Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2."

Transcripción

1 Guía de Ejercicios Ejercicio El circuito RC de la figura es excitado por ua señal de ruido blaco co desidad espectral de potecia costate e igual a N /. R w(t) C v(t) Calcule y grafique la desidad espectral de potecia de la salida del filtro y el valor de potecia total. Ejercicio Sea X(t) = A cos(ω t+φ)+n(t), dode A y ω so costates, la etrada a u filtro pasabada ideal cuya bada de paso está e las frecuecias ω ω W/. Supoga que φ se ecuetra uiformemete distribuida e [, π) y que N(t) es ruido blaco de desidad espectral de potecia N /. Ecuetre la relació etre potecias de señal y de ruido a la salida del filtro. Ejercicio La etrada a u filtro pasabajos de primer orde co trasferecia H(ω) = + jω/ω c es X(t) = A cos(ω t+φ)+n(t), dode A y ω so costates. Obtega la frecuecia de corte ω c del filtro para que la relació señal/ruido a la salida sea máxima. Cosidere el siguiete sistema LTI, W() Ejercicio 4 X() h() Y () dode X() y W() so procesos ESA descorrelacioados etre sí. La variaza de W() es σ w y la de X() es σ x.

2 . Hallar la fució de autocorrelació del proceso Y ().. Defiiedo a el error E() = Y () X() determie la autocorrelació de E().. Si h() = α δ(), elija el valor de α que miimice la variaza de E(). Ejercicio 5 Sea u proceso X() obteido como la suma de dos procesos idepedietes etre sí, es decir, X() = V () + N(). El proceso V () es u proceso AR co parámetro α, media ula y variaza uitaria, es decir, V () = αv ( ) + W(), dode W() es ruido blaco. Por otro lado, N() es ruido blaco de media ula y variaza σ, idepediete de W(). Calcular R x (k) y discutir la ifluecia de σ sobre la desidad espectral de potecia de X(). Ejercicio 6 Se simula uméricamete co Matlab/Octave, u proceso autoregresivo de primer orde X() = αx( ) + W() excitado por u ruido blaco de media ula y variaza uitaria. Se realiza tres simulacioes diferetes mostradas e la figura utilizado los siguietes valores del parametro α: α =,95 α =, α =,95 W() Xa() Xb() Xc()

3 . Asige el coeficiete α que correspode a cada ua de las figuras.. Grafique la autocorrelació del proceso X() e cada caso. Ejercicio 7 Se desea simular la realizació de u proceso AR X() = ax( ) + W(). Elija u valor del parámetro a y geere ua secuecia de logitud N cuado el ruido de excitació W() es blaco, distribuido uiformemete etre y. a) Estime y grafique la autocorrelació del proceso. Superpoga la gráfica de la fució de autocorrelació teórica y compare. b) Estime y grafique la desidad espectral de potecia del proceso. Superpoga la gráfica de la desidad espectral de potecia teórica y compárelas.. Para el mismo valor de a, repita los putos ateriores si el ruido de excitació W() es blaco, Gaussiao, de media ula y σ W = /.. Compare los dos procesos geerados e. y. e idique dóde ota la diferecia etre ellos. El modelo del proceso AR, X() es: Ejercicio 8 X() = a X( ) + a X( ) + W() dode W() es ua secuecia de ruido blaco y a y a so coeficietes reales.. Expresar la fució de trasferecia H(z) del sistema lieal que, excitado por la secuecia de ruido blaco, etrega como salida el proceso AR.. Obteer y resolver la ecuació e diferecias que debe satisfacer la secuecia de autocorrelació.. Verifique aalíticamete las siguietes propiedades: a) E el caso de polos reales y distitos, la secuecia de autocorrelació decae expoecialmete. Aalizar el caso e que ambos polos so positivos, ambos egativos y uo positivo y otro egativo. b) E el caso de polos complejos cojugados, la secuecia de autocorrelació es pseudoperiódica. 4. Geerar distitas realizacioes de u proceso AR, variado los valores de los coeficietes del sistema, para lograr todas las variates posibles. E cada caso, obtega la fució de autocorrelació experimetal y grafíquela superpuesta a la teórica. 5. Obtega y grafique las desidades espectrales de potecia. 6. Iterpretar los resultados, relacioado las realizacioes del proceso co las fucioes de autocorrelació y los espectros correspodietes.

4 Ejercicio 9 Dado el siguiete diagrama e bloques W() AR X() Y ()? dode W() es ruido blaco Gaussiao de media ula y variaza uitaria y el primer filtro es u autoregresivo de primer orde de parámetro a. El objetivo de este ejercicio es diseñar el segudo filtro.. Cómo debe ser el filtro? para que a la salida Y () sea igual a W()?. Calcule R XY (k), es decir, la fució de correlació cruzada etre X() e Y (). E el siguiete diagrama e bloques, Ejercicio W() AR X() AR Y () dode W() es ruido blaco Gaussiao de media ula y variaza uitaria y el sistema es ua cascada de dos filtros autoregresivos de primer orde.. La depedecia etre las señales Y () y W() respode a u sistema AR? Por qué?. Calcular la media de Y ().. Calcular la fució de autocorrelació de Y (). 4. Es posible que el sistema oscile? Ejercicio Se desea aalizar u filtro difereciador e tiempo cotiuo. Sea X(t), u proceso estacioario e setido amplio e tiempo cotiuo cuya media es ula y su fució de autocorrelació es R X (τ). La salida del filtro difereciador está defiida como Obteer R Y (τ) y S Y (ω). Y (t) = X(t + a) X(t a) Ejercicio Ecotrar la fució de autocorrelació y la desidad espectral de potecia de la salida del filtro defiido e la ecuació más abajo para los dos casos de la etrada X(). E ambos casos, simule ua realizació del proceso y estime la fució de autocorrelació. Qué diferecias ota etre los procesos simulados e ambos putos? Y () = X( + ) X( ) 4

5 . X() es ruido blaco uiformemete distribuido etre y.. X() es ruido blaco Gaussiao de media ula y variaza /. Ejercicio X() es ruido blaco de media ula y potecia σx. La señal X() es filtrada por ua realizació e serie de dos filtros. Calcular E[Z], σ Z, R Z(k) y S Z (ω). Y () =,5 [X() + X( )] Z() = Y () Y ( ) Ejercicio 4 Cosidere el filtro lieal caracterizado por q y() = b k x( k) que es excitado por la secuecia ESA k= X() = s + V () e la cual, s es ua costate descoocida y V () es ua secuecia de ruido cuya autocorrelació es R V V () = δ( ) + δ() + δ( + ) Se quiere seleccioar los coeficietes b k del filtro de modo que su respuesta Y () sea u estimador del parámetro descoocido s.. Para que E[Y ()] = s, demuestre que los parámetros del filtro debe satisfacer b + b b q =.. Para la clase de filtros que satisface la restricció aterior, ecuetre uo que miimice la variaza de la respuesta.. Cómo depede la variaza de la respuesta e fució de la logitud q del filtro? Ejercicio 5 Sea el pulso rectagular de altura A y duració T defiido como { A t T s(t) = e otro lugar El pulso está superpuesto a ruido blaco aditivo de media ula y desidad espectral de potecia N /. Se filtra señal y ruido co u filtro pasabajos RC co fució de trasferecia H(ω) = + jω/ω dode ω = /RC es el acho de bada de db del filtro. 5

6 . Demuestre que el valor óptimo de ω para el cual el filtro RC maximiza la relació señal/ruido (o sea, potecia de pico de señal/potecia media de ruido) a la salida es ω =,6/T.. Demuestre que la máxima relació señal/ruido a la salida del filtro es ρ max =,86 A T N. E cuátos db se debe icremetar la eergía de la señal para lograr la misma relació señal/ruido que co u filtro adaptado? Sugerecia: recordar que la respuesta de u filtro pasabajos RC a u escaló uitario u(t) es y(t) = ( e t/rc) u(t) 6

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz 3. AMPIFICADORES Y MEZCADORES 1. E el circuito de la figura: a) Determiar el puto de trabajo de ambos BJT. b) Represetar el circuito e pequeña señal idicado los valores de cada elemeto. c) Hallar la gaacia

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Problemas de Introducción al Procesado digital de Señales. Boletín 1.

Problemas de Introducción al Procesado digital de Señales. Boletín 1. Problemas de Itroducció al Procesado digital de Señales. Boletí. Se tiee la señal aalógica t e segudos t se 5 π t + cos 5 π t se 5 π t se muestrea co ua frecuecia de 5 H. Determia la señal obteida al hacer

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Filtro. k k. determinan la respuesta en frecuencia del filtro. Una señal x(n) que pase a través del sistema tendrá una salida Y ( ω)

Filtro. k k. determinan la respuesta en frecuencia del filtro. Una señal x(n) que pase a través del sistema tendrá una salida Y ( ω) Itroducció a los filtros digitales. Itroducció. El térmio FILTRO hace referecia a cualquier sistema que discrimia lo que pasa a su través de acuerdo co alguo de los atributos de la etrada. De acuerdo co

Más detalles

4 Métodos de Colocación

4 Métodos de Colocación 4 4. Clasificació Como ya se mecioó e el capítulo aterior, el método de colocació es ampliamete coocido por ser u procedimieto altamete eficiete y preciso para la solució umérica de ecuacioes difereciales

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

ONDAS SOBRE UNA CUERDA

ONDAS SOBRE UNA CUERDA ONDAS SOBRE UNA CUERDA Objetivo: Aalizar el comportamieto de las odas estacioarias e ua cuerda relacioado la tesió, la frecuecia de oscilació, la logitud de la cuerda y el úmero de segmetos que se forma

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

Electrónica de Potencia (Especialidad de Electricidad)

Electrónica de Potencia (Especialidad de Electricidad) Electróica de Potecia (Especialidad de Electricidad). Itroducció PRÁCICA DEERMINACIÓN DE LA HD Y EL FACOR DE POENCIA MEDIANE PSPICE Y SIMPOWERSYSEM oda fució periódica que cumple ciertas propiedades puede

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano (VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

Práctica de Física AJUSTE DE UNA RECTA

Práctica de Física AJUSTE DE UNA RECTA Práctica de Física AJUSTE DE UNA RECTA Calcular el valor medio y error de ua serie de valores Ajustar los datos experimetales mediate ua depedecia lieal La determiació de ua magitud física está sujeta

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Apéndice C: Datos Experimentos

Apéndice C: Datos Experimentos Apédice C: Datos Experimetos Experimetos Los experimetos permitiero evaluar la afectividad de los usuarios al iteractuar etre ellos detro del IM. La realizació de los experimetos se basa e los siguietes

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n 47 Capítulo 9 Propiedades de los estimadores putuales y métodos de estimació ii Demuestre que para que esta relació sea idepediete de p, debemos teer x i y i = 0 o x i = y i. iii De acuerdo co el método

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010) UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

REPRESENTACIONES GRÁFICAS

REPRESENTACIONES GRÁFICAS Capítulo 5 REPRESENTACIONES GRÁFICAS Autores: José María García Palaco Marta Sáchez-Cabezudo Tirado 5 REPRESENTACIONES GRÁFICAS Cualquier experimeto tiee por fialidad comprobar la validez de u modelo teórico,

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo Test de Kolmogorov Smirov Técicas de validació estadística Bodad de auste Kolmogorov-Smirov Patricia Kisbye FaMAF 29 de mayo, 2008 Icoveiete: No es secillo costruir los itervalos a partir de las probabilidades.

Más detalles

2. MODELOS PROBABILISTICOS

2. MODELOS PROBABILISTICOS . MODELOS PROBABILISTICOS. Fucioes de Probabilidad.. Variable Discreta U modelo probabilístico de u experimeto requiere asociar u valor de probabilidad a cada puto del espacio muestral. E el caso de las

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente.

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente. º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA.- ESTADÍSTICA DESCRIPTIVA.- TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística : Es la ciecia que estudia cojutos de datos obteidos de la realidad. Estos datos

Más detalles

TEORÍA DE LÍNEAS DE ESPERA (COLAS)

TEORÍA DE LÍNEAS DE ESPERA (COLAS) TEORÍA DE ÍEAS DE ESERA COAS Cojuto de modelos matemáticos ue describe sistemas específicos de líeas de espera o colas, usados e la toma de decisioes al ecotrar el estado estable o estacioario del sistema

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

13. FACTORIZACIÓN GAUSSIANA Y CUERPOS CUADRÁTICOS

13. FACTORIZACIÓN GAUSSIANA Y CUERPOS CUADRÁTICOS .. Teoría de los úmeros algebraicos. Teoría de los úmeros algebraicos. La teoría algebraica de los úmeros es la rama de la teoría de los úmeros e la cual el cocepto de úmero se expade a los úmeros algebraicos,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Tema 6. Variables cualitativas o atributos

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Tema 6. Variables cualitativas o atributos Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gil José María Sarabia Alegría DPTO. DE ECONOMÍA Este tema se publica bajo Licecia: Creative Commos BY-NC-SA 4.0 Itroducció Las variables cualitativas

Más detalles

OPCIÓN A EJERCICIO 1_A 1 0 2

OPCIÓN A EJERCICIO 1_A 1 0 2 IES Fco Ayala de Graada Sobrates de 007 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 0 - Sea las matrices A, B - 1 0 5 (1 5 putos) Calcule B.B t - A.A t (1 5 putos) Halle la matriz

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

Diagramas de Bode. Respuesta En Frecuencia

Diagramas de Bode. Respuesta En Frecuencia Diagramas de Bode Respuesta E Frecuecia Ig. William Marí Moreo Geeralidades Es u diagrama asitótico: se puede aproximar fácilmete trazado líeas rectas (asítotas). Preseta la respuesta de Magitud y Fase

Más detalles