PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES"

Transcripción

1 PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva 3, Ejercicio, Opción A Reserva 3, Ejercicio, Opción B Reserva 4, Ejercicio, Opción A Reserva 4, Ejercicio, Opción B Septiembre, Ejercicio, Opción B

2 Calcula lim siendo ln la función logaritmo neperiano. ln MATEMÁTICAS II JUNIO. EJERCICIO. OPCIÓN A. ln 0 0 lim lim lim = = = = = = ln ( ) ln 0 ln + ( ) 0 + lim + = = = ln + +

3 si < 0 Sea la función f : definida por f( ) = 3 si 0 a) Estudia su continuidad y derivabilidad. b) Determina sus asíntotas y sus etremos relativos. c) Esboza la gráfica de f. MATEMÁTICAS II JUNIO. EJERCICIO. OPCIÓN B. a) La función, luego, lo es para < 0. La función 3 es continua y derivable en, luego, lo es para 0. Vamos a estudiar, por tanto, la continuidad y derivabilidad en = 0. es continua y derivable en { } ) f (0) = lim = 0 ) lim f( ) = 0 lim 3 = + 0 3) f(0) = lim f( ) = 0 La función es continua en = 0. si < 0 La función derivada es: f '( ) = ( ) 3 si 0 f '(0 ) = + f '(0 ) f '(0 ) + No derivable en = 0 f '(0 ) = 3 b) La función no tiene asíntota vertical para 0 <. lim = = 0 y = 0 es una asíntota horizontal. La función 3 como es polinómica, no tiene asíntotas. Igualamos la derivada a cero para calcular los máimos y mínimos. ( ) = 0 3 No tiene solución. 3= 0 = 3 3 0,, Signo y ' + Función D C

4 3 3 Luego, tiene un mínimo en, 4 c) Hacemos un esbozo de la función.

5 3 Sea f : la función definida por f ( ) = a + b + c+ d. Calcula los valores de a, b, c y d sabiendo que f verifica: - El punto (0,) es un punto de infleión de la gráfica de f. - f tiene un mínimo local en el punto de abscisa =. - La recta tangente a la gráfica de f en el punto de abscisa = tiene de pendiente. MATEMÁTICAS II RESERVA. EJERCICIO. OPCIÓN A. La función será: 3 f ( ) a b c d = Calculamos su derivada primera y segunda: f '( ) = 3a + b+ c ; f ''( ) = 6a+ b - El punto (0,) es un punto de infleión de la gráfica de f 3 Pasa por (0,) a 0 + b 0 + c 0+ d = f ''(0) = 0 6a 0 + b= 0 - f tiene un mínimo local en el punto de abscisa = f '() = 0 3a + b + c= 0. - La recta tangente a la gráfica de f en el punto de abscisa = tiene de pendiente f = a + b + c= '() 3 Resolviendo el sistema resulta: a= b= c= d = f = ; 0 ; ; ( )

6 Se divide el segmento de longitud L = 0 cm en dos trozos. Con uno de los trozos se forma un cuadrado y con el otro un rectángulo en el que la base es el doble de la altura. Calcula la longitud de cada uno de los trozos para que la suma de las áreas del cuadrado y del rectángulo sea mínima. MATEMÁTICAS II RESERVA. EJERCICIO. OPCIÓN B. y y a) Función que queremos que sea mínimo: min = + S y b) Relación entre las variables: 0 3y 4+ 6y = 0 = c) Epresamos la función que queremos que sea mínima con una sola variable: 0 3y 7y 60y+ 00 Smin = + y = + y = 4 d) Derivamos e igualamos a cero 34y S' min = = 0 y = = e) Calculamos la ª derivada: S '' min = > 0 mínimo 4 Luego, el cuadrado tiene de lado base 60 7 cm = = cm y el rectángulo tiene de altura cm y de

7 Sea f : la función definida por f( ) = 3. a) Estudia la continuidad y derivabilidad de f. b) Estudia el crecimiento y decrecimiento de f. Calcula sus etremos relativos (abscisas donde se obtienen y valores que se alcanzan). MATEMÁTICAS II RESERVA. EJERCICIO. OPCIÓN A. a) Lo primero que hacemos es abrir la función: f( ) = 3 = 3 + si < si La función es continua en = 3. Vamos a estudiar si es derivable en = si < 3 + f '( ) = f '(3 ) = 9 f '( 3 ) = si > 3 Luego, la función es derivable en { 3}. b) Calculamos la primera derivada y la igualamos a cero si < 3 f '( ) = f ' = 0 = 0 ; = 3 6 si > 3 (,0) ( 0, ) (,3 ) ( 3, ) Signo f ' + + Función D C D C mínimo (0,0) Máimo (,4) Pico(3,0) No derivable en = 3.

8 ( Ln) si Sea f : (, + ) la función dada por f( ) = ( ) a si = a) Sabiendo que f es continua, calcula a. b) Estudia la eistencia de asíntota horizontal para la gráfica de esta función. En caso de que eista, determina su ecuación. MATEMÁTICAS II RESERVA. EJERCICIO. OPCIÓN B. a) + + lim = = lim = = lim = = (ln ) ln ln (ln ) 0 0 ( ) 0 ( ) 0 Como es continua se cumple que f() = a= lim f( ) = a= b) + + = = = = = ( ) ( ) (ln ) ln ln (ln ) lim lim lim (ln + ) 0 = lim = = lim = = 0 Luego, la recta y = 0 es la asíntota horizontal.

9 Se sabe que la función f : definida como + b+ si f( ) =. a 5 + a si > Es derivable. Determina los valores de a y b. MATEMÁTICAS II RESERVA 3. EJERCICIO. OPCIÓN A. Si la función es derivable en =, primero tiene que ser continua en dicho punto, luego: + b+ = b b = 3a 5 + = lim lim a 5 a 3a 5 + Calculamos la función derivada: f + b si '( ) = a 5 si > Como es derivable en =, se cumple que: f f '( ) = + b b a 5 b a = = '( ) = a 5 Resolviendo el sistema formado por las dos ecuaciones, tenemos: b = 3a 5 a = ; b = b= a 3

10 Se sabe que la función f : definida por 3 f ( ) = a + b + c+ d tiene etremos relativos en (0,0) y en (,). Calcula a, b, c y d. MATEMÁTICAS II RESERVA 3. EJERCICIO. OPCIÓN B. La función será: = Calculamos su derivada primera y segunda: 3 f ( ) a b c d = + + = + f '( ) 3a b c ; f ''( ) 6a b - Etremo relativo en (0,0) - Etremo relativo en (,) Pasa por a + b + c + d = f '(0) = 0 3a 0 + b 0 + c= 0 3 (0,0) Pasa por a + b + c + d = f '() = 0 3a + b + c= 0 3 (,) Resolviendo el sistema resulta: 3 3 a= ; b= ; c= 0 ; d = 0 f( ) = + 3

11 Sea f : la función definida por f ( ) = + e. a) Determina los intervalos de crecimiento y de decrecimiento de f, así como los etremos relativos o locales de f. b) Determina las asíntotas de la gráfica de f. c) Esboza la gráfica de f. MATEMÁTICAS II RESERVA 4. EJERCICIO. OPCIÓN A. a) Calculamos la primera derivada y la igualamos a cero. f '( ) = e = 0 = 0 ; e = 0 = 0 e (,0) ( 0, ) Signo f ' + Función D C mínimo (0,) b) El dominio de la función f() es. Asíntotas Verticales: No tiene Asíntotas Horizontales: lim + = + No tiene; lim + = No tiene e e Asíntota oblicua: y = m + n + e e m = lim = lim + = ; lim n= e lim( e ) 0 + = = Luego, la asíntota oblicua es y = c)

12 De todos los triángulos cuya base y altura suman 0 cm qué base tiene el de área máima?. MATEMÁTICAS II RESERVA 4. EJERCICIO. OPCIÓN B. h b a) Función que queremos que sea máimo: S ma bh = b) Relación entre las variables: b+ h= 0 b= 0 h c) Epresamos la función que queremos que sea mínima con una sola variable: d) Derivamos e igualamos a cero S ma (0 h) h 0h h = = 0 h S' ma= = 0 h= 0 e) Calculamos la ª derivada: S '' ma= < 0 máimo Luego, la base mide 0 cm

13 Se considera la función f :, [ ) + definida por f ( ) = +. Determina la asíntota de la gráfica de f. MATEMÁTICAS II SEPTIEMBRE. EJERCICIO. OPCIÓN A + m = lim = lim + = lim + = ( ) ( ) ( ) ( + ) ( + ) ( + ) n= lim + = lim = = lim = lim = lim = = = lim = + + Luego, la asíntota oblicua es: y =

14 De entre todos los rectángulos cuya área mide 6 cm, determina las dimensiones del que tiene diagonal de menor longitud. MATEMÁTICAS II SEPTIEMBRE. EJERCICIO. OPCIÓN B d y a) Función que queremos que sea mínimo: d = + y min b) Relación entre las variables: 6 y = 6 y = c) Epresamos la función que queremos que sea máimo con una sola variable. d) Derivamos e igualamos a cero: d min = + = 4 5 d' min = = 0 = Luego, es un cuadrado de lado = 4 cm ; y = 4cm

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo. Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3 [4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

Problemas de selectividad. Análisis

Problemas de selectividad. Análisis Departamento de Matemáticas Página 1 Problemas de selectividad. Anális 14.01.- De entre todos los triángulos rectángulos de área 8 cm, determina las dimenones del que tiene la hipotenusa de menor longitud.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 006 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN 9- DERIVADAS - DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de - en o = utilizando la definición Solución: y '() = -6 Calcula

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

RELACION DE PROBLEMAS DE ANÁLISIS. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE ANÁLISIS. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE ANÁLISIS Problemas propuestos para la prueba de acceso del curso 996/97. º. - De una función continua f: R R se sabe que F: R R es una primitiva suya, entonces también lo es la

Más detalles

Aplicaciones de la derivada Ecuación de la recta tangente

Aplicaciones de la derivada Ecuación de la recta tangente Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones DERIVADAS LECCIÓN Índice: Representación gráfica de funciones. Problemas.. Representación gráfica de funciones Antes de la representación de la gráfica de una función se realiza el siguiente estudio: º)

Más detalles

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo. EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula

Más detalles

3. y = (2x+1)2 2x+3. x, x < 2 x+1, x 2

3. y = (2x+1)2 2x+3. x, x < 2 x+1, x 2 Derivadas. Dada la siguiente función, calcular, por la definición, la derivada que se indica:. f() = - ; f (-). f() = ; f (0). f() = ln ; f () 4. f() = - ; f (0) 5. f() = +, < 0, 0 ; f (0) 6. f() = sen,

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS EJERCICIOS RESUELTOS 3 si Si la función f está definida mediante f (), calcula a y b para que sea a b si > continua. La función es continua en (, ) (, ), pues en

Más detalles

2. Calcula las velocidades medias anteriores tomando valores sobre la ecuación del movimiento de dicha partícula: s = 2

2. Calcula las velocidades medias anteriores tomando valores sobre la ecuación del movimiento de dicha partícula: s = 2 Unidad. Derivadas Resuelve Página 0 Movimiento de una partícula Un investigador, para estudiar el movimiento de una partícula, la a iluminado con destellos de flas cada décima de segundo (0, s) durante

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVABILIDAD 1- Considere la función: 3 2 a) Determine las asíntotas, horizontales, verticales y oblicuas, que tenga la función f(x). b) Determine los intervalos de

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre:

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre: EXAMEN DE MATEMATICAS II ª ENSAYO () Apellidos: Nombre: Curso: º Grupo: A Día: CURSO 05 Instrucciones: a) Duración: HORA y 0 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas 11 Aplicaciones de las derivadas 1. Representación de funciones polinómicas Piensa y calcula Calcula mentalmente: a) lím ( 3 3) b) lím ( 3 3) +@ a) + @ b) @ @ Aplica la teoría Representa las siguientes

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES.

EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES. IES Padre Poveda (Guadi) EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES 1 (001-M1;Sept-A-) Las ganancias de una empresa, en millones de pesetas, se ajustan a la 50 100 función

Más detalles

Problemas Tema 3 Solución a problemas de Derivabilidad - Hoja 11 - Todos resueltos

Problemas Tema 3 Solución a problemas de Derivabilidad - Hoja 11 - Todos resueltos Asignatura: Matemáticas II ºBachillerato página 1/10 Problemas Tema 3 Solución a problemas de Derivabilidad - Hoja 11 - Todos resueltos Hoja 11. Problema 1 1. Se tiene un alambre de 1 m de longitud y se

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

Demuestra que el punto de tangencia, T, es el lugar de la recta r desde el que se ve el segmento AB con ángulo máximo.

Demuestra que el punto de tangencia, T, es el lugar de la recta r desde el que se ve el segmento AB con ángulo máximo. Matemáticas aplicadas a las Ciencias Sociales II Resuelve Página 7 Optimización Una persona se acerca a una estatua de m de altura. Los ojos de la persona están m por debajo de los pies de la escultura.

Más detalles

=lim h 0. )=lim h 0 h. (2+h 2)2 2+h 4 ( 4)

=lim h 0. )=lim h 0 h. (2+h 2)2 2+h 4 ( 4) Tema 4 Derivación Ejercicios resueltos Derivación Ejercicio Estudiar la continuidad y derivabilidad de la función: ½ f () = si ( ) en el punto =. 4 si > Estudiemos primero los límites laterales en =: f

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD ) Conderar la función f : (, ) R definida por: a 6 f() 5 a) Determinar el valor de a sabiendo que f es continua (y que a > ). Vamos a comprobar que el

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

PRUEBAS DE SELECTIVIDAD.

PRUEBAS DE SELECTIVIDAD. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Salvador Serrano - DtoMatemáticas (Daniel García) 01 / 1 PRUEBAS DE SELECTIVIDAD Función real de variable real Derivabilidad y Rectas tangentes EJERCICIO

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS UNIDAD APLICACIONES DE LAS DERIVADAS Página 98 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA.

RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. 1. Sea f : IR IR definida por f() = 2 + 1, IR. Probar, utilizando la definición, que f es derivable en cualquier punto de IR. Encontrar los

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

RELACIÓN DE EJERCICIOS DE CONTINUIDAD Y DERIVABILIDAD 1º DE BACHILLERATO

RELACIÓN DE EJERCICIOS DE CONTINUIDAD Y DERIVABILIDAD 1º DE BACHILLERATO RELACIÓN DE EJERCICIOS DE CONTINUIDAD Y DERIVABILIDAD º DE BACHILLERATO.-Dada la curva de ecuación y = -. Calcular la ecuación de su recta tangente punto de abscisa = -. Comprobar si eiste algún punto

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles