DETERMINANTES SELECTIVIDAD ZARAGOZA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DETERMINANTES SELECTIVIDAD ZARAGOZA"

Transcripción

1 DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr B r(b) F F F 0-0 F F F ) Pr B Ls dos primers olumns son independientes, l ª es igul l ª l 4ª es proporionl l ªr(B) Otr epliión más senill: l terer olumn es igul l primer r(b)

2 0. (S-99)Hllr en funión de el rngo de l mtriz A 0 [,5 puntos] 4 lulr undo eist l mtriz invers A - en los sos - [ punto]. Puesto que el menor 0 0 El rngo de l mtriz A es, omo mínimo. 4 Vemos pr qué vlores del prámetro el rngo es : ± 6 4± 4 0 Por tnto: Pr - - rg(a) Pr - o -: rg(a) A eiste undo A 0(rngo máimo). Por tnto, undo, A. Pr : A Tenemos A 0 Adj(A) ( ) t t Adj A Adj ( A ) 5 A 5 5 A Otr form de lul r l mtriz invers: A - 5 4

3 . (J-00)Hllr, si eiste, un mtriz udrd, A, que umpl ls siguientes ondiiones: ) Coinide on su trspuest. ) Verifi l euión mtriil 0 A ) Su determinnte vle 9. [,5 puntos] SOLUCIÓN )Si t A A, se die que A es simétri t A ) 0 0 t t t t t A t t t ) Por tnto, l mtriz A es: 5

4 4. (S-00)Se A un mtriz 4 4 us fils, de rri jo son F, F, F F uo determinnte vle. Se B. Clulr rzondmente: El determinnte de l mtriz A B [ punto]. El determinnte de l mtriz A [0,5 puntos]. El determinnte de l mtriz us fils son (de rri jo): F F, -F, F 4 F F [ punto] () () 0 Clulemos el determinnte de B: B () (): desrrollndo por los djuntos de l primer fil. A B A B ( ). Si multiplimos todos los elementos de un líne por un número, el determinnte de l mtriz qued multiplido por diho número. En nuestro so, d un de ls utro línes (fils o olumns) se multipli por tres, luego el determinnte quedrá multiplido por 4 : A det(f F, F,F,F F) det(f, F,F,F F) det(f, F,F,F F) det(f, F,F,F ) det(f, F,F,F) ( 6)det(F,F,F,F ) 6det(F,F,F,F )

5 5. (J-0)Tenemos un mtriz us olumns son (de izquierd dereh): C, C, C su determinnte vle. ) Se onsider l mtriz A us olumns son (de izquierd dereh): -C, C C, C, lulr rzondmente el determinnte de l mtriz A - so de que est mtriz invers eist [,5 puntos]. ) Se hor l mtriz us olumns son: C C, C C, C -C. Rzonr l eisteni o no eisteni de l mtriz invers de l mism [ punto] Se Bdet(C, C, C ) ) det(a) det( C,C C,C ) det( C,C,C ) det( C,C,C ) det(c,c,c ) det(c,c,c ) det(c,c,c ) 6 Como A A I A A A A I A A A 6 A 6 ) L primer olumn es l difereni de l segund l terer: C C C C C C por lo que el determinnte de l mtriz será 0 l ser un olumn ominión linel de ls otrs L mtriz no tiene invers.

6 (S-0)Sen A B ls mtries siguientes: A 0 0 B Es fáil ompror que ms tiene el máimo rngo, que es. Pero qué ourre si ls ominmos linelmente? En onreto, estudi el rngo de l mtriz A B según los vlores del prámetro. [,5 puntos] A λ B λ : λ λ λ 0. Vemos pr qué vlores de λ el rngo es máimo, es deir λ λ λ ( ) ( ) ( ) 0 4 λ λ λ λ λ λ λλλ λ λ λ λ λ λ λ λ 0 0 λ λ λ λ λ λ λ Se tiene: Pr λ λ : A B 0 rg ( A B) λ λ 0 Pr λ : A λ B A B 0 rg ( A λ B ) pues el menor 0 Pr λ : A λ B A B 0 rg ( A λ B ) pues el menor 0

7 7. (J-06)Se l mtriz A ) Sin utilizr l regl de Srrus, lulr el determinnte de dih mtriz. [,5 puntos] ) Estudir el rngo de A en el so en que. [ punto] ) (5) (4) () () () ( ) Propieddes plids: () () sr ftor omún en l primer olumn en l primer fil. () F F, F F (4) (5) Desrrollo por los elementos de l primer olumn ) Pr, l mtriz A es: omo los tres vetores fil son linelmente dependientes, el rngo de l mtriz es.

