Encuentre la intersección de todos los ideales primos de R. (v) 2pts Encuentre el radical de Jacobson de R. Sol: (i) Denotemos por [n] 2310 la clase de un entero n en R. Entonces si a := [10] 2310 y b := [231] 2310 se tiene que a 0 y b 0 pero ab = 0. (ii) Note que 2310 = Dado que 2, 3, 5, 7 y 11 son coprimos entre si (ya que son primos) se sigue del teorema Chino del residuo que Z/2310Z = Z/2Z Z/3Z Z/5Z Z/7Z Z/11Z. (iii) Por lo anterior tenemos que R = (Z/2Z) (Z/3Z) (Z/5Z) (Z/7Z)) (Z/11Z)). Note que el grupo de la derecha tiene más de dos elementos de orden 2, esto se sigue ya que todos menos el primer factor tiene orden divisible por 2, pero un grupo cíclico finito de orden par tiene un único elemento de orden 2. (iv) Como R es conmutativo con identidad la intersección de todos sus ideales primos es igual al ideal generado por nilpotentes. Como 2310 es libre de cuadrados R no tiene nilpotentes diferentes de 0, por tanto la intersección sobre todos los primos es trivial. (v) Como R es finito ideal primo y maximal son equivalentes (ver punto 1.iii) por lo tanto el radical de Jacobson es igual a la intersección de todos los ideales primos la cual es trivial por el inciso anterior.

4 4 Problema 3[10 pts]:el conjunto R N de sucesiones reales tiene una estructura de anillo conmutativo (R N, +, ) con identidad de la siguiente forma : dadas (u n ) n N, (v n ) n N, se define (u n ) n N + (v n ) n N := (u n + v n ) n N (u n ) n N (v n ) n N := (u n v n ) n N. Una sucesión (u n ) n N se llama de soporte finito si existe N N tal que u n = 0 para todo n N. (i) 2pts Justifique brevemente por qué el conjunto I de sucesiones de soporte finito es un ideal de R N y por qué es propio. (ii) 2pts Es I un ideal principal? (iii)2pts Es I un ideal primo? (iv) 2pts De un ejemplo explícito de un ideal maximal de R N. (v)2pts Muestre que existe M ideal maximal de R N que contiene a I. Puede describir un maximal M que contiene a I de manera explícita? Sol: (i) La identidad del anillo es la secuencia (a n ) con a n = 1 para todo n. Como esta secuencia no tiene soporte finito se sigue que I no contiene la identidad, en particular es propio. Si definimos el soporte de un elemento (a n ) R N, digamos supp((a n )), como el conjunto de los n tal que a n 0 entonces I es un ideal ya que supp((a n b n )) supp((a n )) y supp((a n + b n )) supp((a n )) supp((b n )). (ii) No. Suponga que (a n ) es un generador. Sea N tal que a n = 0 para todo n N. Defina b n como b N+1 = 1 y b n = 0 para los otros valores de n. Claramente (b n ) I pero (a n ) no puede dividir a b n ya que a N+1 = 0 no divide a b N+1 = 1. (iii) No. Tome la secuencia (a n ) que tiene 1 en toda las posiciones pares y 0 en las impares, y la secuencia (b n ) que tiene 1 en todas las posiciones impares y 0 en todas las pares. Entonces (a n )(b n ) es la secuencia (0), que claramente está en I, pero ni (a n ) ni (b n ) están en I. (iv) Tome M el conjunto de secuencias tales que a 0 = 0 (acá estoy pensando que los naturales contienen el 0). M es maximal ya que es el kernel del epimorfismo de R N al cuerpo R que envía la secuencia (a n ) a su primer elemento a 0. (v) Dado que en un anillo conmutativo con identidad todo ideal propio está contenido en un maximal el resultado se sigue de la parte (i). [Yo no sé cómo describir uno de esos M explícitamente.]

