FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR"

Transcripción

1 FUCIOIEO FÍSICO DE U EOGEEDO 1.- Introducción El funcionmiento físico de un erogenerdor de imnes permnentes responde, como muchos sistems físicos, un ecución diferencil, cuy solución prticulr es l solución estcionri o de equilirio del sistem. Sore un generdor eléctrico ctún dos grupos de fuerz: ls fuerzs que lo celern y ls fuerzs que lo frenn. Como un generdor es un sistem físico que tiene un movimiento circulr, en vez de fuerzs, se estudirn los momentos de ls fuerzs que lo hcen girr o lo frenn. L ecución diferencil que rige el movimiento del erogenerdor es Iα (1) f = donde es el momento de ls fuerzs que celern el generdor (momento de celerción), f es el momento de ls fuerzs que frenn el generdor (momento de frendo), I es el momento de inerci del rotor, y α es l celerción ngulr del rotor. Si y f fuern constntes, el generdor dquirirí un movimiento celerdo y l velocidd ngulr se hrí infinit, pero este comportmiento no es físicmente posile, y grcis que f (momento de frendo) es función linel de l velocidd ngulr, el sistem lleg un situción de equilirio, en l cul l velocidd ngulr dquiere un vlor constnte. continución se relizrá el estudio del erogenerdor en tres csos - erogenerdor desconectdo de culquier crg. - erogenerdor conectdo un crg resistiv. - erogenerdor conectdo un terí. En cd uno de estos csos, l velocidd ngulr de equilirio cmi sustncilmente de vlor en función de ls fuerzs de frendo que intervienen.

2 .- erogenerdor desconectdo de culquier crg L fuerz que mueve el erogenerdor es l fuerz del viento sore l prte eólic (pls, Svonius, pnémon, etc.), l cul depende de l geometrí de dicho sistem, y ls fuerzs que lo frenn son el rozmiento del sistem eólico con el ire y el rozmiento de ls prtes móviles del rotor (rodmientos), cumpliéndose que el momento de frendo f es proporcionl l velocidd ngulr f = ω () donde es un constnte que depende de l geometrí de ls prtes móviles del generdor. Introduciendo l expresión () en l ecución (1) se otiene l ecución diferencil dω I + ω = (3) dt t I cuy solución es ω = (1 e ) (4) l co de un tiempo suficientemente grnde, el sistem lleg l equilirio y l velocidd ngulr dquiere un vlor constnte de vlor ω eq = (5) 3.- erogenerdor conectdo un crg resistiv L fuerz de frendo está formd por dos prtes, un deid l rozmiento del sistem eólico y los rodmientos y otr l fuerz entre l corriente inducid en el generdor y los imnes de propio generdor. ms fuerzs de frendo genern momentos de frendo que tmién son proporcionles l velocidd ngulr

3 f = oz + = ω + ω = ( + ) ω (6) El frendo deido l corriente inducid constituye el criterio de Lenz: l corriente inducid en un oin es tl que se opone l vrición de flujo mnético exterior. Est vrición de flujo mnético se dee l movimiento de los imnes por delnte de ls oins. Un vez que se genern corrientes inducids en ls oins del generdor, prece un fuerz entre ésts y los imnes, o entre ésts y ls corrientes equivlentes de imnción de los imnes. Ests fuerzs son justmente ls fuerzs de mpère entre corrientes eléctrics o sore corrientes eléctrics situds en el interior de cmpos mnéticos. Como se verá, est fuerz se opone l movimiento de los imnes, y por ello es un fuerz de frendo cuyo vlor es proporcionl l velocidd ngulr del rotor. Por ello, en (6) se h llmdo l constnte de proporcionlidd entre el momento de frendo deido l fuerz de mpère y l velocidd ngulr. Sustituyendo (6) en (1) y resolviendo l ecución diferencil, se otiene l siguiente expresión pr l velocidd ngulr de equilirio ω eq = (7) + L expresión (7) es numéricmente inferior l expresión (5), esto es, l velocidd de giro de un erogenerdor es menor cundo está conectdo un crg que cundo gir lire. Esto tmién se puede interpretr como consecuenci de l ley de conservción de l energí: cundo un erogenerdor gir liremente lcnz myor velocidd que cundo gir después de conectrlo un crg resistiv, y que prte de l energí cinétic que teni l girr liremente se trnsform en energí eléctric, y por ello dee disminuir su velocidd de giro (mnteniendo constnte l fuerz del viento sore el sistem eólico del erogenerdor). En otrs plrs, si un erogenerdor gir liremente, l energí del viento se trnsform solo en energí cinétic de giro, pero l conectrse un crg resistiv y generrse corriente eléctric, es mism energí del viento se trnsform en energí cinétic más energí eléctric. Otención de l expresión de l constnte : cundo circul corriente por ls oins de un generdor, precen inmeditmente fuerzs que ctún sore ells deido los cmpos mnéticos de los imnes. Como ls oins donde circuln ests

4 corrientes son fijs (el estátor), ests fuerzs producen recciones que ctún sore los imnes (principio de cción y rección de ewton). mién se puede interpretr ests fuerzs como fuerzs de los cmpos mnéticos credos por ls corrientes inducids en ls oins del estátor sore los imnes de rotor, o sore ls corrientes equivlentes de imnción. Se culquier fuere l interpretción, el resultdo finl es que existe un fuerz que hce frenr los imnes l cul depende de l intensidd de corriente que el generdor suministr un crg extern. Est fuerz viene dd de form muy proximd por l expresión de l fuerz sore un corriente en un cmpo mnético (fuerz de mpère). En el diujo siguiente se tiene un imán que se mueve por delnte de un hilo de core con velocidd v. El polo orte del imán v dirigido hci rri. B B F reccion de mpere B imn Hilo de core I inducid B F mpere v El sentido de l corriente inducid en el hilo de core se otiene plicndo l fórmul de Lorentz, y se dirige hci dentro. El imán ejerce un fuerz sore l corriente inducid que se dirige hci l derech, pero como los hilos de core son fijos (formn el esttor del generdor) precerá un rección, que ctú sore el imán, dirigid hci l izquierd. L fuerz de mpère sore un corriente es F =I L B, pero este hilo de core form prte de un de ls oins del generdor, que está formd por hilos de core, que tienen un longitud L, y por tnto se tendrán corrientes inducids en cuyo cso l fuerz de mpère será F = ILB (8)

5 En un generdor de flujo rdil, los hilos de core están colocdos en el interior de ujeros del esttor. Si el esttor tiene ujeros y por todos ellos está circulndo corriente, l fuerz de mpère será finlmente F = ILB (9) L corriente suministrd por el generdor se otiene prtir de l ley de Ohm: I g ε = (10) + r L g donde ε es l fuerz electromotriz inducid en el generdor, L es l resistenci de crg conectd l generdor, y r g es l resistenci del oindo del generdor. Est intensidd de corriente es l que sle del generdor y recorre l crg. Como los generdores reles son trifásicos, l corriente que recorre los hilos de core que están en un ujero del esttor no es l mism que sle del generdor. En cso que ls tres fses estén conectds en prlelo, l corriente que recorre cd ujero es l tercer prte de l que sle del generdor, por lo tnto l I de l expresión (9) será: 1 ε ε I = = (11) 3 + r 3 + r L g L f donde r f es l resistenci de un sol fse del generdor. L fuerz electromotriz inducid en el generdor depende de l geometrí del mismo. Pr un generdor de imnes permnentes de flujo rdil, se puede demostrr que l expresión proximd de l fuerz electromotriz eficz inducid en un oin del estátor es, plicndo l fórmul de Lorentz: ε = 1.41LBv = 1.41LBω (1) r donde = número de espirs de l oin, L = longitud de l oin (longitud del ldo de l oin perpendiculr l movimiento del rotor = longitud del estátor), ω = velocidd ngulr del rotor, y r = rdio del estátor.

6 Si el generdor est oindo en modo trifásico y posee oins en cd fse, el potencil generdo en un fse será ε = 1.41 BLω (13) r Sustituyendo (13) en (11), y posteriormente en (9) se lleg 1.41 (LB) r F = ω (14) donde = 3 L + r f. Puesto que el rotor est girndo, l fuerz de mpère cre un momento o torque que será = F.r. Por tnto 1.41 LB) = ω (15) y el vlor de será 1.41 LB) = (16) Sustituyendo el vlor de en l velocidd ngulr de equilirio (7), podemos scr lguns conclusiones - Si l resistenci de crg L es muy grnde, tendiendo infinito, el vlor de es muy pequeño, tendiendo cero, en cuyo cso el erogenerdor se comport igul que si no tuvier crg y gir con velocidd ngulr máxim. - Si l resistenci de crg L es muy pequeñ, tendiendo cero, el vlor de es muy grnde, y l velocidd ngulr de equilirio se hce muy pequeñ. Es por ello que pr frenr un erogenerdor hy que cortocircuitr sus cles de slid, lo que equivle conectrle un resistenci de crg L = 0

7 4.- erogenerdor conectdo un terí ley de Ohm: En este cso l corriente suministrd en el generdor se otiene prtir de l ε - ε I g = (17) donde ε es el potencil de l terí, y es l resistenci totl del circuito formd por l sum de l resistenci intern del generdor, l de los cles y l de l terí. L ε del generdor es l mism que en el cso nterior, y viene dd por (13). Como en el cso nterior, est intensidd de corriente es l que sle del generdor, pero l intensidd de corriente que recorre cd ujero del esttor, es l tercer prte de (17), por tnto I = (18) 3 ε - ε ext + r f donde ext es l resistenci de los cles y l terí y r f es l resistenci de un fse del generdor. Sustituyendo (13) en (18), se otiene 1.41 r LBω - ε I = (19) donde = 3 ext + r f L fuerz de frendo de mpère es l mism que en el cso nterior y viene dd por (9). Sustituyendo (19) en (9), otenemos l fuerz de frendo en el cso de crgr l erogenerdor con un terí: 1.41 r (LB) ω - LBε F = (0)

8 y el momento de frendo será = F.r 1.41 LB) ω - r LBε = (1) En el cso de crgr el erogenerdor con un terí, se otiene un nuev ecución diferencil nálog (1), donde est vez f = LB) ω - r LBε ω Iα () = eescriiremos () en otr form: r LBε 1.41 LB) dω + ( + )ω I (3) dt = l co de un tiempo suficientemente grnde, el sistem lleg l equilirio y l velocidd ngulr dquiere un vlor constnte de vlor ω eq r LB + ε = (4) 1.41 LB) + Llmndo 1.41 LB) = (5) y r LB L = (6)

9 se otiene un expresión más simplificd pr l velocidd de giro de equilirio del erogenerdor ω eq L = (7) + + ε Se h otenido un expresión pr l velocidd ngulr del giro del erogenerdor similr l expresión (7), pero en (7), el vlor numérico del numerdor es superior l de (7), por lo que ce esperr que, en generl, l velocidd de giro de un erogenerdor conectdo un terí se superior l que tendrí si se conect un resistenci pur Este documento está en fse de creción

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundmentos Físicos y Tecnológicos de l nformátic Circuitos de Corriente Continu -Corriente eléctric, densidd e intensidd de corriente. - Conductnci y resistenci eléctric. - Ley de Ohm. Asocición de resistencis.

Más detalles

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica.

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica. Corriente eléctric 1. Corriente eléctric: ntensidd y densidd de corriente. 2. Ley de Ohm. Resistenci. Conductividd eléctric. 3. Potenci disipd en un conductor. Ley de Joule. Fuerz electromotriz. BBLOGRAFÍA:.

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS 7.- Utilizción del Polímetro

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012

Fundamentos Físicos de la Ingeniería Primer Cuatrimestre / 10 febrero 2012 . Sistems de referenci inercil y no inercil. Explicr en que consisten y l diferencis que existen entre ellos. . Un disco de rdio r está girndo lrededor de su eje de simetr con velocidd ngulr ω y celerción

Más detalles

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN CI31A - Mecánic de Fluidos FUERZAS DE PRESIÓN Prof. Aldo Tmurrino Tvntzis HIDROSTÁTICA Si ls prt ículs de fluido no están en movimiento no hy fuerzs tngenciles ctundo sore ells. Consideremos un volumen

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA Sistems Electromecánicos, Guí : Máquins de Corriente Continu GUÍA : MÁQUNAS DE COENTE CONTNUA. L crcterístic de mgnetizción de un generdor de corriente continu operndo un velocidd de 500 [rpm] es: [A]

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre:

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre: Nomre: FÍSICA APLICADA. EXAMEN A. ABRIL 03. MODELO A TEORÍA (.5 p) A) Teorem de Guss. Enuncido y explicción reve. B) Un crg de C se encuentr en el centro de un cuo de m de ldo. Cmirá el flujo eléctrico

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

UNIDAD 1: Principios De La Corriente Alterna.

UNIDAD 1: Principios De La Corriente Alterna. REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL DE LA FUERZA ARMADA NACIONAL NÚCLEO MIRANDA SEDE LOS TEQUES ASIGNATURA : COORDINACIÓN DE INGENIERÍA Electrotecni SEMESTRE: 6 to CÓDIGO:

Más detalles

Capítulo III AGUA EN EL SUELO

Capítulo III AGUA EN EL SUELO Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C El Dipolo Plegdo Lbortorio de Electrónic de Comunicciones Dpto. de Señles y Comunicciones, U.L.P.G.C 1 Introducción Un nten muy utilizd en l práctic como receptor es el dipolo plegdo. Este tipo de dipolo

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

La función logaritmo. Definición de la función logaritmo natural.

La función logaritmo. Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS XII.- TANSMISIÓN DE CALO PO CONVECCIÓN FLUJO EN CONDUCTOS XII.1.- FLUJO ISOTÉMICO EN CONDUCTOS CICULAES; ECUACIÓN DE POISEUI- LLE En un flujo lminr l corriente es reltivmente lent y no es perturbd por

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío ELECTRCDAD Y MAGNETSMO. Electrostátic-Vcío 1) Suponiendo un nue de electrones confind en un región entre dos esfers de rdios 2 cm y 5 cm, tiene un densidd de crg en volumen expresd en coordends esférics:

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

PROBLEMAS DE ÓPTICA INSTRUMENTAL

PROBLEMAS DE ÓPTICA INSTRUMENTAL Grupos A y B Curso 006/007 ROBEMAS DE ÓTICA INSTRUMENTA. Considérese un sistem óptico ilumindo por un hz de luz monocromátic de longitud de ond λ 550nm. El sistem está compuesto por dos lentes delgds que

Más detalles

Electricidad y Medidas Eléctricas I 2011

Electricidad y Medidas Eléctricas I 2011 Electricidd y Medids Eléctrics I 2011 Crrers: Técnico Universitrio en Microprocesdores Profesordo en Tecnologí Electrónic. Bolill 7. Voltje de Nodos. Teorem de Norton y Thevenin. Máxim Trnsferen- ci de

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Tema 3. Circuitos Resistivos

Tema 3. Circuitos Resistivos Tem 3. Circuitos esistivos Sistems y Circuitos 1 3.1 Elementos en Circuitos Elementos de circuitos Dos terminles Dispositivo (, L,C) (Generdor) Tnto l tensión como l corriente son vriles que tienen signo.

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

3 HERRAMIENTAS DE MATEMÁTICAS

3 HERRAMIENTAS DE MATEMÁTICAS HERRAMIENAS DE MAEMÁICAS Entre ls operciones mtemátics más comunes se encuentrn: Sum, Rest, Multiplicción, División, Elevción Potencis Etrcción de Ríces, que se indicn con los signos siguientes: -El signo

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Muchos cálculos algebraicos, que son difíciles o imposibles por otros métodos, son fáciles de desarrollar por medio de los logaritmos.

