TEMA 4 NÚMEROS ENTEROS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 4 NÚMEROS ENTEROS"

Transcripción

1 TEMA 4 NÚMEROS ENTEROS 1

2 2

3 3

4 Recta numérica Enteros negativos A la izquierda del 0 están los números enteros negativos Enteros positivos A la derecha del 0 están los números enteros positivos En esta recta numérica completa los números que faltan Representa en cada recta numérica los números que se indican. -8, +5, +7, 0, -5, +2, -1, +9-2, -3, +1, -5, +2, -6, -9 +8, +2, -2, -1, -4, +1, -9 Escribe en cada caso el número anterior y el posterior Completa estas series. Salta 3 cada vez -18, -15, -12, Salta 2 cada vez -17, -15, -13, Salta 8 cada vez -25, -17, Salta 10 cada vez -50, -40, 4

5 Comparación y ordenación de números enteros. El mayor de dos números enteros es aquel que se encuentra situado más a la derecha en la recta numérica. De los siguientes pares de números rodea el mayor. -1 y +1-6 y +5-7 y y y 1-3 y y +4-1 y 0 +6 y 4 0 y 1 Ordena los siguientes números de menor a mayor. -8, -3, 0, +4, -13, -6, +8 +3, -4, +8, +10, -2, +5-4, -6, -9, +2, -7, Escribe. Cinco números enteros mayores que 3 Cinco números enteros mayores que 10 Cinco números enteros menores que 3 Cinco números enteros menores que +2 Tres números enteros mayores que 3 y menores que +2 Tres números enteros mayores que 9 y menores que 0 Tres números enteros mayores que 0 y menores que +8 Escribe MAYOR o MENOR según corresponda. Cualquier número entero positivo es que 0. Cualquier número entero negativo es que 0. Un número entero positivo es que cualquier entero negativo. Un número entero negativo es que cualquier entero positivo. Escribe en cada caso el signo que corresponda (> o <):

6 Ordena de mayor a menor los siguientes números enteros Dibuja una recta numérica y coloca los siguientes números enteros Suma de números enteros. Para sumar números enteros del mismo signo, se suman los números y en el resultado se pone el signo que tienen. Ejemplos: (-4) + (-2) = -6 (+5) + (+3) = +8 Para sumar números enteros de distinto signo, se restan los números (el menor al mayor) y en el resultado se pone el signo del mayor. Ejemplos: (-4) + (+8) = +4 (-9) + (+3) = -6 Para sumar varios números enteros de distinto signo, primero se suman por separado los positivos y los negativos; después, se suman el número positivo y el negativo obtenidos. Ejemplo: (-4) + (+2) + (+6) + (+3) + (-3) + (-2) + (-7) + (+2)= (+13) + (-16) = -3 Haz las siguientes sumas. (-4) + (-7) = (-14) + (-12) = (-12) + (+7) = (+5) + (+6) = (-6) + (+4) = (-21) + (+9) = (-3) + (+4) = (-10) + (-20) = (+18) + (+17) = Realiza las siguientes sumas. (-5) + (+4) + (-4) + (-10) = (+5) + (+8) + (-5) + (-12) = (-15) + (-12) + (-7) + (-3) = (+6) + (+6) + (+6) + (-12) = (-8) + (+9) + (-6) + (+8) + (-6) + (-4) = (+6) + (+7) + (-3) + (-4) + (+8) + (-3) = (-18) + (-10) + (-20) + (+2) + (-1) + (+2) = (-6) + (-3) + (-11) + (+8) + (+6) + (+4) = Escribe el número +1: Como suma de dos números enteros positivos y uno negativo: Como suma de dos números enteros negativos y uno positivo: 6

7 Multiplicación de números enteros. Para calcular el producto de dos números enteros se halla el producto de los números y después se multiplican los signos de acuerdo a esta regla de los signos: + x + = + + x - = - - x + = - - x - = + División exacta de números enteros. Para calcular el cociente exacto de dos números enteros se halla el cociente de los números y después se dividen los signos de acuerdo a esta regla de los signos: + : + = + + : - = - - : + = - - : - = + Calcula los siguientes productos. (+7) x (+5) = (-6) x (-4) = (+3) x (-4) = (+2) x (-1) = (-9) x (+9) = (-12) x (+10) = (+7) x (+5) x (+2) = (-6) x (-4) x (-3) = (+3) x (-4) x (-1) = (+2) x (-10) x (-2) = (-9) x (+2) x (-3) = (-12) x (+4) x (-3) = Completa esta tabla. x Calcula los cocientes. (+15) : (+5) = (-16) : (-4) = (+36) : (-4) = (+20) : (-10) = (-90) : (+9) = (-64) : (+8) = (+50) : (-10) = (-16) : (+8) = (-20) : (-4) = Escribe el término que falta en cada división. : (+5) = -3 (-16) : = +2 : (-5) = -5 : (-6) = -5 (-50) : = +5 : (-8) = +3 (+12) : = +6 : (+3) = -6 (-42) : = -6 (+35) : = -5 : (-8) = -9 (+54) : = -9 7

8 Uso de paréntesis. 8

9 Potencias con números enteros. Los productos de factores iguales se llaman potencias. Ejemplo: (-6) x (-6) x (-6) x (-6) = (-6) 4. Esta expresión se lee -6 elevado a 4, o -6 elevado a la cuarta. 8 Exponente Base (-3) La base es el número que se multiplica. El exponente es el número de veces que se multiplica. Una potencia con exponente negativo es igual a la unidad dividida por la misma potencia con el exponente positivo. Calcula el valor de las potencias siguientes: 4 2, -4 2, (-4) 2 y -4 0 Calcula el valor de las potencias: -3 5, (-3) 5, (-3) 0 y -3 0 Efectúa. a) ( - 5 ) 2 ( - 5 ) 3 ( - 5 ) 5 ( - 5 ) 4 = b) ( + 6 ) 4 ( + 6 ) 5 ( + 6 ) 8 ( + 6 ) 9 = c) ( - 5 ) 7 : ( - 5 ) 3 = d) ( - 8 ) 12 : ( - 8 ) 4 = e) ( - 5 ) 7 3 = f) ( + 9 ) 7 3 = Transforma las siguientes expresiones en otras con exponente positivo y resuélvelas. a) (-10) -2 = b) (-10) -4 = c) 10-3 = d) 10-2 = e) = f) (+10) -2 = Orden de las operaciones. 9

10 Resuelve, paso a paso, las siguientes operaciones. 10 (-3 2) x 4 + (13 1) = ( ) x 4 (35 15) = (-2 5) x (-3 +10) = ( ) :3 5 x 2 = (3 + 6) x (-4) + (-25 : 5) = 6 x ( ) + 12 : (9 5) = (-8 4) : 3 (10 4 x 2) = (55 25) : 6 (10 15) x 4 = x 3 = (3 15) x : (15 7) = x (-5 2) 4 = (-2 x 3 1) +15 : (-2) = 10

11 11

12 Observa el plano y señala las coordenadas de cada punto. A = D = A F B B = E = C C = F = D E Sitúa los puntos P = (4, 1) y Q = (-3, -1) en la cuadrícula anterior. Observa el plano y señala las coordenadas de cada punto. A A = D = B = E = D C B F C = F = E Sitúa los puntos siguientes en la cuadrícula anterior. G = (-1, +3) H = (+1, +5) J = (+2, -1) K = (-3, -4) L = (-2, -5) M = (+4, +3) 12

POTENCIACIÓN - PROPIEDADES

POTENCIACIÓN - PROPIEDADES POTENCIACIÓN - PROPIEDADES Haga Click sobre la opción que desee ver: 1. Concepto general 2. Propiedades de la potenciación Potencia de exponente cero Potencia de exponente uno Producto (multiplicación)

Más detalles

Guía 1: Operaciones numéricas en los Números enteros (Z)

Guía 1: Operaciones numéricas en los Números enteros (Z) Guía 1: Operaciones numéricas en los Números enteros (Z) NÚMEROS ENTEROS (Z): Existen números con signo, que son los números enteros (Z+ son los positivos y Z- son los negativos). Según se sabe, nos los

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Potencias y raíces Matemáticas 1º ESO

Potencias y raíces Matemáticas 1º ESO Potencias y raíces Matemáticas 1º ESO ÍNDICE 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

TEMA 2: NÚMEROS ENTEROS

TEMA 2: NÚMEROS ENTEROS TEMA : NÚMEROS ENTEROS 1. NÚMEROS ENTEROS Los números naturales se utilizan para expresar matemáticamente multitud de situaciones cotidianas. Sin embargo, a veces no sirven para cuantificar las situaciones

Más detalles

Potencias y raíces Matemáticas 1º ESO

Potencias y raíces Matemáticas 1º ESO ÍNDICE Potencias y raíces Matemáticas 1º ESO 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores

Más detalles

LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO OPERACIONES CON ENTEROS ORDENACIÓN DE NÚMEROS ENTEROS

LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO OPERACIONES CON ENTEROS ORDENACIÓN DE NÚMEROS ENTEROS LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO ORDENACIÓN DE NÚMEROS ENTEROS OPERACIONES CON ENTEROS Suma Resta Multiplicación División Potencia JERARQUÍA RESOLUCIÓN

Más detalles

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES

LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS SUMA Si los números tienen el mismo signo se suman se deja el mismo signo. 3 + 5 = 8 ( 3) + ( 5) = 8 Si números tienen

Más detalles

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc.

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc. NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS. Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el sustraendo, pero en la vida nos encontramos con operaciones de este

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-0.qxd //0 : Página Números reales INTRODUCCIÓN Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que

Más detalles

NUMEROS ENTEROS ( Z)

NUMEROS ENTEROS ( Z) NUMEROS ENTEROS ( Z) En N la resta sólo está definida si el minuendo es mayor o igual al sustraendo. Para que dicha operación no sea tan restringida se creó el conjunto de enteros negativos ( notado por

Más detalles

Tema 1: NUMEROS ENTEROS

Tema 1: NUMEROS ENTEROS COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas. ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 2. Los números enteros 1. Los números enteros Es el conjunto de los números negativos, el cero y los positivos, y se representan como: Z...,-5,-4,-3,-2,-1,0, 1, 2, 3, 4,

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

TEMA 3. NÚMEROS RACIONALES.

TEMA 3. NÚMEROS RACIONALES. TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha

Más detalles

GAIA.- Números Enteros

GAIA.- Números Enteros GAIA.- Números Enteros 1.- EL CONJUNTO DE LOS NÚMEROS ENTEROS.- El conjunto de los números enteros está formado por todos los números naturales (N) precedidos del signo más (+), los números naturales precedidos

Más detalles

Apuntes de matemáticas 2º ESO Curso

Apuntes de matemáticas 2º ESO Curso Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde a un número menor

Más detalles

1. Observa los ejemplos y escribe como se leen las siguientes potencias.

1. Observa los ejemplos y escribe como se leen las siguientes potencias. Refuerzo: Potencias y raíces. 1. Observa los ejemplos y escribe como se leen las siguientes potencias. 1 : siete a la uno. 1 : : tres al cuadrado. : : cinco al cubo. : : ocho a la cuarta. : : seis a la

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-

Más detalles

I CICLO COMÚN MATEMÁTICAS INBAC UNIDAD DIDÁCTICA #8

I CICLO COMÚN MATEMÁTICAS INBAC UNIDAD DIDÁCTICA #8 UNIDAD DIDÁCTICA #8 INDICE PÁGINA Operaciones Combinadas --------------------------------------------------------------------------------------2 Potenciación de enteros -----------------------------------------------------------------------------------------3

Más detalles

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

CURSO UNICO DE INGRESO 2010

CURSO UNICO DE INGRESO 2010 INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para

Más detalles

Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalo [ 4,5] (0,3) [ 6,8) ( 7, 1] Desigualdad

Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalo [ 4,5] (0,3) [ 6,8) ( 7, 1] Desigualdad Hoja de trabajo personal Nº 1. EVALUACIÓN INICIAL Uso de los signos de desigualdad. Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalos sobre la

Más detalles

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros. Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde

Más detalles

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28 Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

PRIORIDAD DE OPERACIONES:

PRIORIDAD DE OPERACIONES: PRIORIDAD DE OPERACIONES 1º Hay que resolver o quitar los paréntesis. º Se hacen las multiplicaciones y divisiones en el orden que aparezcan de izquierda a derecha º Se hacen las sumas y las restas en

Más detalles

Multiplicación y División de Números Naturales

Multiplicación y División de Números Naturales Multiplicación y División de Números Naturales I. Multiplicación La multiplicación o producto, es una forma rápida de calcular la suma, cuando los sumandos son iguales. 2+2+2+2 = 2 x 4 = 8. También se

Más detalles

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos. NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden

Más detalles

7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez

7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez 7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones Prof. Kyria A. Pérez Estándares de contenido y expectativas N.SO.7.2.1- Modela la suma, Resta, multiplicación

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA III : LOS NÚMEROS ENTEROS Los números negativos. Su necesidad. El conjunto de los números enteros. Valor absoluto de un número entero. Opuesto de un número entero. Suma

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

Orden o comparación. Número 2 cifras más pequeño = Número 2 cifras más grande = Número 2 cifras más pequeño = Número 2 cifras más grande =

Orden o comparación. Número 2 cifras más pequeño = Número 2 cifras más grande = Número 2 cifras más pequeño = Número 2 cifras más grande = Orden o comparación 1.- Con las cifras de la columna izquierda, debes encontrar el número más grande y el número más pequeño de DOS cifras que con ellas se puede obtener: 3, 8, 2, 7, 9, 6 Número 2 cifras

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

Recuperación Primer Trimestre Matemáticas 1ºESO

Recuperación Primer Trimestre Matemáticas 1ºESO Recuperación Primer Trimestre Matemáticas 1ºESO TEMA 1: DIVISIBILIDAD 1 Ana tiene 0 libros que quiere colocar en montones de manera que todos ellos tengan el mismo número de libros. De cuántas formas puede

Más detalles

TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS

TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS Por qué aparecen los números enteros? Por qué aparecen los números enteros? La cueva de Voronia, es la cueva conocida más profunda de la Tierra, localizada

Más detalles

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. TEMA 1: LOS NÚMEROS ENTEROS Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 1. Los Números Enteros. 2. Suma y resta de números enteros.

Más detalles

RADICACIÓN EN LOS REALES

RADICACIÓN EN LOS REALES RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS VALOR ABSOLUTO Es la distancia que existe entre un número y el 0-3 -2-1 0 1 2 3 Z -3 = 3, 3 = 3 DEFINICIÓN:

Más detalles

= RESP = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo

= RESP = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo SUMA Y RESTA DE NUMEROS ENTEROS y ALGEBRAICOS A) SUMA Y RESTA 3 + 2 + 5 3 = RESP + 1 2 + 5 = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo + 7 6 = + 1 se restan signos contrarios

Más detalles

LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO OPERACIONES CON ENTEROS ORDENACIÓN DE NÚMEROS ENTEROS

LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO OPERACIONES CON ENTEROS ORDENACIÓN DE NÚMEROS ENTEROS LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO ORDENACIÓN DE NÚMEROS ENTEROS OPERACIONES CON ENTEROS Suma Resta Multiplicación División Potencia JERARQUÍA RESOLUCIÓN

Más detalles

TEMA 1: NÚMEROS ENTEROS

TEMA 1: NÚMEROS ENTEROS Números enteros 1 OBJETIVO 1: Significado de los números enteros TEMA 1: NÚMEROS ENTEROS 1. Expresa las siguientes situaciones con números enteros a) El año 2500 a.c... b) Pasear por la orilla del mar...

Más detalles

Suma de números enteros

Suma de números enteros NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre

Más detalles

MATEMÁTICAS 2º ESO. TEMA 1

MATEMÁTICAS 2º ESO. TEMA 1 MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si

Más detalles

NÚMEROS ENTEROS. Números naturales: sirven para contar, ordenar y comunicar información.

NÚMEROS ENTEROS. Números naturales: sirven para contar, ordenar y comunicar información. NÚMEROS ENTEROS 15 Números naturales: sirven para contar, ordenar y comunicar información. representa al conjunto de todos los número naturales. = {0, 1, 2, 3, 4, 5, 6, } Hay infinitos números naturales.

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

1 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS

1 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS 898 _ 0-008.qxd /9/07 :0 Página Números enteros INTRODUCCIÓN La representación numérica en la recta de los números enteros nos introduce en el estudio de su ordenación y comparación, el concepto de valor

Más detalles

3 POTENCIAS Y RAÍZ CUADRADA

3 POTENCIAS Y RAÍZ CUADRADA EJERCICIOS PROPUESTOS 3.1 Indica la base y el exponente de las siguientes potencias y calcula su valor. a) 2 4 c) 4 3 e) 3 5 g) ( 10) 4 b) 3 4 d) 5 3 f) ( 2) 5 h) (6 2 ) a) Base 2, exponente 4; 2 4 16

Más detalles

TEMA 3 POTENCIAS Y RAÍCES

TEMA 3 POTENCIAS Y RAÍCES TEMA 3 POTENCIAS Y RAÍCES 1. Observa los ejemplos e indica cuáles son los términos de las potencias siguientes. 3 2 : La base es 3 y el exponente es 2. 5 7 : La base es. y el exponente es.. 8 4 : La base

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Números Enteros. Introducción

Números Enteros. Introducción Números Enteros Introducción Todos los conjuntos de números fueron de alguna manera "descubiertos" o sugeridos en conexión con problemas planteados en problemas físicos o en el seno de la matemática elemental

Más detalles

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved.

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved. 5.1 Números Reales Mate 3041 Milena Salcedo V R Copyright Cengage Learning. All rights reserved. Números Reales Números Naturales: N = 1,2,3, Números Enteros no negativos (Cardinales): 0,1,2,3, Números

Más detalles

TEMA 2.- NÚMEROS ENTEROS

TEMA 2.- NÚMEROS ENTEROS TEMA 2.- NÚMEROS ENTEROS Matemáticas 1º ESO 1.- Números enteros Los números enteros comprenden: Números enteros positivos: +1, +2, +3, +4, (se corresponden con los números naturales: +4 = 4) Números enteros

Más detalles

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-088.qxd //0 09: Página Números decimales INTRODUCCIÓN El estudio de los números decimales comienza recordando el sistema de numeración decimal, que es la base de la expresión escrita de los números

Más detalles

LibrosMareaVerde.tk Ilustraciones: Banco de Imágenes de INTEF

LibrosMareaVerde.tk Ilustraciones: Banco de Imágenes de INTEF 30 CAPÍTULO 4: NÚMEROS ENTEROS 1. NÚMEROS ENTEROS 1.1. Números positivos, negativos y cero Existen ocasiones de la vida cotidiana en que es preciso usar números distintos de los naturales, números positivos

Más detalles

OPERACIÓN CON NÚMEROS ENTEROS(Z)

OPERACIÓN CON NÚMEROS ENTEROS(Z) OPERACIÓN CON NÚMEROS ENTEROS(Z) Imagina que un día estas de visita en un apartamento de unos amigos, al despedirte bajas al sótano 2 a buscar tu carro y te das cuenta que dejaste las llaves en casa de

Más detalles

OPERACIONES CON POTENCIAS. Una potencia es un producto de factores iguales. Está formada por la base y el exponente.

OPERACIONES CON POTENCIAS. Una potencia es un producto de factores iguales. Está formada por la base y el exponente. OPERACIONES CON POTENCIAS Una potencia es un producto de factores iguales. Está formada por la base y el exponente. 3. 3. 3. 3 = 3 4 Exponente Base Se puede leer: tres elevado a cuatro o bien tres elevado

Más detalles

Suma de números enteros

Suma de números enteros NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un

Más detalles

Potencias de exponente entero I

Potencias de exponente entero I Matemáticas 2.º ESO Unidad 3 Ficha 1 Potencias de exponente entero I Una potencia es un producto de factores iguales. Exponente: n n Base: a an = a a a La base, a, es el factor que se repite, y el exponente,

Más detalles

Departamento de Matemática TEORÍA DEL CONJUNTO DE LOS NÚNEROS ENTEROS Primer Año

Departamento de Matemática TEORÍA DEL CONJUNTO DE LOS NÚNEROS ENTEROS Primer Año Departamento de Matemática TEORÍA DEL CONJUNTO DE LOS NÚNEROS ENTEROS Primer Año - 015 Introducción: Tanto en tablas que informan temperaturas como en resúmenes bancarios, en líneas de tiempo de historia,

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Chapter Audio Summary for McDougal Littell Pre-Algebra

Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar

Más detalles

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3 Tema - Hoja : Cálculo de potencias y raíces Calcula las siguientes multiplicaciones y divisiones de radicales: a) 8 9 c) 6 : d) 0 : 6 a) 8 = 8 = 6 = 9 = 9 = 08 6 c) 6 : = = = 0 d) 0 : 6 = = 6 Realiza las

Más detalles

TEMA 1: POTENCIAS Y RAICES CUADRADAS

TEMA 1: POTENCIAS Y RAICES CUADRADAS TEMA 1: POTENCIAS Y RAICES CUADRADAS 1. POTENCIAS Una potencia es una forma abreviada de expresar una multiplicación en la que todos los factores son iguales. 2 2 2 2 2 = 2 5 Es una potencia. La base es

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

2 Números racionales

2 Números racionales 008 _ 0-000.qxd 9//08 9:06 Página Números racionales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,

Más detalles

Potencias (1) Nombre Curso: Fecha: 1. Concepto de potencia.

Potencias (1) Nombre Curso: Fecha: 1. Concepto de potencia. Potencias (1) Nombre Curso: Fecha: 1. Concepto de potencia. Observando el dibujo nos preguntamos: cuántos remeros participan en las regatas? Son 4 remeros en cada una de las 4 traineras, luego en total

Más detalles

2. Propiedades de las potencias de exponente entero. DESARROLLO

2. Propiedades de las potencias de exponente entero. DESARROLLO ENCUENTRO # 7 TEMA:Propiedades de las potencias de exponente entero CONTENIDOS: 1. Potenciación. Cálculo de potencias.. Propiedades de las potencias de exponente entero.. Notación científica EJERCICIO

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICA I Lic. Manuel de Jesús

Más detalles

Índice. 1 Los números. 4 Magnitudes y medidas. 5 Ecuaciones. 6 Geometría. 2 Divisibilidad y fracciones. 3 Los porcentajes.

Índice. 1 Los números. 4 Magnitudes y medidas. 5 Ecuaciones. 6 Geometría. 2 Divisibilidad y fracciones. 3 Los porcentajes. Índice 1 Los números pág. 2 Sistema de numeración romano. Suma y resta de números naturales. Sumas y restas combinadas. Producto de números naturales. Cociente de números naturales. Jerarquía de operaciones.

Más detalles

UNIDAD 6 AULA 360. Números decimales

UNIDAD 6 AULA 360. Números decimales UNIDAD 6 Números decimales 1. Números decimales. Ordenación y representación 2. Tipos de números decimales 3. Conversión de decimal a fracción 4. Operaciones con números decimales 1. Números decimales

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o

Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o 103 Descomposición factorial Suma o diferencia de cubos perfectos P r o c e d i m i e n t o 1. Se abren dos paréntesis 2. En el primer paréntesis se escribe la suma o la diferencia, según el caso, de las

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN

Más detalles

Números enteros. 1. En una recta horizontal, se toma un punto cualquiera que se señala como cero.

Números enteros. 1. En una recta horizontal, se toma un punto cualquiera que se señala como cero. Números enteros Son el conjunto de números naturales, sus opuestos (negativos) y el cero. Se dividen en tres partes: enteros positivos o números naturales (+1, +2, +3,...), enteros negativos (-1, -2, -3,.)

Más detalles

Es una división de polinomios por el método de coeficientes separados.

Es una división de polinomios por el método de coeficientes separados. Baldor Ejercicio 58 - #13 Dividir por coeficientes separados: entre Es una división de polinomios por el método de coeficientes separados. Procedimiento general para la división de polinomios por el método

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

TEMA 1 FRACCIONES NOMBRE Y APELLIDOS... HOJA 1 -FECHA...

TEMA 1 FRACCIONES NOMBRE Y APELLIDOS... HOJA 1 -FECHA... Nueva del Carmen,. 0 Valladolid. Tel Fax e-mail lainmaculadava@planalfa.es Matemáticas º ESO TEMA FRACCIONES NOMBRE Y APELLIDOS... HOJA -FECHA... SUMA DE FRACCIONES Para sumar o restas fracciones, deben

Más detalles

RADICALES. Un radical es una expresión de la forma, en la que n y ; con tal que cuando a sea negativo, n ha de ser impar.

RADICALES. Un radical es una expresión de la forma, en la que n y ; con tal que cuando a sea negativo, n ha de ser impar. RADICALES Un radical es una expresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Se puede expresar un radical en forma de potencia: Radicales equivalentes Utilizando

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0 Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma

Más detalles

ENTEROS 5, 0, 5, 10, 2, 8, 1, 7, 2, 4, 3, 4, 6, 1, 3

ENTEROS 5, 0, 5, 10, 2, 8, 1, 7, 2, 4, 3, 4, 6, 1, 3 ENTEROS 1.- Expresa las siguientes situaciones con números enteros: a) El año 2500 a. C. b) Pasear por la orilla del mar. c) Estar a una temperatura de 10 0 C bajo cero. d) Deber 270. e) Sumergirse a una

Más detalles

TEMA 3: NÚMEROS REALES

TEMA 3: NÚMEROS REALES . Intervalos y semirrectas TEMA : NÚMEROS REALES Ejemplo Dados los siguientes intervalos y semirrectas, exprésalos en forma de conjunto y represéntalos sobre la recta real:. El intervalo abierto de extremos

Más detalles

Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria:

Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria: TEMA 0: REPASO DE NÚMEROS. Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria: Suma de números enteros 1. Si los sumandos son del mismo

Más detalles

TEMA 2 FRACCIONES MATEMÁTICAS 2º ESO

TEMA 2 FRACCIONES MATEMÁTICAS 2º ESO TEMA 2 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

Comparación y Orden: El termómetro marca -3ºC a la tarde y 7ºC a la noche, la temperatura, bajó o subió? Ubiquemos esos valores en la recta numérica:

Comparación y Orden: El termómetro marca -3ºC a la tarde y 7ºC a la noche, la temperatura, bajó o subió? Ubiquemos esos valores en la recta numérica: Números Enteros: En nuestro país tenemos un relieve montañoso al oeste y llano al este. Esto da por resultado una pendiente general del terreno hacia el Océano Atlántico. Pero la tierra se extiende bajo

Más detalles