5 5 Problema 4[10 pts]: Sea R[x] el anillo polinomial en una variable sobre el cuerpo de los números reales. Considere el sub-anillo de R[x] definido por R := {p(x) R[x] : p (0) = 0}. Acá p (x) denota la derivada usual con respecto a la variable x. (i) 2pts Muestre que R es un dominio entero. (ii) 2pts Sea M := x 2, x 3 el ideal de R generado por x 2 y x 3. Muestre que M es un ideal maximal de R. (iii) 2pts Es R un D.I.P? (iv) 2pts Muestre que x 2 R es un elemento irreducible pero no primo en R. (v) 2pts Es R un D.F.U? Sol: Primero note que por definición de R todo elemento se escribe de la forma a 0 + a 2 x 2 + x 3 p(x) donde a 0, a 2 R y p(x) R[x]. (i) El anillo R está contenido, por definición, en R[x] que es un dominio entero. Por lo tanto R es un dominio entero. (ii) La evaluación en 0, llamémola ev, es un homomorfismo de R[x] a R. Se sigue que la función ev R : R R es un homomorfismo (restricción de homomorfismo a un sub-anillo es un homomorfismo). Dado que para cualquier r R se tiene que ev R (r +x 2 ) = r entonces el homomorfismo restringido es sobreyectivo. Ahora q = a 0 +a 2 x 2 +x 3 p(x) está en el kernel de ev R si y sólo si a 0 = 0. Suponga que q está en el kernel y sea p(x) = b 0 + b 1 x b n x n. Entonces q = a 2 x 2 + x 3 p(x) = (a 2 + b 1 x 2 )x 2 + (b 0 + b 2 x b n x n )x 3 i.e., q = ax 2 +bx 3 para algunos a, b R. Se sigue que Ker(ev R ) = x 2, x 3. Por el primer teorema del isomorfismo R/ x 2, x 3 = R, de donde el resultado se sigue ya que R es un cuerpo. (iii) No.(Si lo fuera sería un D.F.U que no lo es gracias al punto (v)). También se puede dar un ejemplo explícito de un ideal no principal: el ideal M del punto (ii) no es principal. Si lo fuera existiría q R tal que q divide ambos x 2 y x 3. Como R R[x] el elemento q dividiría al m.c.d(x 2, x 3 ) = x 2 ( acá utilizamos que R[x] es un D.F.U.) Ahora como q está en M tenemos, por la prueba del punto anterior, que q(0) = 0 en particular q no puede ser constante. Se sigue que q(x) = ax ó q(x) = ax 2 para algún a R. Como x / R tenemos que q(x) = ax no es posible. Por otro lado ya que x 3 M, y q es un generador, q x 3, En particular q tampoco puede ser de la forma ax 2 ya que x / R y x 3 = x 2.x en el D.F.U R[x]. (iv) Si x 2 se pudiera factorizar en R entonces cualquier factorización valida sería también una factorización en R[x]. Como R[x] es un D.F.U, x 2 = x.x es la factorización en irreducibles de x 2 en R[x] y dado que x / R tenemos que x 2 es irreducible en R. Para ver que x 2 no es primo note que x 2 divide a x 2.x 2.x 2 = x 3.x 3, pero x 2 no divide a x 3 (como vimos en la prueba del punto anterior.) (v) No. En un D.F.U primo no cero e irreducible son equivalentes.

6 6 Problema 5[10 pts]: Sea {p n(x) } n 0 Q[x] una secuencia de polinomios con coeficientes racionales tal que para todo entero N 0 existe α N C con p 0 (α N ) = 0 p 1 (α N ) = 0. =. p N (α N ) = 0. (i) 5pts Muestre que existe p(x) Q[x] de grado al menos 1 tal que para todo entero n 0 p(x) p n (x). (ii) 5pts Muestre que existe α C tal que para todo entero n 0 p n (α) = 0. Sol: (i) 5pts Considere I := p n n 0 el ideal generado por todos los p n. Decir que existe p(x) que divide a todos los p n es lo mismo que decir que I p(x). Decir que el grado de p es a lo menos 1 es decir que p(x) es un ideal propio. Como Q[x] es un D.I.P el problema es equivalente a mostrar que existe un ideal propio que contiene a I. Ya que todo ideal propio está contenido en un ideal maximal, que es propio por definición, el problema es equivalente a mostrar que I es un ideal propio. Si I no fuera propio entonces 1 I. Como I es generado por los p n entonces existen q 1 (x),..., q k (x) Q[x] tales que 1 = q 1 (x)p n1 (x) q 1 (x)p nk (x) (1) Sea N max{n 1,..., n k }. Entonces por hipótesis p ni (α N ) = 0 para todo i = 1,..., k. Evaluando la ecuación (1) en α N obtenemos una contradicción, por lo tanto 1 / I i.e., I es propio. (ii) 5pts Sea p(x) Q[x] C[x] el polinomio obtenido en el punto (i). Como p tiene grado mayor que 1, se sigue del teorema fundamental del álgebra que existe α C tal que p(α) = 0. Como p(x) divide a todos los p n entonces p n (α) = 0 para todo n.

ÁLGEBRA III. Práctica 1 2d. Cuatrimestre - 2007

ÁLGEBRA III. Práctica 1 2d. Cuatrimestre - 2007 ÁLGEBRA III Práctica 1 2d. Cuatrimestre - 2007 Anillos conmutativos, cuerpos y morfismos Nota: Todo anillo considerado en esta práctica será conmutativo, en particular todo ideal es bilátero. Ejercicio

Más detalles

Ejercicios de álgebra 1 Cuarto curso (2003/04)

Ejercicios de álgebra 1 Cuarto curso (2003/04) Departamento de Álgebra, Geometría y Toplogía. Universidad de Málaga Ejercicios de álgebra 1 Cuarto curso (2003/04) Relación 1. Ideales primos y maximales. Nilradical y radical de Jacobson Profesor de

Más detalles

1. Suma y producto de polinomios. Propiedades

1. Suma y producto de polinomios. Propiedades ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teoría Prof. Alcón 1. Suma y producto de polinomios. Propiedades Sea (A, +,.) un anillo conmutativo. Llamamos polinomio en una indeterminada x con coeficientes

Más detalles

Anillos, ideales y el espectro primo

Anillos, ideales y el espectro primo Capítulo1 Anillos, ideales y el espectro primo Un anillo (conmutativo) con uno es un grupo abeliano (A, +) con un producto A A A que es asociativo, conmutativo, distribuye a la suma y tiene neutro multiplicativo.

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

Dominios de factorización única

Dominios de factorización única CAPíTULO 3 Dominios de factorización única 1. Dominios euclídeos En la sección dedicada a los números enteros hemos descrito todos los ideales de Z. En este apartado introducimos una familia de anillos

Más detalles

Ejercicios de álgebra 1 Cuarto curso (2003/04)

Ejercicios de álgebra 1 Cuarto curso (2003/04) Departamento de Álgebra, Geometría y Toplogía. Universidad de Málaga Ejercicios de álgebra 1 Cuarto curso (2003/04) Relación 4. Anillos y módulos de fracciones Profesor de la asignatura: José Antonio Cuenca

Más detalles

Anillos Especiales. 8.1 Conceptos Básicos. Capítulo

Anillos Especiales. 8.1 Conceptos Básicos. Capítulo Capítulo 8 Anillos Especiales 8.1 Conceptos Básicos En este capítulo nos dedicaremos al estudio de algunos anillos especiales que poseen ciertas condiciones adicionales, aparte de las propias de la definición,

Más detalles

Teoría de Galois. por José Antonio Belinchón

Teoría de Galois. por José Antonio Belinchón Teoría de Galois por José Antonio Belinchón Última actualización Julio 008 II Índice general. Prólogo III 1. Anillos y cuerpos 1 1.1. Anillos..................................................... 1 1..

Más detalles

El anillo de polinomios sobre un cuerpo

El anillo de polinomios sobre un cuerpo Capítulo 2 El anillo de polinomios sobre un cuerpo En este capítulo pretendemos hacer un estudio sobre polinomios paralelo al que hicimos en el capítulo anterior sobre los números enteros. Para esto, es

Más detalles

Notaciones y Pre-requisitos

Notaciones y Pre-requisitos Notaciones y Pre-requisitos Símbolo Significado N Conjunto de los números naturales. Z Conjunto de los números enteros. Q Conjunto de los números enteros. R Conjunto de los números enteros. C Conjunto

Más detalles

Números algebraicos. Cuerpos de números. Grado.

Números algebraicos. Cuerpos de números. Grado. < Tema 5.- Números algebraicos. Cuerpos de números. Grado. 5.1 Cuerpo de fracciones de un dominio. Tratamos de generalizar la construcción de Q, a partir de Z. Sea A un dominio de integridad. En A (A \

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

30 = 2 3 5 = ( 2) 3 ( 5) = 2 ( 3) ( 5) = ( 2) ( 3) 5.

30 = 2 3 5 = ( 2) 3 ( 5) = 2 ( 3) ( 5) = ( 2) ( 3) 5. 11 1.3. Factorización Como ya hemos mencionado, la teoría de ideales surgió en relación con ciertos problemas de factorización en anillos. A título meramente ilustrativo, nótese que por ejemplo hallar

Más detalles

Notas del curso de Algebra Moderna II

Notas del curso de Algebra Moderna II Notas del curso de Algebra Moderna II Luis Valero Elizondo 15 de Enero del 2004 Índice general 1. Anillos. 5 1.1. Monoides.............................. 5 1.2. Anillos............................... 5

Más detalles

Álgebra II. Tijani Pakhrou

Álgebra II. Tijani Pakhrou Álgebra II Tijani Pakhrou Índice general 1. Teoría de conjuntos 1 1.1. Conjuntos................................. 1 1.2. Productos cartesianos........................... 6 1.3. Relaciones de equivalencia........................

Más detalles

ÁLGEBRA ABSTRACTA Notas de curso

ÁLGEBRA ABSTRACTA Notas de curso UNIVERSIDAD CENTRAL DE VENEZUELA. ESCUELA DE MATEMÁTICA. ÁLGEBRA ABSTRACTA Notas de curso MARCO A. PÉREZ B. Octubre, 2012. Estas notas están basadas en un curso dado por Inés Nuñez en la Universidad Central

Más detalles

INDICE Capitulo. 0. Algunas Palabras Preliminares Parte I. Grupos Capitulo 1. Operaciones Binarias Capitulo 2. Grupos Capitulo 3.

INDICE Capitulo. 0. Algunas Palabras Preliminares Parte I. Grupos Capitulo 1. Operaciones Binarias Capitulo 2. Grupos Capitulo 3. INDICE Capitulo. 0. Algunas Palabras Preliminares 1 0.1. El papel de las definiciones 1 0.2. Conjuntos 2 0.3. Participaciones y relaciones de equivalencia 4 Parte I. Grupos 10 Capitulo 1. Operaciones Binarias

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

UNIDAD 3: ANILLOS DE POLINOMIOS

UNIDAD 3: ANILLOS DE POLINOMIOS UNIDAD 3: ANILLOS DE POLINOMIOS En nuestra educación matemática se nos introdujo muy pronto -generalmente en los primeros años de secundariaal estudio de los polinomios. Durante una temporada que parecía

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

8 g A B. ÁLGEBRA CONMUTATIVA Notas de curso UNIVERSIDAD SIMÓN BOLÍVAR. DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS.

8 g A B. ÁLGEBRA CONMUTATIVA Notas de curso UNIVERSIDAD SIMÓN BOLÍVAR. DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS. UNIVERSIDAD SIMÓN BOLÍVAR. DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS. ÁLGEBRA CONMUTATIVA Notas de curso A B f A B 8 g 9! h M MARCO A. PÉREZ B. Septiembre, 2012. Estas notas están basadas en un curso

Más detalles

Grupos y Anillos - 3006993 Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medellín. Problemas # 1

Grupos y Anillos - 3006993 Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medellín. Problemas # 1 Grupos y Anillos - 3006993 Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medellín Problemas # 1 1. Dé dos razones por las cuales el conjunto de los enteros impares no es un grupo con la

Más detalles

Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones

Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones Tema 13.- Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones 13.1 Teorema de estructura de los módulos finitamente generados sobre un D.I.P. En lo que sigue A denotará

Más detalles

Notas del curso de Algebra Moderna III

Notas del curso de Algebra Moderna III Notas del curso de Algebra Moderna III Luis Valero Elizondo 01 de Marzo del 2005 Índice general 1. Anillos. 5 1.1. Anillos............................... 5 1.2. Ideales................................

Más detalles

Álgebra. Curso 2007-2008

Álgebra. Curso 2007-2008 Álgebra. Curso 2007-2008 11 de septiembre de 2008 Resolución Ejercicio. 1. Sea A un anillo conmutativo. (1) Demostrar que cualesquiera ideales a, b de A verifican (a b)(a + b) ab. (2) Para A = Z[X] dar

Más detalles

Apuntes de Estructuras Algebraicas

Apuntes de Estructuras Algebraicas Apuntes de Estructuras Algebraicas por Enrique Arrondo(*) Versión del 17 de Mayo de 2011 1. Teoría básica de grupos, anillos y cuerpos 2. Divisibilidad y factorización en anillos 3. Raíces de polinomios

Más detalles

Fundamentos algebraicos

Fundamentos algebraicos Fundamentos algebraicos 1. Grupos Sea S un conjunto. Se denota con S S el conjunto de los pares ordenados (s, t) con s, t en S. Un mapeo de S S en S se llama operación binaria en S. Esta definición requiere

Más detalles

UNIDAD 2: ANILLOS. ISFD N o 127 Ciudad del Acuerdo. MSL (2010) 3 o Profesorado en Matemática-Álgebra 1

UNIDAD 2: ANILLOS. ISFD N o 127 Ciudad del Acuerdo. MSL (2010) 3 o Profesorado en Matemática-Álgebra 1 UNIDAD 2: ANILLOS En la unidad precedente se han tratado diversos aspectos de la teoría de grupos. Uno de los primeros ejemplos, fue Z con la operación suma. Sin embargo en Z hay otra operación, el producto.

Más detalles

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes 4 Polinomios Objetivos En esta quincena aprenderás: A trabajar con expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. La regla de Ruffini. El

Más detalles

1. División de polinomios por monomios

1. División de polinomios por monomios 1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio:

( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio: Pág. 1 Página 95 PRACTICA Factor común e identidades notables 1 Saca factor común: a) 9x 2 + 6x 3 b) 2x 3 6x 2 + 4x c) 10x 3 5x 2 d) x 4 x 3 + x 2 x a) 9x 2 +6x 3 = 3(3x 2 + 2x 1) b) 2x 3 6x 2 + 4x = 2x(x

Más detalles

Unidad 0. Aritmética Elemental. Estructuras Algebraicas I (LM) - Estructuras Algebraicas (PM) - Año 2009

Unidad 0. Aritmética Elemental. Estructuras Algebraicas I (LM) - Estructuras Algebraicas (PM) - Año 2009 Unidad 0 Aritmética Elemental Estructuras Algebraicas I (LM) - Estructuras Algebraicas (PM) - Año 2009 1. Buen orden e inducción. Empezamos haciendo hincapié en el carácter intrínseco de sucesión que tiene

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 1 Estructuras algebraicas 1.1 Álgebras binarias Sea A un conjunto no vacío, una operación binaria (u operación interna) en A es una aplicación *: A A A (x, y) x * y es decir, una regla que a cada

Más detalles

ALGEBRA. Versión Preliminar. Renato A. Lewin

ALGEBRA. Versión Preliminar. Renato A. Lewin ALGEBRA Versión Preliminar Renato A. Lewin Indice CAPITULO 1. Introducción a la Teoría de Números 5 1. Los Números Naturales y los Números Enteros 5 2. Divisibilidad 7 3. Congruencias 14 4. Clases Residuales

Más detalles

Congruencias de Grado Superior

Congruencias de Grado Superior Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos

Más detalles

NOTAS DE TRABAJO, 6 ÁLGEBRA CONMUTATIVA

NOTAS DE TRABAJO, 6 ÁLGEBRA CONMUTATIVA NOTAS DE TRABAJO, 6 ÁLGEBRA CONMUTATIVA Pascual Jara Martínez Departamento de Álgebra. Universidad de Granada Granada, 1997 2012 Primera redacción: 1997. Segunda redacción: Octubre 2007. Tercera redacción:

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Conjuntos, Relaciones y Grupos. Problemas de examen.

Conjuntos, Relaciones y Grupos. Problemas de examen. Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.

Más detalles

No. 2 Anillos. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá

No. 2 Anillos. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá CUADERNOS DE ÁLGEBRA No. 2 Anillos Oswaldo Lezama Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá 30 de junio de 2014 ii Cuaderno dedicado a Lukas, mi hijo.

Más detalles

ÁLGEBRA LINEAL I Soluciones a la Práctica 6

ÁLGEBRA LINEAL I Soluciones a la Práctica 6 ÁLGEBRA LINEAL I Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos,

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA PROGRAMAS MODULO IV MATEMÁTICA

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA PROGRAMAS MODULO IV MATEMÁTICA UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA PROGRAMAS MODULO IV MATEMÁTICA ASIGNATURA O MICROOBJETIVO Algebra Moderna Resolución Código 9257 del 20/12/2007 23640 CARRERA Licenciatura en Educación

Más detalles

TEMA 2: Grupos. El grupo Simétrico.

TEMA 2: Grupos. El grupo Simétrico. Álgebra y Estructuras Discretas Grupo B de la Ingeniería Técnica de Sistemas TEMA 2: Grupos. El grupo Simétrico. 1. Definición de Grupo. Propiedades Básicas. Definición 1. Dado un conjunto no vacío G,

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

El anillo de los enteros algebraicos y dominios de Dedekind

El anillo de los enteros algebraicos y dominios de Dedekind El anillo de los enteros algebraicos y dominios de Dedekind Trabajo de Grado Autor: Jorge Eliécer Gómez Ríos Director: Dr. Héctor Edonis Pinedo Tapia Universidad Industrial de Santander Facultad de Ciencias

Más detalles

Polinomios. Antes de empezar

Polinomios. Antes de empezar Antes de empezar Utilidad de los polinomios Los polinomios no solo están en la base de la informática, en economía los cálculos de intereses y duración de las hipotecas se realizan con expresiones polinómicas,

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

Una prueba sencilla del teorema de los ceros de Hilbert usando bases de Gröbner A simple proof of Hilbert s Nullstellensatz based on Gröbner bases

Una prueba sencilla del teorema de los ceros de Hilbert usando bases de Gröbner A simple proof of Hilbert s Nullstellensatz based on Gröbner bases Lecturas Matemáticas Volumen 34 (1) (2013), páginas 77 82 ISSN 0120 1980 Una prueba sencilla del teorema de los ceros de Hilbert usando bases de Gröbner A simple proof of Hilbert s Nullstellensatz based

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama

Más detalles

Ecuaciones algebraicas. Ángel del Río Mateos

Ecuaciones algebraicas. Ángel del Río Mateos Ecuaciones algebraicas Ángel del Río Mateos Índice general Introducción 0 1. Anillos 7 1.1. Anillos.............................................. 7 1.2. Ideales y anillos cociente....................................

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

ANILLOS DE ENTEROS DE CUERPOS CUADRÁTICOS

ANILLOS DE ENTEROS DE CUERPOS CUADRÁTICOS ANILLOS DE ENTEROS DE CUERPOS CUADRÁTICOS EMILIO LAURET Resumen. En este breve curso introduciremos una simple generalización del anillo de los números enteros llamado anillo de enteros cuadráticos. Veremos

Más detalles

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal Solución Asignación 9. Universidad de Puerto Rico Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan Puerto Rico MATE 4032: Álgebra Abstracta 1. Suponga que I J son ideales

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

No. 1 Grupos. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá

No. 1 Grupos. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá CUADERNOS DE ÁLGEBRA No. 1 Grupos Oswaldo Lezama Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá 30 de junio de 2014 ii Cuaderno dedicado a Justo Pastor,

Más detalles

Capítulo VI. Congruencias, Z n y Z n, Etc.