Muchos cálculos algebraicos, que son difíciles o imposibles por otros métodos, son fáciles de desarrollar por medio de los logaritmos. 1.3. L función Logrítmic Con el uso de los ritmos, los procesos de multiplicción, división, elevción potencis extrcción de ríces entre números reles pueden simplificrse notorimente. El proceso de multiplicción

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

BOLILLA 4 Movimiento Circular y Leyes de Newton

BOLILLA 4 Movimiento Circular y Leyes de Newton BOLILLA 4 Movimiento Circulr y Leyes de Newton 1. Movimiento Circulr. En usenci de fuerzs, el movimiento en líne rect y velocidd constnte continú indefinidmente. El movimiento circulr, sin embrgo, necesit

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físic Generl Proyecto PMME - Curso 00 Instituto de Físic Fcultd de Inenierí UdelR TITULO DINÁMICA DE LA PARTÍCULA - MÁQUINA DE ATWOOD DOBLE. AUTORES: Gonzlo d Ros, Jvier Belzren, Dieo Aris. INTRODUCCIÓN

Más detalles

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA Tem CCUTOS DE COENTE CONTNU Lección : esistenci eléctric..- esistenci. Definición, representción y modelo mtemático..- Fuentes de corriente continu: tensión e intensidd...- Fuentes reles..- Conversión

Más detalles

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1 MÉTODO DE KARNAUGH Jesús Pizrro Peláez MÉTODO DE KARNAUGH... 1 1. INTRODUCCIÓN... 1 2. MÉTODO DE KARNAUGH... 2 3. EJEMPLO DE APLICACIÓN (I)... 4 4. ESTADOS NO IMPORTA EN LAS FUNCIONES LÓGICAS... 6 5. EJEMPLO

Más detalles

EL EXPERIMENTO FACTORIAL

EL EXPERIMENTO FACTORIAL DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

E 52 dt. E 5 vbl. B S E 5 C 1 v S 3 B S 2 # d l. perpendiculares a y entre sí) d l 52 dt. i D 5 P. (corriente de desplazamiento)

E 52 dt. E 5 vbl. B S E 5 C 1 v S 3 B S 2 # d l. perpendiculares a y entre sí) d l 52 dt. i D 5 P. (corriente de desplazamiento) CAPÍTUO 29 EUMEN ey de Frdy: ley de Frdy estlece que l fem inducid en un espir cerrd es igul l negtio de l ts de cmio del flujo mgnético con respecto l tiempo trés de l espir. Est relción es álid y se

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

1.- Cálculo del coeficiente de autoinducción.

1.- Cálculo del coeficiente de autoinducción. Trbjo Práctico 8 1.- Cálculo del coeficiente de utoinducción. Describ el fenómeno de utoinducción en un bobin. Encuentre l expresión del coeficiente de utoinducción en un solenoide lrgo de N s = 1 espirs

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Fundmentos de Químic Teóric SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Se l ecución de Schrödinger del oscildor rmónico: d + kx

Más detalles

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Se l ecución de Schrödinger del oscildor rmónico: d 1 + kx = E (1 m dx L solución de

Más detalles

FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA

FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA ESTUDIO Y CONTROL AUTOMÁTICO RETROALIMENTADO DE UN MOTOR DE CD DE LABORATORIO CON LAS HERRAMIENTAS DE MATLAB Y LABVIEW T E S I N A Que pr obtener el título de:

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

MOTORES ASINCRONOS MONOFÁSICOS 1

MOTORES ASINCRONOS MONOFÁSICOS 1 Form constructiv MOTORES ASINCRONOS MONOFÁSICOS El esttor tiene l form de un cilindro hueco, rnurdo en su prte interior, constituido por chps de hierro silicio de pequeño espesor, islds entre sí. (Fig.)

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul Bloque II: Equilibrios Químicos Profesor: Mª del Carmen Clemente Jul LEY DE EQUILIBRIO QUÍMICO. CONSTNTE DE EQUILIBRIO, EQ L LEY DE EQUILIBRIO QUÍMICO ES L EXPRESIÓN MTEMÁTIC DE L LEY DE CCIÓN DE MSS QUE

Más detalles

NÚMEROS RACIONALES ABSOLUTOS

NÚMEROS RACIONALES ABSOLUTOS NÚMEROS RACIONALES ABSOLUTOS Frcción: es un pr ordendo de números nturles con l segund componente distint de cero. (, ) pr ordendo frcción es un frcción N N EQUIVALENCIA DE FRACCIONES * Frcciones diferentes,

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

C A P I T U L O I V E C T O R E S Y F U E R Z A S

C A P I T U L O I V E C T O R E S Y F U E R Z A S C P I T U L I V E C T R E S U E R S I.1. Mgnitudes esclres vectoriles. Esclres: Pr su interpretción precisn del vlor numérico de l unidd de medid. Ej.: m 3, 0 V, 50 km, 5 ºC. Vectoriles: Si decimos que

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

VOLUMETRIA ACIDO-BASE ó DE NEUTRALIZACIÓN

VOLUMETRIA ACIDO-BASE ó DE NEUTRALIZACIÓN Químic Anlític VOLUMETRIA ACIDO-BASE ó DE NEUTRALIZACIÓN Medinte l volumetrí ácido-bse se pueden vlorr sustncis que ctúen como ácidos o como bses y ls recciones que trnscurren según los csos pueden formulrse

Más detalles

Cambio de Variables en las Integrales Dobles

Cambio de Variables en las Integrales Dobles E.E.I. CÁLCULO II Y ECUACIONES DIFEENCIALES Curso 20-2 Clse 3 (7 fe. 202) Cmio de Vriles en ls Integrles Doles. Ejemplo: Áre de l elipse. 2. Cmio de Vriles I. Punto de ist de l trnsformción. 3. Cmio de

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 6:CÓNICAS 1º BACHILLERATO ÍNDICE 1. INTRODUCCIÓN... 1.1. SUPERFICIE CÓNICA... 1.. CURVAS CÓNICAS... 5. CIRCUNFERENCIA... 6.1. ECUACIÓN COMPLETA DE UNA CIRCUNFERENCIA... 6.1.1.

Más detalles

GALICIA / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO Elegir y desrrollr un de ls dos opciones propuests. Puntución máxim: Problems 6 puntos (1,5 cd prtdo). Cuestiones 4 puntos (1 cd cuestión teóric o práctic). No se lorrá l notción de un ítem como solución

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES

Más detalles

INTERACCIÓN MAGNÉTICA

INTERACCIÓN MAGNÉTICA NTERACCÓN MAGNÉTCA ROBLEMAS ROUESTOS : () Determine l dirección de l fuerz que se ejerce sobre un protón que se desplz en un cmpo mgnético pr cd situción representd en l Fig. ( b) Repetir el problem si

Más detalles

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1 el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Deprtmento de Físic Aplicd III Escuel Técnic Superior de Ingenierí Ingenierí de Telecomunicción Cmpos Electromgnéticos Cmpos Electromgnéticos. Boletín 5. Ferero de 2011 5.1. Por el interior de un tuerí

Más detalles

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 I.3 Discusión de resultdos I.3.1.3 Hidroformilción ifásic de 1-octeno con sistems de Rh/fosfin perfluord P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 Como y se h comentdo en l introducción l ctálisis ifásic en sistems

Más detalles

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio.

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio. Ls cónics responden l ecución generl del tipo F, ) 0 L ecución generl de un cónic es: A B C D E F 0 I) tér min oc cudráti cos tér min os lineles tér min o independiente B término rectngulr, cundo prece

Más detalles

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas.

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas. www.colegiosntcruzrioueno.cl Deprtmento de Mtemátic GUIA DE MATEMATICA Unidd: Álger en R Contenidos: - Conceptos lgericos ásicos - Operciones con epresiones lgerics - Vlorción de epresiones lgerics - Notción

Más detalles

PRÁCTICA 5. Corrección del factor de potencia

PRÁCTICA 5. Corrección del factor de potencia PRÁTIA 5 orrección del fctor de potenci Objetivo: Determinr el fctor de potenci de un crg monofásic y de un crg trifásic Efectur l corrección del fctor de potenci de un crg monofásic y de un crg trifásic.

Más detalles

Universidad de Chile Facultad de Ciencias Departamento de Física Electromagnetismo

Universidad de Chile Facultad de Ciencias Departamento de Física Electromagnetismo Universi e hile Fcult e iencis Deprtmento e Físic Electromgnetismo orrección Tre N o 2 Profesor: Pero Mirn Pulic el e Aril Ayuntes: Mnuel Rmírez Griel Román. ) Semos que l cpcitnci equivlente pr un conjunto

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles