Tema 4: Operaciones sobre lenguajes regulares

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4: Operaciones sobre lenguajes regulares"

Transcripción

1 Tem 4: Operciones sore lengujes regulres Deprtmento de Sistems Informáticos y Computción DSIC - UPV p.1/19

2 Tem 4: Propieddes de los lengujes regulres Lem de omeo pr lengujes regulres. Propieddes de cierre Operciones oolens: Unión, Intersección, Complementción Diferenci Reverso Conctención y Clusur Homomorfismo y Homomorfismo Inverso Minimizción de utómts finitos. DSIC - UPV p.2/19

3 Lem de omeo Se L un lenguje regulr sore Σ. Existe un número nturl n (dependiente del lenguje L) tl que x L si x n, existen u, v, w Σ tles que x = uvw y donde: 1. uv n 2. v 1 3. i 0, uv i w L Condición necesri (no suficiente) pr que un lenguje se regulr Útil pr demostrr ue un lenguje no es regulr Tomr n como el vlor de l constnte del lem de omeo Escoger un plr x tl que x n Considerr tods ls posiles fctorizciones de x Mostrr que, pr tods ls fctorizciones posiles, puede encontrrse un vlor de i tl que uv i w L DSIC - UPV p.3/19

4 Lem de omeo Ejercicios: L 1 = {0 i 1 i i 0} L 2 = {0 n n es primo} L 3 = {w {0 + 1} w 0 > w 1 } L 4 = {w {0 + 1} w 0 = w 1 } L 5 = {0 n 1 m n m 0} L 6 = {0 i2 i 1} DSIC - UPV p.4/19

5 Propieddes de cierre Un conjunto C es cerrdo jo un operción sii: x, y C x y C Cierre respecto Intersección Sen L 1, L 2 L 3, entonces existen dos utómts A 1, A 2 tles que L 1 = L(A 1 ), L 2 = L(A 2 ), donde A i = (Q i, Σ, δ i, q i, F i ), i = 1, 2 Construimos A = (Q, Σ, δ, q 0, F ) donde: Q = Q 1 Q 2 q 0 = [q 1, q 2 ] F = F 1 F 2 δ([p 1, p 2 ], ) = [δ 1 (p 1, ), δ 2 (p 2, )], p 1 Q 1, p 2 Q 2, Σ DSIC - UPV p.5/19

6 Propieddes de cierre q 1 q 2 q 1 q 3 q 2 A 1 A 2 L(A 1 ) L(A 2 )? DSIC - UPV p.6/19

7 Propieddes de cierre Cierre respecto Unión Sen L 1, L 2 L 3, entonces existen dos utómts completos A 2, A 2 tles que L 1 = L(A 1 ), L 2 = L(A 2 ) donde A i = (Q i, Σ, δ i, q i, F i ), i = 1, 2 Construimos A = (Q, Σ, δ, q 0, F ) donde: Q = Q 1 Q 2 q 0 = [q 1, q 2 ] F = F 1 Q 2 Q 1 F 2 δ([p 1, p 2 ], ) = [δ 1 (p 1, ), δ 2 (p 2, )], p 1 Q 1, p 2 Q 2, Σ DSIC - UPV p.7/19

8 Propieddes de cierre 0 0 q 1 q 2 q 1 1 q q 2 0 A 1 A 2 L(A 1 ) L(A 2 )? DSIC - UPV p.8/19

9 Propieddes de cierre Cierre respecto Complementción Se L L 3, entonces existe un utómt completo A tl que L = L(A) donde A = (Q, Σ, δ, q 0, F ) El utómt A = (Q, Σ, δ, q 0, Q F ) cept L Cierre respecto Diferenci Sen L 1, L 2 L 3. Nótese que L 1 L 2 = L 1 L 2 DSIC - UPV p.9/19

10 Propieddes de cierre Cierre respecto Reverso Sen L 1 L 3, entonces existe un utómt A = (Q, Σ, δ, q 0, {q f }). Si F > 1 puede modificrse el utómt pr que pose un único estdo finl. Construimos A = (Q, Σ, δ, q f, q 0 ) donde: q δ(p, ) p δ (q, ) DSIC - UPV p.10/19

11 Propieddes de cierre Cierre respecto Conctención Sen L 1, L 2 L 3, entonces existen dos utómts A 1, A 2 tles que L 1 = L(A 1 ), L 2 = L(A 2 ) donde A i = (Q i, Σ, δ i, q i, F i ), (i = 1, 2) y tles que Q 1 Q 2 = Construimos A = (Q, Σ, δ, q 1, F 2 ) donde: Q = Q 1 Q 2 δ = δ 1 δ 2 δ donde q 2 δ (p, λ), p F 1 DSIC - UPV p.11/19

12 Propieddes de cierre Cierre respecto Clusur Se L L 3, entonces existe un utómt A tl que L = L(A) donde A = (Q, Σ, δ 0, q 0, F ) Construimos A = (Q, Σ, δ, q n, F ) donde: Q = Q 1 {q n }, q n Q F = F {q n } δ (p, ) = δ(p, ), p Q, Σ q n δ (p, λ), p F δ (q n, λ) = {q 0 } DSIC - UPV p.12/19

13 Propieddes de cierre Cierre jo Homomorfismo Se h : Σ y L 1 L 3. Existe un expresión regulr r 1 tl que L 1 = L(r 1 ) Construimos un expresión regulr r resultdo de sustituir cd símolo Σ por su imgen h(), utilizndo prentesis pr mntener el orden de ctución de los operdores Cierre jo Homomorfismo Inverso Se h : Σ y L 1 L 3, entonces existe un utómt A 1 tl que L 1 = L(A 1 ) y donde A = (Q,, δ, q 0, F ) Construimos A = (Q, Σ, δ, q 0, F ) donde: { δ δ(p, h()) si δ(p, h()) (p, ) = en otro cso DSIC - UPV p.13/19

14 Propieddes de cierre q 1 q 4 q 2 q 3 h(0) = h(1) = h(2) = λ h 1 (L(A))? DSIC - UPV p.14/19

15 Minimizción de utómts finitos Un AFD A = (Q, Σ, δ, q 0, F ) es ccesile si pr todo q Q existe un plr x Σ tl que δ(q 0, x) = q Se A = (Q, Σ, δ, q 0, F ) un AFD completo y ccesile. Definimos l relción de indistiguiilidd en Q como: q, q Q : (q q x Σ (δ(q, x) F δ(q, x) F )) Se A = (Q, Σ, δ, q 0, F ) un AFD completo y ccesile y se l relción de indistiguiilidd. Se define el utómt cociente A/ = (Q, Sigm, δ, q 0, F ) como: Q = {[q] q Q} q 0 = [q 0 ] F = {[q] q F } δ ([q], ) = [δ(q, )] DSIC - UPV p.15/19

16 Minimizción de utómts finitos Se A = (Q, Σ, δ, q 0, F ) un AFD completo y ccesile y se l relción de indistiguiilidd. El utomt A/ es el AFD mínimo que cept L(A) Se A = (Q, Σ, δ, q 0, F ) un AFD completo y ccesile y se un entero k 0. Se define l relción de k-distinguiilidd k como: q, q Q : (q k q x Σ, x k, (δ(q, x) F δ(q, x) F )) k 0, p k+1 q p k q k 0, p q p k q k 0, p k+1 q p k q Σ, δ(p, ) k δ(q, ) DSIC - UPV p.16/19

17 Minimizción de utómts finitos Algoritmo de minimizción de AFD: 1. π 0 = {Q F, F } 2. Otener π k+1 prtir de π k B(p, π k+1 ) == B(q, π k+1 ) { B(p, π k ) == B(q, π k ) Σ, B(δ(p, ), π k ) == B(δ(q, ), 3. Si π k+1 es distint π k ir 2 DSIC - UPV p.17/19

18 Minimizción de utómts finitos Ejercicio: 0 1 q 0 1 q 1 3 q q 1 2 q 1 4 q 6 q DSIC - UPV p.18/19

19 Minimizción de utómts finitos Ejercicio: q 0 q 1 q 2 q 3 q 4 q 5 DSIC - UPV p.19/19

3 de marzo de 2011 DSIC - UPV. Tema 5: Expresiones Regulares. U.D. Computación. Definiciones. Propiedades. Construcciones. AFs a partir de ERs

3 de marzo de 2011 DSIC - UPV. Tema 5: Expresiones Regulares. U.D. Computación. Definiciones. Propiedades. Construcciones. AFs a partir de ERs UD AFs Lem de UD DSIC - UPV 3 de mrzo de 2011 UD (DSIC - UPV) 3 de mrzo de 2011 1 / 40 Índice UD AFs Lem de sore expresiones regulres utómts finitos utómts finitos UD (DSIC - UPV) 3 de mrzo de 2011 2 /

Más detalles

Capítulo 8: Propiedades de Lenguajes Regulares

Capítulo 8: Propiedades de Lenguajes Regulares Cpítulo 8: Propieddes de Lengujes Regulres 8.1. Identificción de lengujes no regulres 8.1.1. Lem de Boeo 8.1.2. Aplicciones del lem de omeo 8.2. Propieddes de Cierre 8.2.1. Unión, Conctención, Clusur 8.2.2.

Más detalles

Autómatas sobre palabras infinitas

Autómatas sobre palabras infinitas Autómts sobre plbrs infinits Mrcelo Arens M. Arens Autómts sobre plbrs infinits 1 / 46 Teorí de utómts sobre plbrs infinits Los utómts sobre plbrs infinits son un herrmient fundmentl pr l verificción forml.

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencis de l Computción I Propieddes de Clusur de Lengujes Regulres y Lengujes Libres del Contexto Propieddes de Clusur de Lengujes Regulres Los lengujes regulres (LR son cerrdos bjo ls siguientes operciones:

Más detalles

Caracterización de lenguajes regulares con expresiones regulares

Caracterización de lenguajes regulares con expresiones regulares Crcterizción de lengujes regulres con expresiones regulres Elvir Myordomo Universidd de Zrgoz 15 de octubre de 2012 Contenido de este tem Recordtorio de expresiones regulres (e.r.) Cómo convertir un e.r.

Más detalles

Aprendizaje de lenguajes incontextuales (II) Autómatas de árboles y gramáticas incontextuales

Aprendizaje de lenguajes incontextuales (II) Autómatas de árboles y gramáticas incontextuales prendizje de lengujes incontextules (II) utómts de ároles y grmátics incontextules José M. Sempere Deprtmento de Sistems Informáticos y omputción Universidd Politécnic de Vlenci onceptos ásicos de los

Más detalles

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid.

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid. Dpto. de Informátic (ATC, CCIA y SI). Univiersidd de Vlldolid. TEORÍA DE AUTÓMATAS Y ENGUAJES FORMAES II Ingenierí Técnic en Informátic de Sistems. Curso 20-2 AUTÓMATAS DE PIA. Dd l siguiente grmátic independiente

Más detalles

Autómatas finitos TEORÍA DE LA COMPUTACIÓN LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1

Autómatas finitos TEORÍA DE LA COMPUTACIÓN LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1 Autómts finitos TEORÍA DE LA COMPUTACIÓN LENGUAJES REGULARES Y AUTÓMATAS FINITOS Frncisco Hernández Quiroz Deprtmento de Mtemátics Fcultd de Ciencis, UNAM E-mil: fhq@ciencis.unm.mx Págin We: www.mtemtics.unm.mx/fhq

Más detalles

Teoría de Lenguajes. Transductores y Máquinas Secuenciales Generalizadas

Teoría de Lenguajes. Transductores y Máquinas Secuenciales Generalizadas Teorí de Lengujes Trnsductores y Máquins Secuenciles Generlizds José M. Sempere Deprtmento de Sistems Informáticos y Computción Universidd Politécnic de Vlenci Trnsductores 1. Preliminres lgericos 2. Relciones

Más detalles

q 2 q 3 b q 3 q 4 a, b

q 2 q 3 b q 3 q 4 a, b M = (Σ E, Q, q, f, F ) donde Reconocedor finito determinist Slide Σ E : lfeto de entrd Q : conjunto de estdos, f inito q Q : estdo inicil f : Q Σ E Q función prcil de trnsición F Q : estdos finles o de

Más detalles

Autómatas finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1

Autómatas finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1 Autómts finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS Frncisco Hernández Quiroz Deprtmento de Mtemátics Fcultd de Ciencis, UNAM E-mil: fhq@ciencis.unm.mx Págin We: www.mtemtics.unm.mx/fhq

Más detalles

Construcción de Vardi & Wolper: Paso final

Construcción de Vardi & Wolper: Paso final Construcción de Vrdi & Wolper: Pso finl Pr simplificr el proceso de construcción, usmos un generlizción de los utómts de Büchi: Definición A = (Q,Σ,Q 0,δ, G) es un utómt de Büchi generlizdo sore Σ si:

Más detalles

1. Indicar el lenguaje aceptado por los siguientes autómatas :

1. Indicar el lenguaje aceptado por los siguientes autómatas : Universidd Rey Jun Crlos Curso 27 28 Teorí de Autómts y Lengujes Formles Ingenierí Técnic en Informátic de Sistems Hoj de Prolems 4 Autómts Finitos Determinists Nivel del ejercicio : ( ) ásico, ( ) medio,

Más detalles

INGENIERÍA EN INFORMÁTICA MODELOS ABSTRACTOS DE COMPUTO I

INGENIERÍA EN INFORMÁTICA MODELOS ABSTRACTOS DE COMPUTO I INGENIERÍA EN INFORMÁTICA MODELOS ABSTRACTOS DE COMPUTO I 18 de enero de 2008 APELLIDOS Y NOMBRE: DURACIÓN: 3 hors. SOLUCIÓN del EXAMEN L primer pregunt es un test, que const de 8 supregunts corts y puntú

Más detalles

Fundamentos de Algoritmos y Computabilidad

Fundamentos de Algoritmos y Computabilidad Fundmentos de Algoritmos y Computilidd * Autómts finitos * Autómts finitos determinists * Autómts finitos no determinists * Equivlenci entre AFD y AFN Lengujes regulres Tipo Lengujes Tipo de máquin 0 Recursivmente

Más detalles

Ejercicios resueltos de Lenguajes, Gramáticas y Autómatas ( )

Ejercicios resueltos de Lenguajes, Gramáticas y Autómatas ( ) Ejercicios resueltos de Lengujes, Grmátics y utómts (-2-4). Encuentr el FD mínimo que reconoce el lenguje representdo por l ER ( + + ) ( + ) Pr otener el FD mínimo correspondiente (+ +ɛ) (+) tenemos que

Más detalles

AUTOMATAS FINITOS CIENCIAS DE LA COMPUTACION I 2009

AUTOMATAS FINITOS CIENCIAS DE LA COMPUTACION I 2009 AUTOMATAS FINITOS Un utómt finito es un modelo mtemático de un máquin que cept cdens de un lenguje definido sore un lfeto A. Consiste en un conjunto finito de estdos y un conjunto de trnsiciones entre

Más detalles

5. Lenguajes Regulares

5. Lenguajes Regulares 5. Lengujes Regulres Arceli Snchis de Miguel Agpito Ledezm Espino José A. Iglesis Mr

Más detalles

Relación de ejercicios hechos en clase en los últimos días previos al examen de febrero

Relación de ejercicios hechos en clase en los últimos días previos al examen de febrero Relción de ejercicios hechos en clse en los últimos dís previos l exmen de ferero De cuerdo con l definición de APND, propón 5 ejemplos de utómt con pil que cepten: - el lenguje Σ * ({f}, Σ, Σ, { ((f,,ε),

Más detalles

Exámenes de Teoría de Autómatas y Lenguajes Formales. David Castro Esteban

Exámenes de Teoría de Autómatas y Lenguajes Formales. David Castro Esteban Exámenes de Teorí de Autómts y Lengujes Formles Dvid Cstro Esten Teorí de Autómts y Lengujes Formles Ingenierí Técnic en Informátic de Sistems Ferero 24 Prolem (2 ptos.) Otener expresiones regulres pr

Más detalles

Relaciones de equivalencia

Relaciones de equivalencia Relciones de equivlenci. Un relción de equivlenci en un conjunto X se puede interpretr como el suconjunto de X X ddo por (, ) X X }. Enúnciesen ls propieddes de l relción de equivlenci en términos de dicho

Más detalles

Temas. Objetivo. Definición de autómata finito. Autómata finito determinístico y no determinístico. Autómata finito de estados mínimos 14:17

Temas. Objetivo. Definición de autómata finito. Autómata finito determinístico y no determinístico. Autómata finito de estados mínimos 14:17 0 Tems Definición de utómt finito Autómt finito determinístico y no determinístico Autómt finito de estdos mínimos Ojetivo Que el estudinte logre: 1) Identificr conceptos constructivos de l Teorí de l

Más detalles

Minimización de AFDs, método y problemas

Minimización de AFDs, método y problemas Minimizción de Fs, método y prolems Elvir Myordomo, Universidd de Zrgoz 8 de octure de. Resultdos sore utómts determinists mínimos El F mínimo existe y es único, es decir Teorem. do unf M = (Q,Σ,δ,q,F),

Más detalles

Examen Parcial de Autómatas y Lenguajes Formales 12 de diciembre de 2003

Examen Parcial de Autómatas y Lenguajes Formales 12 de diciembre de 2003 Exmen Prcil de Autómts y Lengujes Formles 2 de diciemre de 23 Resolver los siguientes prolems. Tiempo 2 hors.. Dr un grmátic y demostrr que es correct pr L = { m n 2m < n < 3m}. 2. Dr un utómt de pil determinist

Más detalles

1 Se construye una tabla. 2 Se repite el siguiente procedimiento hasta que ya no haya cambios: (q i, q j ) := s.

1 Se construye una tabla. 2 Se repite el siguiente procedimiento hasta que ya no haya cambios: (q i, q j ) := s. Minimlizción de estdos Minimlizción de estdos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES II LENGUAJES INDEPENDIENTES DEL CONTEXTO Frncisco Hernández Quiroz Deprtmento de Mtemátics Fcultd de Ciencis,

Más detalles

Una Introducción a la Teoría de Autómatas sobre Arboles

Una Introducción a la Teoría de Autómatas sobre Arboles Un Introducción l Teorí de Autómts sobre Arboles IIC3800 IIC3800 Un Introducción l Teorí de Autómts sobre Arboles 1 / 40 Arboles etiquetdos Σ: Alfbeto (conjunto finito de símbolos) Definición (Arbol binrio)

Más detalles

Informática Teórica. Tema 4: Autómatas Finitos

Informática Teórica. Tema 4: Autómatas Finitos Informátic Teóric Tem 4: Autómts Finitos 1 Autómts Finitos. Biliogrfí M. Alfonsec, J. Sncho y M. Mrtínez. Teorí de Lengujes, Grmátics y Autómts, R.A.E.C., Mdrid, (1998). P. Issi, P. Mrtínez y D. Borrjo.

Más detalles

June 24, 2011 DSIC - UPV. Autómatas Finitos. U.D. Computación. Autómata Finito Determinista. Autómata Finito no Determinista

June 24, 2011 DSIC - UPV. Autómatas Finitos. U.D. Computación. Autómata Finito Determinista. Autómata Finito no Determinista s s no s s s DSIC - UPV June 24, 2011 (DSIC - UPV) s s June 24, 2011 1 / 41 (AFD) s s no s (AFD) Un (AFD) es un 5-tupl de l siguiente form: A = (Q,Σ,δ, q 0, F), siendo: Q un conjunto finito de estdos Σ

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

Autómatas Finitos. Programación II Margarita Álvarez 0,1 0,1. q 3

Autómatas Finitos. Programación II Margarita Álvarez 0,1 0,1. q 3 Autómts Finitos 0,1 0,1 q 0 0 q 1 0 q 2 1 q 3 1 Progrmción II Mrgrit Álvrez Autómts Dispositivo mecánico cpz símolos. de procesr cdens de Ddo un lenguje L definido sore un lfeto A y un cden x ritrri, determin

Más detalles

TEORÍA DE AUTÓMATAS I Informática de Sistemas. Soluciones a las cuestiones de examen del curso 2010/11

TEORÍA DE AUTÓMATAS I Informática de Sistemas. Soluciones a las cuestiones de examen del curso 2010/11 TEORÍA DE AUTÓMATAS I Informátic de Sistems Soluciones ls cuestiones de exmen del curso 2/ Ferero, ª semn. Indique cuál de ls siguientes firmciones referentes los operdores sore símolos *, y es FALSA:

Más detalles

TEORÍA DE AUTÓMATAS I Informática de Sistemas

TEORÍA DE AUTÓMATAS I Informática de Sistemas TEORÍA DE AUTÓMATAS I Informátic de Sistems Soluciones ls cuestiones de exmen del curso 25/6 Ferero 26, ª semn. Se un utómt finito M={S, Σ, δ, ι, F,}. Sen p,q S;, Σ. Indique cuál de ls siguientes firmciones

Más detalles

una función acotada. a) Cuántas particiones puede tener el intervalo [ ab, ]?. c) Cuántos puntos como máximo puede tener una partición de [ ab, ]?.

una función acotada. a) Cuántas particiones puede tener el intervalo [ ab, ]?. c) Cuántos puntos como máximo puede tener una partición de [ ab, ]?. Ejercicios del Tem de Integrles Cálculo Diferencil e Integrl II ) Sen A y B dos conjuntos no vcíos de números reles, tles que B A y A está cotdo superiormente Demostrr que B está cotdo superiormente y

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

Tema 22. El lema de bombeo para LR

Tema 22. El lema de bombeo para LR Tem 22 Lem de omeo pr LLC Dr. Luis A. Pined IBN: 970-32-2972-7 Cómo podemos decir si un lenguje es lire del contexto? Definir un GLC o diseñr un AP pr el lenguje Pero que tl si el lenguje se descrie por

Más detalles

Universidad de Valladolid

Universidad de Valladolid Universidd de Vlldolid Deprtmento de Informátic Teorí de utómts y lengujes formles. 2 o I.T.Informátic. Gestión. Exmen de segund convoctori, 5 de septiemre de 2007 Apellidos, Nomre... Grupo:... Firm: 1

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

TEORÍA DE AUTÓMATAS I Informática de Sistemas. Soluciones a las cuestiones de examen del curso 2011/12

TEORÍA DE AUTÓMATAS I Informática de Sistemas. Soluciones a las cuestiones de examen del curso 2011/12 TEORÍA DE AUTÓMATAS I Informátic de Sistems Soluciones ls cuestiones de exmen del curso 2011/12 Ferero 12, 1ª semn 1. Considere el lenguje { 2n n c / 0}. Indique cuál de ls siguientes firmciones es fls:

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Teoría de Autómatas y Lenguajes Formales

Teoría de Autómatas y Lenguajes Formales Teorí de Autómts Lengujes Formles Ingenierí Téni en Informáti de Sistems Segundo urso, segundo utrimestre Curso démio: 2010 2011 Deprtmento de Informáti Análisis Numério Esuel Politéni Superior Universidd

Más detalles

Minimización de autómatas. Minimización de autómatas. Ejemplo 1. Ejemplo 2. b b

Minimización de autómatas. Minimización de autómatas. Ejemplo 1. Ejemplo 2. b b Minimizción de utómts Construcción de un AFDt con un número de estdos mínimo que se equivlente un AFDt ddo. Definiciones previs: Estdos ccesiles: es ccesile q ccesile s Σ, δ(q, s) es ccesile Estdos k-equivlentes

Más detalles

1. Indicar el lenguaje aceptado por los siguientes autómatas :

1. Indicar el lenguaje aceptado por los siguientes autómatas : Universidd Rey Jun Crlos Grdo en Ingenierí de Computdores Máquins Secuenciles, Autómts y Lengujes Hoj de Prolems: Autómts Finitos Determinists Nivel del ejercicio : ( ) ásico, ( ) medio, ( ) vnzdo.. Indicr

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

Tema 9. La Integral de Riemann Construcción de la integral de Riemann.

Tema 9. La Integral de Riemann Construcción de la integral de Riemann. Tem 9 L Integrl de Riemnn. 9.1. Construcción de l integrl de Riemnn. Definición 9.1.1. Se I = [, b] R un intervlo cerrdo y cotdo (compcto). Se llm prtición de I todo conjunto de puntos P = {x 0, x 1,,

Más detalles

Víctor J. Díaz Madrigal y Fernando Enríquez de Salamanca Ros. 2.1 Límites de los lenguajes regulares Teorema de Myhill-Nerode Lema del bombeo

Víctor J. Díaz Madrigal y Fernando Enríquez de Salamanca Ros. 2.1 Límites de los lenguajes regulares Teorema de Myhill-Nerode Lema del bombeo Guión 2.1 Límites de los lenguajes regulares Teorema de Myhill-Nerode Lema del bombeo Tma. de Myhill-Nerode: Relaciones de equivalencia Una relación de equivalencia sobre Σ es: 1. Invariante por la derecha:

Más detalles

1 Se construye una tabla. 2 Se repite lo siguiente hasta que ya no haya cambios: (q i, q j ) := s.

1 Se construye una tabla. 2 Se repite lo siguiente hasta que ya no haya cambios: (q i, q j ) := s. Minimlizción Reconocimiento de cdens Minimlizción de estdos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES II LENGUAJES INDEPENDIENTES DEL CONTEXTO Frncisco Hernández Quiroz Deprtmento de Mtemátics

Más detalles

Tema 2: Lenguajes regulares

Tema 2: Lenguajes regulares Tem : Lengujes regulres Ide de utómt Autómts finitos y grmátis regulres Autómts finitos determinists Autómts finitos no determinists Grmátis regulres (y lineles) l dereh Exresiones regulres Exresiones

Más detalles

Además de las operaciones tradicionales, es posible expresar otras operaciones binarias. Tabla 1.1. Operación AND.

Además de las operaciones tradicionales, es posible expresar otras operaciones binarias. Tabla 1.1. Operación AND. Grupos y Cmpos Definición de operción inri Operciones como l sum, rest, multiplicción o división de números son considerds operciones inris, y que socin un pr de números con un resultdo. En generl, un

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

DIAPOSITIVAS AUTÓMATAS CON TRANSICIONES ÉPSILON (EJERCICIOS) UNIDAD DE APRENDIZAJE: AUTÓMATAS Y LENGUAJES FORMALES

DIAPOSITIVAS AUTÓMATAS CON TRANSICIONES ÉPSILON (EJERCICIOS) UNIDAD DE APRENDIZAJE: AUTÓMATAS Y LENGUAJES FORMALES DIAPOSITIVAS AUTÓMATAS CON TRANSICIONES ÉPSILON (EJERCICIOS) UNIDAD DE APRENDIZAJE: AUTÓMATAS Y LENGUAJES FORMALES PROGRAMA EDUCATIVO: INGENIERÍA EN COMPUTACIÓN ESPACIO ACADÉMICO: FACULTAD DE INGENIERÍA

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.   Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teorí Autor: Jun González-Meneses. Revisión: Jvier Herrer y José Mrí Uch Tem 3: Anillos. Recordemos que un nillo es un tern (A,

Más detalles

Capitulo II. Números Reales

Capitulo II. Números Reales Cpitulo II. Números Reles Ojetivo. El lumno plicrá ls propieddes de los números reles y sus suconjuntos, pr demostrr lguns proposiciones por medio del método de inducción mtemátic y pr resolver inecuciones.

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

Teoría de Autómatas y Lenguajes Formales. Propiedades de los lenguajes regulares

Teoría de Autómatas y Lenguajes Formales. Propiedades de los lenguajes regulares Teoí de Autómts y engujes Fomles Popieddes de los lengujes egules José M. Sempee Deptmento de Sistems Infomáticos y Computción Univesidd Politécnic de Vlenci Popieddes de los lengujes egules. Algunos conceptos

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

7 DE LA EXPRESIÓN REGULAR AL AUTÓMATA FINITO

7 DE LA EXPRESIÓN REGULAR AL AUTÓMATA FINITO 7 DE LA EXPRESIÓN REGULAR AL AUTÓMATA FINITO En los cpítulos nteriores se hn construído diversos AFDs y AFNs que reconocen distintos LRs. Pero no siempre result tn sencillo ni tn seguro diseñr un Autómt

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f. CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida»

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida» 73 ESO dí. «El que pregunt lo que no se es ignornte un El que no lo pregunt será ignornte tod l vid» E = m c ÍNDICE: MENSAJES OCULTOS 1. EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado)

Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado) CC2A Computción II Auxilir 5 Iván Bustmnte Clse Auxilir 5 Aútomts Finitos Determinísticos (Digrms de Estdo) Un utómt finito determinístico es un modelo de un sistem que tiene un cntidd finit de estdos

Más detalles

re p r e s e n tac i ó n Mat r i c i a l d e

re p r e s e n tac i ó n Mat r i c i a l d e Unidd 8 re p r e s e n tc i ó n Mt r i c i l d e Un trnsformción linel Ojetivos: Al inlizr l unidd, el lumno: Asocirá cd trnsformción linel un mtriz. Relcionrá los conceptos de núcleo, imgen, rngo nulidd

Más detalles

INGENIERÍA EN INFORMÁTICA MODELOS ABSTRACTOS DE COMPUTO I

INGENIERÍA EN INFORMÁTICA MODELOS ABSTRACTOS DE COMPUTO I INGENIERÍA EN INFORMÁTICA MODELOS ABSTRACTOS DE COMPUTO I 22 de Junio de 2009 SOLUCIONES 1. (0,5 puntos) Sobre el lfbeto {,b}, d expresiones regulres que denoten los siguientes lengujes: ) El lenguje formdo

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemátic Trjo Práctico N : Tercer Año Números Reles Ddos los siguientes números clsificrlos en nturles, enteros, rcionles, irrcionles, reles o no reles. 9 7 ;, ; - ; e- ; + ; - ; ; 0,7 ;

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor : RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los

Más detalles

AUTÓMATAS FINITOS y LENGUAJES REGULARES

AUTÓMATAS FINITOS y LENGUAJES REGULARES Dpto. de nformátic (ATC, CCA y LS. Universidd de Vlldolid. TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES ngenierí Técnic en nformátic de Sistems. Curso 2011-12. AUTÓMATAS FNTOS y LENGUAJES REGULARES 1. Sen

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice Funciones continus Mrino Suárez-Alvrez 4 de junio, 2013 Índice 1. Funciones continus................... 1 2. Alguns propieddes básics............ 3 3. Los teorems de Weierstrss y Bolzno... 6 4. Funciones

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

TEMA 5: ELECTRÓNICA DIGITAL

TEMA 5: ELECTRÓNICA DIGITAL Deprtmento de Tecnologí. IE Ntr. r. de l Almuden. Mª Jesús iz TEMA 5: ELECTRÓNICA DIGITAL L electrónic se divide en dos grupos: electrónic nlógic y electrónic digitl. En l electrónic nlógic los vlores

Más detalles

Ejemplo 165. Dada una categoría C y dos objetos A y B, se puede formar la categoría C/AB cuyos objetos son diagramas de la forma

Ejemplo 165. Dada una categoría C y dos objetos A y B, se puede formar la categoría C/AB cuyos objetos son diagramas de la forma 42 (Octv clse : teorís de lecs. untores Representles y otros teorís de dirms. continución, un ejemplo de construcción de un cteorí prtir de otr. Dd un cteorí, se construye otr en l que los ojetos son dirms

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

Introducción a la lógica epistémica

Introducción a la lógica epistémica Introducción l lógic epistémic Fernndo Soler Toscno Universidd de Sevill ¾Qué es l lógic epistémic? Sistem forml pr rzonr sore el conocimiento y l creenci Podemos modelr el conocimiento de uno o vrios

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

UNIDAD IV ÁLGEBRA MATRICIAL

UNIDAD IV ÁLGEBRA MATRICIAL Vicerrectordo cdémico Fcultd de iencis dministrtivs Licencitur en dministrción Mención Gerenci y Mercdeo Unidd urriculr: Mtemátic II UNIDD IV ÁLGER MTRIIL Elordo por: Ing. Ronny ltuve, Esp. iudd Ojed,

Más detalles

El problema del área. Tema 5: Integración. Integral de Riemann. Particiones de un intervalo. Sumas superior e inferior

El problema del área. Tema 5: Integración. Integral de Riemann. Particiones de un intervalo. Sumas superior e inferior Construcción Funciones integrbles TFCI Construcción Funciones integrbles TFCI Prticiones de un intervlo El problem del áre Tem 5: Integrción. Integrl de Riemnn El objetivo finl del tem es hllr el áre de

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

Determinización: Construcción de Safra

Determinización: Construcción de Safra Determinizción: Construcción de Sfr Ddo: Autómt de Büchi A = (Q,Σ,Q 0,δ,F) Supong que Q = {q 1,...,q n }. Vmos construir un utómt de Rin determinist B tl que L ω (A) = L ω (B), donde B está compuesto por:

Más detalles

Problemas de Lenguajes y Autómatas

Problemas de Lenguajes y Autómatas Trjo VIII Semestre A2005 Prolems Prolems de Lengujes y Autómts 1. Pr los lengujes ddos sore Σ = {, } construir un expresión regulr de él y un Autómt Finito que lo cepte: ) L = {w w tiene un numero pr de

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve http://webdelprofesor.ula.ve/ingenieria/hyelitza Objetivo Lenguajes

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

Procesadores del Lenguaje I. Antonio Falcó

Procesadores del Lenguaje I. Antonio Falcó Procesdores del Lenguje I Antonio Flcó 2 Índice generl I Preliminres 5 1. Alfbetos y Lengujes 7 1.1. Cdens y Lengujes.............................. 7 1.2. Operciones con lengujes...........................

Más detalles

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a FICHA 1 3/2008 Existe un conjunto de números llmdos reles en el que están definids 2 operciones: Adición (+) y multiplicción (.). Est estructur se indic sí: (R, +,. ) (Axiom de Cuerpo) Sen, b y c reles

Más detalles

Autómatas finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1

Autómatas finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1 Autómts Lengujes regulres Autómts no determinists Cerrdur Autómts finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS Frncisco Hernández Quiroz Deprtmento de Mtemátics Fcultd

Más detalles

TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA

TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA 3.1.- Lenguje regulr Un lenguje regulr es un lenguje forml que puede ser definido por medio de un mecnismo regulr, son mecnismos regulres: ls expresiones regulres,

Más detalles