8 8. (S-06)Teniendo en uent que 7 z r q p, lulr el vlor del siguiente determinnte, sin desrrollrlo, z r q p [,5 puntos] z r q p z r q p z r q p z r q p z 7 z r q p r q p z r q p

9 0 9. (S-07)Dds ls mtries A, I 8 0 ) ( ) ( det( A) ). Compror que det A [0,5 puntos]. Estudir si pr ulquier mtriz M de orden se umple que d ( ) ( det ( M) det M ) [ punto]. Enontrr l relión entre los elementos de ls mtries M udrds [ pto] de orden que stisfen: det ( M I) det ( M) det ( I) 0 0 A det( A ) det A det ( A) 9 8 ( det ( A) ) ( ) 8 ( ) ( det ( A) ) ) M d d d d d d det ( M ) ( ) ( d ) ( d) ( d) d d ( ) d d d d d d d d det ( M) d ( det ( M) ) ( d ) d ( det M ) ( det ( M) ) Por otr prte es evidente pr ulquier mtriz udrd de ulquier orden que: M M M M M M según l propiedd de los determinntes que die que el determinnte del produto de dos mtries udrds es igul l produto de los determinntes de dihs mtries ) 0 M I M I d 0 d det ( M I) ( ) ( d ) d d d d d d 0 d det ( M) det ( I) d luego M tiene que ser de l form: M

10 0 α β k t 0. (S-07)Sen A 0 0 α B 0 k Estudir pr qué vlores de α β l mtriz A tiene invers. [0,5 puntos]. Clulr A 5. [ punto]. Hllr l mtriz invers de B. [ punto] ) Puesto que A 0 α, β por tener un olumn nul A no tiene invers pr ningún vlor de α β ) A 0 α β 0 α β 0 0 α A 0 0 α 0 0 α α 0 α β A A α ; 5, por lo tnto, A es l mtriz nul. ) k t B 0 k B k k t t k k t t Adj ( B ) Adj(B) k 0 Adj( B) 0 k B 0 k B k t k

11 . (S-08))( punto) Pror que ( )( )( ) ) 0 0 () () () ( )( ) ( ) ( ) ( ) ( ) (4) 0 ( )( ) (5) ( )( )( ) Propieddes utilizds:() C C, C C () Desrrollo por los djuntos de l primer fil () Sr ftor omún en ms olumns (4) C C (5) Desrrollo por los djuntos de l primer fil

12 . (J-09).)( punto) Teniendo en uent que del determinnte , determin el vlor 0 ) L propiedd utilizd h sido l de sr ftor omún en lgun de ls línes del determinnte.

13 . (S-09)) [ punto] Clulr, en funión de los vlores del prámetro k, el rngo de l mtriz B 5 k )Se B 5 k 0 rg B k0 5 k k 5 k k 0 k )Si k rg B )Si k rg B

14 4. (S-09)) [,5 puntos] Resolver el siguiente determinnte sin utilizr l regl de Srrus: 0 porque tiene dos fils igules F F F F F F

15 5. (J-0) )Estudir pr que vlores de el determinnte de l mtriz 0 A 0 0 es no nulo. 0 Pr, otener el determinnte de l mtriz A. (,5 puntos) A 0 0 ( ) ( ) ( )( ) ( ) ( ) Luego el determinnte es no nulo pr 0 Pr 0 6 A A 8 A

16 6. (J-0) ) Estudir pr qué vlores de, l mtriz invers de oinide 5 on su opuest. (,5 puntos) A 5 Clulmos -A 5 Clulmos A A 0 Si -A A 0 ± Adj(A) t Adj(A) 5 t A Adj(A) A 0 5.

17 os α senα 0 7. (S-0)Dd l mtriz A senα os α β ) Estudir si eisten vlores de α β pr los ules l mtriz A se simétri. Será l mtriz B A A T igul l mtriz identidd en lgún so? ( punto) ) Rzonr uál es l relión entre el determinnte de A el de B. (0 75 puntos) ) Pr que A se simétri los elementos simétrios respeto de l digonl prinipl dee n ser igules. En nuestro so : α 0 k sen α-senαsenα0 senα sen0 π α π k π, k α k π, k β l mtriz A es simétri. os α senα 0os α senα t B A A senα os α 0 senα os α β β ± 0 0 β 0 0 β 0 0 β 0 0 ) os α senα 0 A sen os 0 os s en α α β αβ αβ B 0 0 β 0 0 β β B A

18 8. (J-). (,5 puntos)estudi pr qué vlores de α el determinnte de l mtriz 0 A α α tiene rngo máimo. α. (,5 puntos) Siendo A - l invers de m mtriz A, lulr (A - ) pr α - ) Como A es un mtriz udrd, r(a) A 0 0 A ( ) ( ) ( ) 4 α α α α α α α α α α α α α 0 α α α α α 0 ( ) 0 Por tnto el rngo de A máimo (r(a)) α0 α ) Si α - 0 A 0 0 A Adj(A) 0 0 t Adj(A) 0 0 t Adj(A) A 0 A 0 Ahor lulmos (A - ) (A ) 0 0 0

19 9. (J-) os α 0 senα os α senα. ( punto) Sen ls mtries A B 0. sen os β 0 α α sen 0 os α α Estudir qué vlores de α β hen que se iert l iguldd (det(a)) - det(a)det(b)0 ) det(a). (,5 puntos)utilizr ls propieddes de los determinntes pr lulr 4 el vlor de 4 on,,, d 4 det(b)βos α βsen αβ (det(a)) -det(a)det(b)0 - β0- β0β Luego l iguldd se umple pr α pr β ) (d) d d 4 d 4 0 d

20 α 0. (S-) Se l mtriz A 0 α. (0,75 puntos) Clulr el determinnte de l mtriz (AA T ) on A T l trspuest de A. (0.75 puntos) Estudir pr qué vlores del prámetro α se stisfe l euión T 4A A α 0 on A det(a). (punto) Otener l invers de A undo se posile ) α 0 T T 4 A α A A A A ( α )( α ) α α He plido ls siguientes propieddes: El determinnte de un produto es el produto de los determinntes El determinnte de un mtriz es igul l determinnte de su trspuest ) 4α 4 -(-α ) α 04α 4 α α 04α 4 4α 04α (α )0 α0 ) A A 0 α 0 Como A α,eiste mtriz invers α 0 α En ese so, lulmos α 0 Adj(A) α T α Adj(A) 0 α T Adj(A) α A α α A α 0 α 0 α

21 . (S-)(,5 puntos) Utilizr ls propieddes de los determinntes pr otener de los vlores de que stisfen simultánemente ls euiones: ( ) (sustituendo en l ª euión) Resolvemos el sistem : ( ) 0 5 (sustituendo en l ª euión)

22 . (S-). (0,5 pts)el determinnte de l mtriz A que pree ontinuión es 0 A. Sin utilizr l regl de Srrus, determine uánto vle el determinnte 0 0 de l mtriz B siguiente (enunie ls propieddes que utilie): B sen os 0. ( puntos) Se C l siguiente mtriz: C os sen 0 sen Determine los vlores de pr los que l mtriz C tiene invers lulrl undo se posile A 4 B 0 C C C C A l ª olumn del determinnte de l mtriz A se sumo l ª ª olumn me qued otro determinnte; B; del mismo vlor. sen os 0 sen C os sen 0 sen os (sen os ) C 0 Clulmos C - sen os 0 C os sen 0 sen os (sen os ) C 0 Adj(C) os sen sen os t ( ) sen sen os sen(os ) 0 0 sen os 0 Adj(C) os sen 0 sen(os ) sen os sen os 0 sen os 0 Adj(C) ( ) t C os sen 0 os sen 0 C sen(os ) sen os sen(os ) sen os

23 . (S-)) ( punto) Se se que un mtriz simétri B de dimensión tiene omo determinnte -. Determine el determinnte de l mtriz BB t donde B t denot l trspuest de B Si l mtriz B es simétri, entones BB t t B B B B B 8B 8 ( ) 4 Puesto que l mtriz B es smos un ftor omún de d fil.

