CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS"

Transcripción

1 CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de más inteés en la Física son los pimeos. Po ello iniciamos definiéndolos: Los Campos Vectoiales Consevativos, son aquéllos paa los cuales la Integal de Línea del Campo Vectoial vale ceo paa una tayectoia ceada. Los Campos Vectoiales Consevativos, son aquéllos paa los cuales la Integal de Línea del Campo Vectoial tiene el mismo valo paa tayectoias que tienen los mismos puntos límites Una condición suficiente paa que la integal de línea tenga las popiedades anteioes, es que el campo vectoial sea deivable de una Función Escala Potencial, es deci, si (x, es el Ca mpovectoial, existe una función escala φ ( x, que cumple la elación: F(x, = ϕ (x, F = 0. Un Campo Vectoial seá deivable de una Función Potencial si se cumple que su Rotacional es nula, es deci se cumple que:. F En la jega de las Matemáticas, se demuesta que el hecho de asevea que Un Campo Vectoial es Consevativo, es equivalente a deci que ese campo es IRROTACIONAL. Y un campo es Iotacional cuando se cumple: F = 0. Realicemos un pequeño ecodatoio: El Campo Vectoial VECTOR DE POSICION, es el Campo vectoial que a cada punto del espacio le asocia el vecto cuyo oigen se encuenta anclado al oigen del sistema coodenado, y donde el extemo está colocado en el punto al que está elacionado. Se dice que este vecto dá la posición de cualquie punto especto al obsevado, a quien se le considea anclado en el oigen del sistema coodenado. Si el punto P: (x, es un punto cualquiea del espacio, su vecto de posición es dado po la expesión: = xiˆ + yj ˆ + zkˆ

2 La Figua 4 pesenta ese vecto de posición paa el punto P:(x, cualquiea. La función Vecto de Posición puede deivase y difeenciase. La difeencial de esa función es dada según el Cálculo Vectoial po: d = dx iˆ + dy ˆj + dz kˆ y su intepetación es la de un desplazamiento infinitesimal hacia cualquie diección a pati del punto P: (x,z,), la Figua 5 muesta a ese vecto.

3 El Opeado Nabla o Del, dado po = iˆ Escalaes. + x ˆj + kˆ, se puede aplica a Campos Vectoiales o Cuando se aplica a Campos Escalaes se obtiene la función GRADIENTE DE LA FUNCION ESCALAR. Si se tiene el Campo Escala ϕ ( x,, al aplicale el opeado Nabla, se obtiene la función Gadiente de φ, dada po: ϕ = iˆ + ˆj + kˆ La aplicación del Opeado Nabla nos inteesa cuando se efectúa sobe Campos Vectoiales. La aplicación es a tavés de las opeaciones poducto escala y poducto vectoial. La aplicación po medio del poducto escala da como esultado la Función Divegencia. La aplicación po medio del poducto vectoial da como esultado la Función Rotacional. Si la Función que da el Campo Vectoial es (x,, entonces la Divegencia esulta de la Opeación: F F F = cuando la Función 1 ( x, + F F (x, cumple: ( x, + F 3 ( x, F(x, = F ( x, iˆ F ( x, ˆ 1 + j + F3 ( x, kˆ F (x, donde las funciones F 1, F, F 3, son las Funciones Escalaes Componentes de la Función. En los países Euopeos, en luga del símbolo div ( F ). utilizan el símbolo F

4 Del mismo modo, si la Función que da el Campo Vectoial es (x,, entonces la Rotacional esulta de la Opeación: F F = iˆ F ˆj kˆ 1 F F3 En los países Euopeos, se usa la notación: También se utiliza: -ot ( F (x, ), paa epesenta -cul( F (x, ). F. INTERPRETACION FISICA DEL GRADIENTE. UN PRODUCTO MUY INTERESANTE! La clave de la intepetación Física del Gadiente se encuenta en el poducto: d φ en donde φ es un Campo Escala. Al ealiza ese poducto encontamos: d φ = ( dxiˆ + dy ˆj + dz kˆ) ( iˆ + ˆj + kˆ) al desaolla el poducto escala tenemos: d φ = dx + dy + dz

5 Paa una función Escala de tes vaiables independientes y una dependiente como la función φ(x,, es bien conocido que su difeencial cumple: dφ = dx+ En consecuencia, se obtiene la siguiente elación: dy + d φ = d φ dz Esta última expesión seá de vital impotancia paa la intepetación Física del Gadiente que daemos más adelante. Hagamos antes un poco más de matemáticas! Una Función ψ (x, y), es una función escala de dos vaiables independientes y una dependiente. La gáfica de ella es una Supeficie en el espacio de tes dimensiones, algunos ejemplos son: Paa ψ (x, y) = x + y tenemos: Que es la gáfica paa un dominio ectangula de 0 unidades po lado. Esta figua fue ceada con el paquete DERIVE paa Windows 95, así como todas las siguientes.

6 Paa ψ (x, y) = sin(x) sin(y) la Figua 7 da la gáfica. El dominio en este caso es un ectángulo de 10 unidades po lado. sin( Cuando Ψ ( x, y) = gáfica es dada en la figua 8: x x + y + y )

7 Las funciones del tipo anteio, φ (x, y ), tienen la popiedad siguiente: Al igualalas con una constante, se obtiene una ecuación de la foma: φ (x, y) = C que constituye una ECUACION IMPLICITA DE DOS VARIABLES. Este tipo de Ecuaciones pemite a pimea instancia despeja la vaiable y en téminos de la vaiable x, oiginando una función de la foma y = f (x) La cual constituye la ecuación de la gáfica de la función f (x), la Geometía Analítica nos pemite ecoda que la Gáfica espectiva, es el luga geomético de una cuva en el plano catesiano. Es evidente que pa (x, y) = C bien deteminada. a cada valo elegido de la constante C, la ecuación φ, genea una cuva Esa cuva se denomina cuva de nivel de la función φ (x, y) paa el valo C. Esta denominación está fundada en el hecho (muy impotante), q (x, y) existentes en la cuva de nivel. Consideamos pudente ejemplifica este hecho con funciones concetas: Sea φ ( x, y) = x + y ue la función φ (x, y) toma el mismo valo C paa todos los puntos A esta función la podemos iguala con una constante C positiva paa que tenga sentido la búsqueda de la gáfica, en especial podemos pensa que esa constante es el cuadado de un númeo k φ( x, y) = x + y = k Esa ecuación se conviete en la ecuación de una cicunfeencia centada en el oigen y de adio k. Gafiquemos las ecuaciones esultantes cuando k toma los valoes enteos 1,, 3 y 4, es deci busquemos las cuvas de nivel de las siguientes ecuaciones: φ(x, y) = x + y = 1 φ(x, y) = x + y = φ(x, y) = x + y = 3 φ(x, y) = x + y = 4

8 Las cuvas de nivel obtenidas, paa esos valoes se epesentan gáficamente en la Figua 9: En la siguiente figua se ha desaollado la gáfica de la función φ ( x, y) dento del dominio del plano catesiano compendido po el cículo de adio =3. Al mismo tiempo se dan 3 cuvas de nivel coespondientes a los valoes de la constante k = 1,, y 3. Esa Figua se geneó con ayuda del paquete de CAD Cadwin Statégies. Paa hacelo, se tazó la paábola geneatiz de la Gáfica supeficie de gáfica. Las cuvas de nivel, se poyectaon sobe la paa todos los puntos de la cuva de nivel. de φ ( x, y) en el plano ZX, enseguida po otación alededo del eje Z se geneó la gáfica, utilizando la popiedad que ellas tienen la misma imagen Paa el caso de la cuva caacteizada po k=1, se usó la elevación de poyección z=1, paa la cuva con k=, se usó la elevación z=4, y finalmente paa k=3, se usó z=9. Esta altua de elevación se eligió, poque po ejemplo, paa k=1, la cuva de nivel contiene al punto (1,0), el cual tiene la imagen φ (1,0) = =1 + 0 =1 y como to misma imagen, entonces la elevación aconsejada es pecisamente z=1. dos los puntos de esa cuva tienen la Evidentemente, paa k=, la cuva de nivel pasa po el punto (,0) cuya imagen es φ (,0)= + 0 = 4, povocando una altua de elevación de z=4. Mientas que paa k=3, uno de los puntos de la cuva es (3,0) cuya imagen es φ (3,0) = 9, dimensiones (el plano Catesiano). siendo ésta la elevación elegida. Este poceso, nos pemite demosta que las cuvas de nivel, constituyen ota foma de caacteiza las funciones φ ( x, y ), sin necesida d de ecui a la gáfica en 3 dimensiones, haciéndolo en el espacio de

9 Las Cuvas de Nivel pemiten epesenta de una manea muy conveniente, las funciones φ ( x, y) po medio de una familia de cuvas del Plano Catesiano. Ellas epesentan zonas en las que la función φ ( x, y) toma valoes constantes, y donde además, todos los puntos de una misma cuva de nivel, tienen la misma imagen, es deci tienen asociado el mismo escala. REPRESENTACION DE CAMPOS ESCALARES En el caso de las funciones de tes vaiables independientes univaluadas, que hemos llamado Campos Escalaes, y son funciones de la foma φ (x, z ), apaece un poble espacio de 4 dimensiones, no pudiendo epesentase esquemáticamente. Este poblema de epesentación, se puede ebasa po medio de un atificio: G ma inteesante, su gáfica está en el enealiza lo que sucede con las funciones φ (x, y) de dos vaiables independientes univaluadas. En efecto, las cuvas de nivel constituyen una epesentación en el espacio de dos dimensiones de una función cuya gáfica es un subconjunto del Espacio Tidimensional.

10 El atificio consiste en lo siguiente: Pimeo, la gáfica de una función φ (x, es una hipesupeficie subconjunto del espacio tetadimensional R 4, no se puede dibuja poque simplemente, no podemos epesenta 4 ejes pependiculaes ente sí. Segundo, si genealizamos el concepto de Cuvas de Nivel en el Plano Catesiano, debemos tene las Hipecuvas de Nivel de la fun 3 supeficies en el espacio R. ción φ (x, en el espacio de Tes dimensiones, que no son ota cosa que Podía pensase que la genealización de una cuva en el Plano Catesiano seía ota cuva peo en el espacio de tes dimensiones, sin embago, una cuva en el espacio es epesentada po un conjunto de tes ecuaciones paaméticas x y z = x ( t) = y ( t) = z( t), las cuales son la genealización lógica, del conjunto de ecuaciones paaméticas, que epesentan un cuva en el plano, ellas tienen la foma: x = x ( t) y = y( t) Las funciones φ (x, tienen asociadas paa su epesentación, SUPERFICIES DE NIVEL, las cuale se obtienen al iguala con una constante la función φ (x,, es deci, se obtienen de las ecuaciones:. s φ (x, = C donde C puede toma valoes dento del intevalo ] + [ del conjunto de los númeos eales R.,, es deci, toma valoes cualesq Po ello, el númeo de Supeficies de Nivel es infinito. uiea dento Se asevea que las Supeficies de Nivel son en ealidad, supeficies del espacio tidimensional, poque a pati de la ecuación φ (x, = C, podemos despe ja la vaiable z, ya que esa ecuación es en ealidad una Función Implícita de tes vaiables del tipo F ( x, = 0, y de la teoía de funciones implícitas, se sabe que al tene una de esas funciones, es posible despeja una de esas vaiables en téminos de las otas dos. Es deci, se pueden obtene las ecuaciones: x = x( y, y = y( x, z = z( x, y) Nuesto inteés va diigido hacia la última ecuación, z = z(x, y), que es la ecuación de la gáfica de una función f (x, y), donde z = f (x, y), y esulta como vimos ya antes, una supeficie en el espacio de tes dimensiones. Po simple genealización, todos los puntos de una supeficie de nivel tienen el mismo valo de imagen, y ese valo es pecisamente la constante C a la qu e se iguala φ (x, paa obtene la ecuación:

11 que es la ecuación de la supeficie de nivel. φ (x, = C Así, un Campo Escala φ (x,, puede epesentase po una familia de Supeficies de Nivel, cuya ecuación geneal toma la foma: Demos un ejemplo paa conceta estas popiedades: φ (x, = C y la cual, sobe todos los puntos de cada supeficie de nivel, la función φ (x, tiene el mismo valo. Sea φ (x, = x + y + z mostemos que foma tienen sus Supeficies de Nivel: Igualemos φ (x, = x + y + z co que el despeje nos daía z n una constante C. Obligatoiamente ella debe se positiva, ya = C x y, y cuando C es negativa, se tata de busca la aíz de un númeo negativo eal, el cual no existe. En consecuencia, sólo son pemisibles los valoes positivos de la constante C, de ahí que podemos supone que esa constante es el esultado de eleva al cuadado una constante k, es deci se pemite el despeje:

12 z = k x y En la Figua 31 se muestan las Supeficies de Nivel paa los valoes de k = 10, 0, 30 y 40, cuando k es la constante que cumple: φ ( x, = x + y + z = k donde se ha substituido po la constante C, la constante k. Desde luego, las ecuaciones φ ( x, = x + y + z = k coesponden a esfeas tidimensionales centadas en el oigen del sistema coodenado con adio k. Nota: Las flechas amaillas indican los adios de las geneatices que oiginaon las supeficies de nivel en el paquete Cadwin Statégies. INTERPRETACION DE L A FUNCION GRADIENTE Pasaemos ahoa a analiza la Función Gadiente de un Campo Escala: φ ( x, = iˆ + ˆj + kˆ p obtenemos: aa ello, patiendo de un punto P: (x 0, y 0, z 0 ), y si en ese punto evaluamos la función gadiente, x0, y φ ( x0, y0, z 0 ) = ( 0, z 0 ) 0, y0, z0 ) ( x0, y0, z 0 ( x iˆ + esa función evidentemente le asocia al punto P: (x 0, y 0, z 0 ), un vecto, de ese vecto no atibutos pincipales, a sabe, magnitud, diección y sentido. Paa ayudanos a enconta esos atibutos, es necesaio utiliza la expesión fundamental: d φ = d φ ˆj + ) kˆ s inteesaán sus donde d φ es el cambio sufido po la imagen del punto (x,, bajo la función φ (x,, cuando n os desplazamos del punto de la siguiente difeencia: ( x, y, ( x + dx, y + dy, z + d, hacia el punto φ ( x + dx, y + d z + d ϕ ( x,, es deci es el valo

13 la cual se identifica con d φ. Como ya hemos analizado, φ (x, es tal que, sobe una supeficie de nivel, φ tiene al mismo valo paa todos los puntos de ella. Así, si nos desplazamos sobe una de las supeficies de nivel, tenemos: ϕ ( x + dx, y + d z + d ϕ ( x, = 0 poque el punto inicial ( x, y, y el punto final ( x + dx, y + dy, z + d tienen ambos, la misma imagen. El vecto de desplazamiento que va del punto vecto: En consecuencia, como d ( x, y, ( x + dx, y + dy, z + d al punto = dx iˆ + dy ˆj + dz kˆ d φ = d φ, es el, entonces paa un desplazamiento sobe la supeficie de una d φ es nula, implicando a su vez que el poducto d φ Su peficie de Nivel, se cumple que sea igual a ceo, es deci: d como d φ = 0 φ no son vectoes nulos, como se ve en la Figua 3, entonces, el hecho Po oto lado, tanto que su poducto escala sea ceo, significa que ellos son pependiculaes.

14 Además como el desplazamiento es sobe la supeficie, plano tangente a la Supeficie de Nivel en el punto (x,. Y como d escogidos, entonces ϕ ϕ d es paalelo a la supeficie, po ello está sobe un ϕ es pependicula a los vectoes, es obligatoiamente pependicula al plano tangente a la Supeficie de Nivel, esto significa que es pependicula a la Supeficie de Nivel en el Punto (x,. Esto da un significado de gan inteés paa el Gadiente de una función: El Gadiente de una Función da un Vecto Nomal a la supeficie de Nivel, en el punto exacto donde se da el valo de esa función gadiente. Es deci, si en el punto P de Coodenadas (x 0, y 0, z 0 ), se calcula el gadiente ϕ de la función ϕ, el Vecto esultante es un Vecto Nomal a la Supeficie de Nivel que pasa po el punto P: (x 0, y 0, z 0 ), y la cual petenece a la familia de supeficies que epesenta a la función φ (x,. En la Figua 33 se muestan los vectoes Siempe este vecto es pependicula a la supeficie. ϕ paa difeentes puntos sobe una Supeficie de Nivel. Figua 33

15

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk Supeficies Se ha visto que una cuva en el espacio se puede epesenta po una ecuación paamética del tipo: t = x t î + y t ĵ + z t ˆk En donde inteviene un solo paámeto t. La epesentación paamética de cuvas

Más detalles

Las imágenes de la presentación han sido obtenidas del libro:

Las imágenes de la presentación han sido obtenidas del libro: Las imágenes de la pesentación han sido obtenidas del libo: Physics fo Scientists and Enginees Paul A. Tiple Gene Mosca Copyight 2004 by W. H. Feeman & Company Supongamos una función f = f ( x, y, z) Con

Más detalles

Apunte FII-1-RM: Repaso de Matemática

Apunte FII-1-RM: Repaso de Matemática Física II Física B - Electomagnetismo Pofesoa: Da. C. Caletti : Repaso de Matemática I. Gadiente A fin de compende mejo el concepto de gadiente comenzaemos po las bases, analizando, peviamente, qué tipo

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO Los campos magnéticos pueden genease po imanes pemanentes, imanes inducidos y po coientes elécticas. Ahoa inteesaá enconta la fueza sobe una

Más detalles

Fig. 1 Esquema para el cálculo de B

Fig. 1 Esquema para el cálculo de B P1- CAMPO DE UN AAMRE (EY DE OT-SAVART). Considee una poción de un alambe ecto de longitud po el que cicula una coiente constante. (a) Calcule la inducción magnética paa puntos sobe el plano que divide

Más detalles

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS VECTRES EN DIFERENTES SISTEMAS DE CRDENADAS. TRANSFRMACINES ENTRE SISTEMAS Sistema ectangula Se explica especto de tes ejes pependiculaes ente sí (,,) que se cotan fomando un tiedo y sobe los que están

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto:

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto: Campo eléctico Hemos visto hasta ahoa un tipo de inteacción, la gavitatoia, siendo siempe una fueza atactiva. En la mateia, además de esta, nos encontamos con: inteacción eléctica, inteacción débil,...

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

CAMPOS ELECTROMAGNÉTICOS

CAMPOS ELECTROMAGNÉTICOS CAMPOS ELECTROMAGNÉTICOS GRADO EN INGENIERÍA AEROESPACIAL EN AERONAVEGACIÓN UNIVERSIDAD RE JUAN CARLOS «ANÁLISIS VECTORIAL» CURSO ACADÉMICO 15/16 Índice 1. Escalaes vectoes 2 1.1. Nociones básicas de análisis

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Cuata pate: Movimiento planetaio. Satélites A) Ecuaciones del movimiento Suponemos que uno de los cuepos, de masa M mucho mayo que m, se encuenta en eposo en el oigen de coodenadas

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

2.5 Vectores cartesianos

2.5 Vectores cartesianos .5 VECTORES CRTESINOS 43.5 Vectoes catesianos Las opeaciones del álgeba vectoial, cuando se aplican a la esolución de poblemas en tes dimensiones, se simplifican consideablemente si pimeo se epesentan

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2 Rotacional de una función vectoial Si una función vectoial es f = f 1 î + f 2 ĵ + f 3 ˆk, donde f 1, f 2, f 3 son funciones escalaes, entonces su poducto cuz o vectoial del opeado con la función es: f

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

CAPITULO 3 MÉTODO DE RESOLUCIÓN MEDIANTE INTEGRALES

CAPITULO 3 MÉTODO DE RESOLUCIÓN MEDIANTE INTEGRALES CAPÍTULO : METODO DE RESOLUCIÓN MEDIANTE INTEGRALES CAPITULO MÉTODO DE RESOLUCIÓN MEDIANTE INTEGRALES. Resumen En este capítulo se encuenta solución analítica mediante el método de sepaación de vaiables

Más detalles

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition.

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Vectoes Pesentanción basada en el mateial contenido en: Seway, R. Physics fo Scientists and Enginees. Saundes College Pub. 3d edition. Sistemas de Coodenadas Se usan paa descibi la posición de un punto

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

1. MECÁNICA GENERAL 1.3. CINEMÁTICA DEL SÓLIDO RÍGIDO

1. MECÁNICA GENERAL 1.3. CINEMÁTICA DEL SÓLIDO RÍGIDO Fundamentos y Teoías Físicas ETS Aquitectua 1. MECÁNICA GENERAL 1.3. CINEMÁTICA DEL SÓLIDO RÍGIDO Se define sólido ígido como un sistema de puntos mateiales cuyas distancias son inaiables. Cuando un cuepo

Más detalles

5. ROTACION; CINEMATICA Y DINAMICA

5. ROTACION; CINEMATICA Y DINAMICA 73 5. OTACION; CINEMATICA Y DINAMICA Los movimientos cuvilíneos se dan en el plano o en el espacio, son, po tanto, movimientos bi o incluso tidimensionales. Ello hace que paa expesa la posición sea necesaio

Más detalles

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse.

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse. Leyes de Keple. Antes de demosta las tes leyes de Keple, haé un análisis matemático de lo que es una elipse. Una elipse (Fig.) es el luga geomético de un punto que se mueve en un plano de tal manea que

Más detalles

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón BLOQUE : GEOMETRÍA DEL ESPCACIO Tema 5: Vectoes MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón Definición de vecto Un sistema de ejes tidimensional se constuye

Más detalles

Existe la costumbre de dividir el estudio de la Mecánica en tres partes:

Existe la costumbre de dividir el estudio de la Mecánica en tres partes: U I.- T : Cinemática del Punto Mateial 3 1.- LA MECÁNICA Y SUS PARTES Existe la costumbe de dividi el estudio de la Mecánica en tes pates: + Cinemática: es una descipción geomética del movimiento + Dinámica:

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

Tema 6 Puntos, rectas y planos en el espacio

Tema 6 Puntos, rectas y planos en el espacio Tema 6 Puntos, ectas planos en el espacio. Punto medio. Los puntos A (,, ) B (-,, -) son vétices de un paalelogamo cuo cento es el punto M (,, ). Halla Los otos dos vétices las ecuaciones del lado AB.

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

3 y un vector director Supongamos también que P x, y,

3 y un vector director Supongamos también que P x, y, . Coodenadas o componentes de un vecto Sean dos puntos a, a2, a y, 2, vecto son: b a, b a, b a b b b del espacio. Entonces las coodenadas o componentes del. Dos vectoes, CD son equivalentes ( CD ) si tienen

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss Tema 1: Fundamentos Matemáticos 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Flujo, divegencia y teoema de Gauss Concepto

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

Orbital atómico Ψ 4f (Ψ/r) radio/ bohr. Fig.

Orbital atómico Ψ 4f (Ψ/r) radio/ bohr. Fig. ORBITALES ATÓMICOS HIDROGENOIDES tipo f ( pimea pate) Po lo geneal en el bachilleato, los pofesoes dejan al magen de sus explicaciones los obitales f. Desciben los d, estudian los poblemas que enciean,

Más detalles

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés)

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico Michael Faaday, (Londes, 22 de septiembe de 1791 - íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico (Φ) 2 N m φ E da A C Flujo eléctico (Φ) Cuál es el flujo eléctico

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Infomática Cicuitos de Coiente Continua -Caga eléctica. Ley de Coulomb. Campo eléctico. -Potencial eléctico. Conductoes en euilibio electostático. Agustín Álvaez

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

SUPERPOSICIÓN DE M. A.S.

SUPERPOSICIÓN DE M. A.S. SUPERPOSICIÓN DE M. A.S. Enconta la ecuación del movimiento que esulta de la supeposición de dos movimientos amónicos simples paalelos cuas ecuaciones son sen t + π A sen t + π con m A m. Hace un gáfico

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Trabajo, Energía, Potencial y Campo Eléctrico

Trabajo, Energía, Potencial y Campo Eléctrico Cáteda de Física Expeimental II Física III Tabajo, Enegía, Potencial y Campo Eléctico Pof. D. Victo H. Rios 2010 Contenidos - El concepto físico de tabajo. - Enegía potencial eléctica. - Enegía paa la

Más detalles

Tema 1: Análisis vectorial

Tema 1: Análisis vectorial Tema 1: Análisis vectoial Campos Electomagnéticos º Cuso Ingenieía Industial Dpto.Física Aplicada III Cuso 010/011 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Benal Ménde 1 Tema 1: Índice (I)

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

TEMA 3. CAMPO MAGNÉTICO.

TEMA 3. CAMPO MAGNÉTICO. Física º Bachilleato TEMA 3. CAMPO MAGNÉTICO. 0. INTRODUCCIÓN. NATURALEZA DEL MAGNETISMO. Hasta ahoa en el cuso hemos estudiado dos tipos de inteacciones: gavitatoia y electostática. La pimea se manifestaba

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

Tema 7 Problemas métricos

Tema 7 Problemas métricos Tema 7 Poblemas méticos. Plano pependicula. Halla la ecuación del plano que contiene a los puntos A (- -) B ( -) es pependicula al plano. Los vectoes AB n (vecto nomal del plano ) uno de los puntos A o

Más detalles

CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO PRUEBA A

CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO PRUEBA A CASTILLA Y LEÓN / SEPTIEMBRE. LOGSE / MATEMÁTICAS II / EXAMEN CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se obsevaán fundamentalmente los siguientes aspectos: coecta utilización de los conceptos,

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

MATEMÁTICAS I Grupos F, H

MATEMÁTICAS I Grupos F, H MATEMÁTICAS I Gupos F, H 2--2 APELLIDOS: NOMBRE: En cada pegunta no sólo se valoaá la coección del pocedimiento y el esultado, sino también, en la misma medida, la coección en la expesión de los cálculos

Más detalles

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 6 SEMESTRE 1 GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS RESEÑA HISTÓRICA Leonhad Eule, (1707-1783) Fue un matemático

Más detalles

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO Sugeencias paa quien impate el cuso: Se espea que con la popuesta didáctica pesentada en conjunción con los apendizajes que sobe el estudio de la tigonometía

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Análisis de respuesta en frecuencia

Análisis de respuesta en frecuencia Análisis de espuesta en fecuencia Con el témino espuesta en fecuencia, nos efeimos a la espuesta de un sistema en estado estable a una entada senoidal. En los métodos de la espuesta en fecuencia, la fecuencia

Más detalles

ALGEBRA Y GEOMETRÍA I

ALGEBRA Y GEOMETRÍA I FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE MATEMÁTICA ALGEBRA Y GEOMETRÍA I El Plano Ricado Sagistá EL PLANO - Definición del plano como luga geomético

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

Cálculo diferencial e integral en una variable. Examen Febrero de 2018

Cálculo diferencial e integral en una variable. Examen Febrero de 2018 Cálculo difeencial e integal en una vaiable 2do semeste de 207 Examen Febeo de 208 Ejecicios: Múltiple opción (Total: 6 puntos) Ejecicio Sea f : [, + ) R una función continua tal que x R. Indique la opción

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES

EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES De su cota y espectacula existencia (1911-1927 el átomo de Boh dejó una imagen simple del átomo y vaios conceptos nuevos y fundamentales, como el de númeos

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

87. Un cierto campo de fuerzas viene dado por la expresión F 4y

87. Un cierto campo de fuerzas viene dado por la expresión F 4y Campos 5 81. El témino potencial, es elativamente modeno, dado que tampoco existía el de enegía potencial, que Helmholtz, denominaba tensión. Fue Rankine el que en 1842 (algunos histoiadoes de la ciencia,

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

L Momento angular de una partícula de masa m

L Momento angular de una partícula de masa m Campo gavitatoio Momento de un vecto con especto a un punto: M El momento del vecto con especto al punto O se define como el poducto vectoial M = O Es un vecto pependicula al plano fomado po los vectoes

Más detalles

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla Situaciones 1: Dada una caga eléctica puntual, detemine el campo eléctico en algún punto dado. E = k q 2 u 1.- Una caga puntual positiva, situada en el punto P, cea un campo eléctico E v en el punto, epesentado

Más detalles

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio.

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio. CAPÍTUL 7.01 ÁLGEBRA VECTRIAL Sistemas de coodenadas Un sistema de coodenadas es un conjunto de valoes numéicos que deteminan unívocamente la posición de un punto en el espacio euclidiano. Las coodenadas

Más detalles

Adenda Electrones en potencial periódico

Adenda Electrones en potencial periódico Adenda Electones en potencial peiódico Bandas en potencial peiódico Banda de conducción niveles atómicos Electones en un potencial peiódico ed simetía taslacional R = n1 a1 + n2a2 + n3a3; n1, n2, n3 enteos

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

Instituto de Ayuda Politécnica

Instituto de Ayuda Politécnica Instituto de yuda Politécnica Quisquís 100 ente venida del Ejécito y Gacía Moeno (0) 8705 1.5.. Poducto ente vectoes. Hay fenómenos en la natualeza que se explican de una manea muy concisa con el poducto

Más detalles

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

Campos 5. W C, por lo A. I, C dr A. , mientras que C I dr. , de lo que A. , Como que la única respuesta válida es la b

Campos 5. W C, por lo A. I, C dr A. , mientras que C I dr. , de lo que A. , Como que la única respuesta válida es la b Campos 5 81. El témino potencial, es elativamente modeno, dado que tampoco existía el de enegía potencial, que Helmholtz, denominaba tensión. Fue Rankine el que en 184 (algunos histoiadoes de la ciencia,

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

Temas teóricos. Lino Spagnolo

Temas teóricos. Lino Spagnolo 1 Temas teóicos Electomagnetismo Teoema de Helmholtz. Lino Spagnolo La teoía electomagnética de Maxwell, e incluso las modenas elaboaciones como la electodinámica cuántica y la como dinámica, utilizan

Más detalles

Electromagnetismo I. 1. Problema: (20pts) El potencial en la superficie de una esfera de radio R está dado por. Alm r l + B lm r (l+1)] Y lm (θ, ϕ).

Electromagnetismo I. 1. Problema: (20pts) El potencial en la superficie de una esfera de radio R está dado por. Alm r l + B lm r (l+1)] Y lm (θ, ϕ). Electomagnetismo I Semeste: 25-2 Pof. Alejando Reyes Coonado Ayud. Calos Albeto Maciel Escudeo Ayud. Chistian Espaza López Solución a la Taea 5 Solución po Calos Maciel Escudeo. Poblema: 2pts El potencial

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

INTERSECCIONES. POSICIONES RELATIVAS. DISTANCIAS

INTERSECCIONES. POSICIONES RELATIVAS. DISTANCIAS INTERSECCIONES. POSICIONES RELATIAS. DISTANCIAS OBJETIOS 1 2 Reconoce el Sistema diédico o Sistema de Monge como el ecuso desciptivo gáfico más adecuado en el diseño industial y aquitectónico. 1 INTERSECCIÓN

Más detalles

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS UNVERSDAD NACONAL DEL CALLAO FACULTAD DE NGENERÍA ELÉCTRCA Y ELECTRÓNCA ESCUELA PROFESONAL DE NGENERÍA ELÉCTRCA CURSO : TEORÍA DE CAMPOS ELECTROMAGNÉTCOS PROFESOR : ng. JORGE MONTAÑO PSFL PROLEMAS RESUELTOS

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

Soluciones de la Tarea #6 de Física I

Soluciones de la Tarea #6 de Física I Soluciones de la Taea #6 de Física I Tomás Rocha Rinza 4 de octube de 006 1. Puesto que la tayectoia del satélite alededo de la Tiea es cicula, entonces ocue en un plano. Si se considea a la Tiea fija

Más detalles