Capítulo VI. Congruencias, Z n y Z n, Etc. Capítulo VI Congruencias, Z n y Z n, Etc. En este capítulo se estudian congruencias módulo un entero positivo, y los sistemas de números Z n y Z n. Además del teorema chino del residuo, encontramos de

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 2 Polinomios y fracciones algebraicas Elaborado por la Profesora Doctora

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

Conjuntos, Relaciones y Funciones

Conjuntos, Relaciones y Funciones Conjuntos, Relaciones y Funciones 0.1 Conjuntos El término conjunto y elemento de un conjunto son términos primitivos y no definidos. De un punto de vista intuitivo parece ser que cualquier colección de

Más detalles

Factorización de polinomios

Factorización de polinomios ExMa-MA0125. Factorización de polinomios W. Poveda 1 Factorización de polinomios Objetivos 1. Factorizar completamente polinomios mediante los métodos de factor común, diferencia de cuadrados, diferencia

Más detalles

14 Expresiones algebraicas. Polinomios

14 Expresiones algebraicas. Polinomios PARADA TeÓRICA 14 Expresiones algebraicas. Polinomios Una expresión algebraica es una combinación cualquiera y finita de números, de letras, o de números, letras, ligados entre sí con la adición, sustracción,

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

ESTRUCTURAS ALGEBRAICAS GRUPOS Y ANILLOS

ESTRUCTURAS ALGEBRAICAS GRUPOS Y ANILLOS M O N O G R A F Í A S M A T E M Á T I C A S U F R O ESTRUCTURAS ALGEBRAICAS GRUPOS Y ANILLOS e a b c d f e e a b c d f a a b e f c d b b e a d f c c c d f e a b d d f c b e a f f c d a b e Departamento

Más detalles

Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones

Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C

Más detalles

(a + b)+c = a +(b + c), para todo a, b, c A ; a + b = b + a, para todo a, b A ; a +( a) =0=( a)+a ; (a.b).c = a.(b.c), para todo a, b, c A ;

(a + b)+c = a +(b + c), para todo a, b, c A ; a + b = b + a, para todo a, b A ; a +( a) =0=( a)+a ; (a.b).c = a.(b.c), para todo a, b, c A ; Anillos Conmutativos Conceptos básicos Definición. Una operación (binaria interna) en un conjunto X es una aplicación f : X X X. Dados x, y X, la imagen f(x, y) se escribe utilizando una notación adecuada

Más detalles

ÍNDICE. 1 Conjuntos y lógica... 1. Prologo,... ix

ÍNDICE. 1 Conjuntos y lógica... 1. Prologo,... ix ÍNDICE Prologo,... ix 1 Conjuntos y lógica... 1 1-1 Conjuntos... 1 1-2 Notación... 1 1-3 Conjuntos iguales... 2 1-4 Conjunto vacío... 2 1-5 Subconjuntos... 2 1-1 Ejercicios... 3 1-6 Conjuntos equivalentes...

Más detalles

Polinomios. Pablo De Nápoli. versión 0.8.5

Polinomios. Pablo De Nápoli. versión 0.8.5 Polinomios Pablo De Nápoli versión 0.8.5 Resumen Este es un apunte de las teóricas de álgebra I, del primer cuatrimestre de 2007, turno noche, con algunas modificaciones introducidas en 2014. 1. Introducción

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS Fundamentos de la Matemática 1 Operaciones Binarias Dado un conjunto A, A, decimos que es una operación binaria en A si, y sólo si, : A A A es una función. Investigar si los siguientes son ejemplos de

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Repaso de funciones elementales, límites y continuidad

Repaso de funciones elementales, límites y continuidad Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación

Más detalles

La forma normal algebraica de una función booleana Henry Chimal Dzul, Javier Díaz Vargas

La forma normal algebraica de una función booleana Henry Chimal Dzul, Javier Díaz Vargas Miscelánea Matemática 48 (2009) 47 57 SMM La forma normal algebraica de una función booleana Henry Chimal Dzul, Javier Díaz Vargas Facultad de Matemáticas, Universidad Autónoma de Yucatán, México. henrychimal@gmail.com,

Más detalles

Carlos Ivorra Castillo GEOMETRÍA ALGEBRAICA

Carlos Ivorra Castillo GEOMETRÍA ALGEBRAICA Carlos Ivorra Castillo GEOMETRÍA ALGEBRAICA Mientras el álgebra y la geometría han estado separadas, su progreso ha sido lento y sus aplicaciones limitadas; pero cuando estas dos ciencias se han unido,

Más detalles

EJERCICIOS DEL CAPÍTULO I

EJERCICIOS DEL CAPÍTULO I EJERCICIOS DEL CAPÍTULO I 1. Un grupo es una tipo particular de Ω estructura cuando Ω es el tipo Ω = { } siendo una operación de aridad dos. Pero un grupo también es una Ω -estructura siendo Ω = {e, i,

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas.

ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas. ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas. Estructuras Algebraicas. Para cada operación binaria definida en el conjunto señalado dígase cuándo

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD Álgebra (Concepstos básicos) Suma Resta Multiplicación División OPERACIONES

Más detalles

Operaciones con polinomios

Operaciones con polinomios 5 Operaciones con polinomios 5.1 Igualdades notables El cuadrado de una suma es igual al cuadrado del primero, más el doble del primero por el segundo, más el cuadrado del segundo: (a + b) a + ab + b El

Más detalles

El teorema de estructura de módulos finitamente generados sobre un dominio de ideales principales

El teorema de estructura de módulos finitamente generados sobre un dominio de ideales principales El teorema de estructura de módulos finitamente generados sobre un dominio de ideales principales Mariano Suárez-Alvarez 7 de octubre, 2015 Sea A un dominio de ideales principales que no es un cuerpo.

Más detalles

Grupos, anillos y cuerpos

Grupos, anillos y cuerpos Grupos, anillos y cuerpos Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2002 Contents 1 Grupos 2 1.1 Subgrupos.... 5 1.2 Clases o cogrupos.......

Más detalles

Parte 1. Anillos y Módulos Capítulo 4. Anillos y módulos Noeterianos 4.7. Dominios de Dedekind

Parte 1. Anillos y Módulos Capítulo 4. Anillos y módulos Noeterianos 4.7. Dominios de Dedekind arte 1. Anillos y Módulos Capítulo 4. Anillos y módulos Noeterianos 4.7. Dominios de Dedekind De nición 4.7.1. Sea R un anillo conmutativo, se dice que R es un anillo hereditario (AH) si cada ideal de

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

DOMINIOS DE DEDEKIND

DOMINIOS DE DEDEKIND DOMINIOS DE DEDEKIND MARIANO SUÁREZ-ALVAREZ Índice 1. Dominios de Dedekind 1 2. Módulos, I 4 3. Módulos, II 7 4. La caracterización de Noether 10 Referencias 11 1. Dominios de Dedekind 1.1. Sea A un dominio

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria

Más detalles

EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Y POLINOMIOS 1. Dado el polinomio A(x)=x +3. Halla: a) (B(x)) y b)(b(x)) 3. a) Define valor numérico de un polinomio P(x) en x=a. b) Halla el valor numérico del polinomio P(x) =

Más detalles

6 División de polinomios. Raíces

6 División de polinomios. Raíces 6 División de polinomios. Raíces ACTIVIDADES INICIALES 6.I. 6.II. Si quieres ampliar una foto de x por y píxeles a 4y por x píxeles, cuántos píxeles nuevos tendrás que rellenar? 4y x x y = 6xy píxeles

Más detalles

Polinomios y Raíces. Teresa Krick

Polinomios y Raíces. Teresa Krick Polinomios y Raíces Teresa Krick Departamento de Matemática. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. -148- Buenos Aires. ARGENTINA. e-mail : krick@dm.uba.ar Contents 1 Introducción

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Polinomios. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Polinomios. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Definición Un polinomio es una operación indicada de sumas y productos entre números y una variable x (indeterminada): P (x) = a n x n + a

Más detalles

Operatoria algebraica

Operatoria algebraica Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico

Más detalles