24 4. (J-) ) (punto) Determine el rngo de l mtriz A, que pree ontinuión, según los diferentes vlores de : ) (,5 puntos) 6 A A ( ) ( ) ( 6 9) 4() 4( ) 0 Si r(a) Si 6 A r(a) (pue sto que A 0) 5 0

25 5. (S-))( punto) Sen A B ls dos mtries siguientes: - 0 A, B 0-0 Pr qué vlores de eiste l invers de AB? Y l de BA? - 0 A, B A B 0-0 Vemos pr que vlores de eiste l invers de A B : A B ( ) ( ) ( )( ) 0 ( ) A B si A B 0, es deir, si B A Vemos pr que vlores de eiste l invers de B A : B A 0 ( ) 6 0 No eiste l mtriz invers de B A pr ningún vlor de

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

SELECTIVIDAD: MATRICES. B y

SELECTIVIDAD: MATRICES. B y SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1 RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Determinntes ACTIVIDADES INICIALES I. Enumer ls inversiones que precen en ls siguientes permutciones y clcul su pridd, comprándols con l permutción principl 34. ) 34 b) 34 c) 43 d) 34 e)43 f) 34 ) 3,4,

Más detalles

Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo

Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo Are Adémi: Lienitur en Sistems Computionles Asigntur: Álger Linel Profesor: I.E.C. Ron Sifuentes Crrillo Periodo: Julio-Diiemre 0 Tem: Determinnts Astrt A determinnt is mthemtil nottion onsists of squre

Más detalles

Determinantes: un apunte teórico-práctico

Determinantes: un apunte teórico-práctico Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Tema 1: ÁLGEBRA DE MATRICES

Tema 1: ÁLGEBRA DE MATRICES ÁLGER DE MTRIES Tem : ÁLGER DE MTRIES Índie. Mtries... Definiión de mtriz... lsifiión de ls mtries... Tls, grfos y mtries.. Operiones on mtries... Sum de mtries... Multipliión de un número por un mtriz...

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

Determinantes. Ejercicio nº 1.-

Determinantes. Ejercicio nº 1.- Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1 TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina MTRICES Mtries de números reles. Ddos dos suonjuntos = {,,,...i...n} = {,,,...j...m} perteneientes l onjunto de los números nturles, llmremos mtri de dimensión nm tod pliión X ---------> R / (i,j) --->

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO IES Jun Grí Vldemor Deprtmento de Mtemátis TEMA : ECUACIONES º ESO Mtemátis B ECUACIONES DE PRIMER GRADO PASOS PARA RESOLVER UNA ECUACIÓN DE PRIMER GRADO. Eliminr préntesis si los hy). Eliminr denomindores

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: = 11 0 Solución: x = 4, y = 7. = 0 Solución: x = 5

Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: = 11 0 Solución: x = 4, y = 7. = 0 Solución: x = 5 Unidd. Deerminnes Memáis II Resuelve Págin Deerminnes de orden Resuelve los siguienes sisems lul el deerminne de d mriz de oeiienes: ) * ) * ) * d) * e) * ) * ) Soluión:, ) Soluión: λ, λ ) Soluión:, d)

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro)

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro) UNIDAD.- Produto etoril mixto. Apliione. (tem 7 del liro). PRODUCTO VECTORIAL DE DOS VECTORES LIBRES Definiión: El produto etoril de do etore lire - Si 0 ó 0 ó on proporionle, entone - En o ontrrio, etore

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l

Más detalles

Matemática DETERMINANTES. Introducción:

Matemática DETERMINANTES. Introducción: Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Jime rvo Feres Nelink TRICES Y DETERINNTES s mries preen por primer vez hi el ño 8, inroduids por J.J. Sylveser. El desrrollo iniil de l eorí se dee l memáio W.R. Hmilon en 8. En 88,. Cyley inrodue l noión

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

TRANSFORMACIONES LINEALES

TRANSFORMACIONES LINEALES . 7 Cpítulo 5 RANSFORMACIONES LINEALES Mrtínez Hétor Jiro Snri An Mrí Semestre,.7 5.. Introduión Reordemos que un funión : A B es un regl de soiión entre los elementos de A y los elementos de B, tl que

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Salvo el primero, estos problemas provienen de las pruebas de Selectividad de Andalucía

PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Salvo el primero, estos problemas provienen de las pruebas de Selectividad de Andalucía Mtrices Deterinntes PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Slvo el priero, estos proles provienen de ls prues de Selectividd de Andlucí ) Clculr el siguiente deterinnte: Un deterinnte de orden

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

MATEMÁTICAS II SISTEMAS DE ECUACIONES

MATEMÁTICAS II SISTEMAS DE ECUACIONES Mite Gonále Jurrero Proles PU. Sistes de euiones. SISTEMS DE ECUCIONES. Considérese el siguiente siste de euiones lineles (en él,, son dtos; ls inógnits son,, Si, son no nulos, el siste tiene soluión úni.

Más detalles

11La demostración La demostración en matemáticas (geometría)

11La demostración La demostración en matemáticas (geometría) L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES UNEFA C.I.N.U. Mtemátis Mteril dptdo on fines instruionles por Teres Gómez, de: Oho, A., González N., Lorenzo J. Gómez T. (008) Fundmentos de Mtemátis, Unidd 5: Euiones e Ineuiones, CIU 008, UNEFA, Crs.

Más detalles

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales Apéndie V Ing. José Cruz Toledo M. Vetores tridimensionles En este péndie se present un resúmen de ls reliones vetoriles que son referenidos en este liro. y(j) (x,y,z) y Simologí (Ver Fig. V-1): ( x i

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

Ejemplo de cálculo de un portico por el método matricial de la rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ. Fig. 1

Ejemplo de cálculo de un portico por el método matricial de la rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ. Fig. 1 Ejemplo de álulo de un portio por el método mtriil de l rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ Con el fin de resumir en un ejemplo el proeso seguir vmos resolver el pórtio de l figur. Ls

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

Matemáticas II (preparación para la PAU) Tomo II (Integrales y Álgebra)

Matemáticas II (preparación para la PAU) Tomo II (Integrales y Álgebra) Memáis II preprión pr l PU) Tomo II Inegrles Álger) José Luis Lorene rgón mi mujer, Ruh, mi hijo Dvid. Muhs gris l orreor, el oro José L. Lorene ÍNDICE: Tem. Funiones reles. Definiión límies Tem. Funiones.

Más detalles

CONJUNTOS, RELACIONES Y GRUPOS

CONJUNTOS, RELACIONES Y GRUPOS CONJUNTOS, RELACIONES Y GRUPOS. CONJUNTOS. Conjunto Un onjunto está ien definido undo se posee un riterio que permit firmr si un elemento pertenee o no diho onjunto.. Inlusión Un onjunto B está inluido

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

DETERMINANTES. 1. Utiliza las propiedades de los determinantes para calcular el valor de. a, b, c, d R.

DETERMINANTES. 1. Utiliza las propiedades de los determinantes para calcular el valor de. a, b, c, d R. Memáis II Deerminnes DETERMINNTES Oservión: L morí e esos ejeriios se hn propueso en ls prues e Seleivi, en los isinos isrios universirios espñoles.. Uiliz ls propiees e los eerminnes pr lulr el vlor e,,,

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato Capítulo 2: Determinantes. LibrosMareaVerde.tk

Matemáticas Aplicadas a. 2º Bachillerato Capítulo 2: Determinantes. LibrosMareaVerde.tk Memáis plids ls Cienis Soiles II. º hillero Cpíulo : Deerminnes LirosMreVerde.k www.punesmreverde.org.es uores: Leii González Psul y Álvro Vldés Menéndez Revisor: Edurdo Cuhillo Deerminnes Índie. CONCEPTO

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,

Más detalles

Teorema de Pitágoras

Teorema de Pitágoras Profr. Efrín Soto Apolinr. Teorem de Pitágors En geometrí, uno de los teorems más importntes es el teorem de Pitágors porque se pli muy freuentemente pr resolver prolems. En todo triángulo retángulo que

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

Unidad-4: Radicales (*)

Unidad-4: Radicales (*) Uiversidd de Coepió Fultd de Cieis Veteriri Nivelió de Competeis e Mtemáti (0 Uidd-: Rdiles (* Rdil. Es u epresió de l form: que represet l ríz eésim priipl de. El etero positivo es el ídie u orde del

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles

GUIA DE TRABAJO # 28. Materia: Matemáticas. Tema: Múltiplos y divisores. Fecha: Profesor: Fernando Viso. Nombre del alumno: Sección del alumno:

GUIA DE TRABAJO # 28. Materia: Matemáticas. Tema: Múltiplos y divisores. Fecha: Profesor: Fernando Viso. Nombre del alumno: Sección del alumno: GUIA DE TRABAJO # 28. Mteri: Mtemátis. Tem: Múltiplos y divisores. Feh: Profesor: Fernndo Viso Nombre del lumno: Seión del lumno: CONDICIONES: Trbjo individul. Sin libros, ni udernos, ni nots. Sin elulres.

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles