Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "-100 0.10 0 0.20 50 0.30 100 0.25 150 0.10 200"

Transcripción

1 ESTADISTICA Y PROBABILIDAD Orientadores:. Arch. Taller3_est.doc 1. El siguiente es un ejemplo de experimentos y variables aleatorias asociadas. Identifique en cada caso los valores que la variables aleatoria puede tomar, y diga si la variable aleatoria es discreta o continua. Experimento a. Presentar un examen de 20 preguntas b. Observe automóviles llegando a una caseta de cobro durante una hora. c. Auditar 50 declaraciones de impuesto. d. Observe el trabajo de un empleado durante ocho horas. e. Pese un embarque de productos. Variable aleatoria (x) Número de preguntas contestadas correctamente Número de automóviles llegando a la caseta de cobro. Número de declaraciones con errores. Cantidad de horas no productivas. Cantidad de libras. 2. La tabla siguiente muestra una distribución de probabilidad parcial para las utilidades proyectadas de MAR Company (en miles de dólares) en su primer año de operación (el valor negativo indica una pérdida). X F(x) a) Encuentre el valor faltante de f(200). Cuál es su interpretación de este valor? b) Cuál es la probabilidad de que MAR llegue a ser redituable? c) Cuál es la probabilidad de que MAR llegue a ganar por lo menos dólares? 3. Se ha reunido información sobre el número de quirófanos en uso en el Hospital General a lo largo de un período de 20 días. En 3 de los días sólo Pág: 1 de 5

2 se utilizó un quirófano; en 5 días se utilizaron 2; en 8 se utilizaron 3 y en 4 días se utilizaron los 4 quirófanos. a) Utilice el procedimiento de frecuencia relativa para construir una frecuencia de probabilidades para el número de quirófanos en uso en cualquier día dado. b) Dibuje la gráfica de distribución de probabilidad. c) Muestre que su distribución de probabilidad satisface las condiciones requeridas para una distribución de probabilidad discreta válida. 4. A continuación aparece una distribución de probabilidad para la variable aleatoria x. X F(x) Total 1.00 a) Calcule E(x), el valor esperado o esperanza matemática de x. b) Calcule σ 2, la varianza de x. c) Calcule σ, la desviación estándar de x. 5. Una ruleta en un casino de Las Vegas tiene 18 números rojos, 18 números negros y 2 números verdes. Suponga que se coloca una apuesta de 5 dólares sobre los números negros. Si sale un número negro, el jugador gana 5 dólares. De lo contrario, el jugador pierde 5 dólares. a) Suponga que x es la variable aleatoria que indica la utilidad neta del jugador en una apuesta. Por lo que x = 5 si el jugador gana, y x = -5 si pierde. Muestre la distribución de probabilidad de x. b) Cuál es la cantidad esperada ganada en una apuesta? Cuál es su interpretación de dicho valor? c) Cuál es la varianza sobre la cantidad ganada en una apuesta? Y cuál es la desviación estándar? d) Si un jugador hace 100 apuestas de 5 dólares cada una, Cuáles serán las utilidades esperadas? Comente la razón por la cual los casinos prefieren elevados volúmenes de apuestas. 6. La distribución de probabilidad para reembolsos por daño pagados por el Newton Automobile Insurance Company en siniestros por colisión son Pág: 2 de 5

3 Pagos $ PRB(pagos) a) Utilice el rubro pago esperado por colisión para determinar la póliza de seguros por colisión que le permita a la empresa llegar al punto de equilibrio. b) La compañía de seguros carga una tasa anual de 260 dólares de cobertura por colisión. Cuál es el valor esperado o esperanza matemática de la póliza de colisión para el asegurado? (sugerencia se trata de los pagos esperados de la empresa menos el costo de cobertura.) Por qué el asegurado adquiere una póliza de colisión con este valor esperado o esperanza matemática? 7. La demanda de un producto fabricado por Carolina Industries varía de manera importante de un mes a otro. Con base en los datos de los dos últimos años, la siguiente distribución de probabilidades muestra la demanda mensual de la empresa. Demanda en Probabilidades unidades a) Si la empresa coloca pedidos mensuales iguales al valor esperado o esperanza matemática de la demanda mensual, cuál debería ser la cantidad mensual de pedido de Carolina para este producto? b) Suponga que cada unidad demandada genera ingresos por 70 dólares y que cada unidad pedida cuesta 50 dólares. Cuánto ganará o perderá la empresa en un mes si coloca un pedido con base en su respuesta a la parte a, y la demanda real de esta partida es de 300 unidades? c) Cuál es la varianza y la desviación estándar para el número de unidades demandadas? 8. La J. R. Ryland Computer Company está considerando efectuar una expansión a su planta que le permitirá a la empresa iniciar la producción de un nuevo producto para computadores. El presidente de la empresa debe determinar si debe convertir la expansión en un proyecto a mediana o a Pág: 3 de 5

4 gran escala. Una incertidumbre implica la demanda del nuevo producto, mismo que para efectos de planeación puede ser de demanda baja, media o alta. Las estimaciones de probabilidad para las demandas son de 0.20, 0.50 y de 0.30, respectivamente. Suponiendo que x indica la utilidad anual en 1,000 dólares, los planeadores de la empresa han desarrollado pronósticos y utilidades para los proyectos de expansión a media y a gran escala. Demanda Utilidades por Utilidades por expansión a expansión a gran escala media escala x f(x) y f(y) Baja Media Alta a) Calcule el valor esperado o esperanza matemática de la utilidad asociada con las dos alternativas de expansión. Qué decisión se preferiría para alcanzar el objetivo de maximizar la utilidad esperada? b) Calcula la varianza de la utilidad asociada con las dos alternativas de expansión. qué decisión se prefiere para el objetivo de minimizar el riesgo de incertidumbre? 9. Para la variable aleatoria normal estándar z, calcule las probabilidades siguientes: a. P(0 z 0.83) b. P(-1.57 z 0) c. P(z > 0.44) d. P(z ) e. P(z < ) f. P(z ) 10. Para la variable aleatoria normal estándar z, determine z para cada una de las situaciones. a. El área entre 0 y z es b. El área entre 0 y z es c. El área a la derecha de z es d. El área a la izquierda de z es Con la variable aleatoria normal estándar z, determine z para cada una de las siguientes situaciones. Pág: 4 de 5

5 a. El área de la izquierda de z es b. El área entre -z y z es c. El área entre -z y z es d. El área de la izquierda de z es e. El área de la derecha de z es La demanda para un producto nuevo se estima normalmente distribuida con µ= 200 y σ= 40. Suponga que x es el número de unidades demandadas y encuentre las probabilidades siguientes. a. P(180 x 220) b. P(x 250) c. P(x 100) d. P(225 x 250) Pág: 5 de 5

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Similar a las distribuciones de frecuencia, una distribución de probabilidad discreta puede ser representada (descrita) tanto gráficamente como

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Y DISTRIBUCIONES DE PROBABILIDAD Plan Común de Ingeniería 1.

Más detalles

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas Elementos de Probabilidad y Estadística Segundo de Economía Examen del 6 de junio de 6 DURACIÓN: horas. a) Se realizan lanzamientos de un dado regular. i) Calcular la probabilidad de obtener exactamente

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación. PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Algunas consideraciones sobre los efectos en bienestar de contratos con Costos de Administración Variables en los Seguros Ordinarios de Vida

Algunas consideraciones sobre los efectos en bienestar de contratos con Costos de Administración Variables en los Seguros Ordinarios de Vida Algunas consideraciones sobre los efectos en bienestar de contratos con Costos de Administración Variables en los Seguros Ordinarios de Vida Fernando Solís Soberón Emma Izquierdo Ortega Diciembre 1992

Más detalles

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 1 Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 2 ÍNDICE Introducción 3 Aplicaciones de la Simulación 3 La Metodología de la Simulación por Computadora 5 Sistemas, modelos

Más detalles

Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010.

Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010. Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010. Dos puntos 1. Para cada una de las siguientes variables, indica si son variables aleatorias,

Más detalles

Algunas Distribuciones de Probabilidad

Algunas Distribuciones de Probabilidad Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los

Más detalles

0 en el resto. P 2 X 4 c) Obtener x tal que P( X x)=0.3. Se pide: a) La variable aleatoria es discreta o x si 0 x 4

0 en el resto. P 2 X 4 c) Obtener x tal que P( X x)=0.3. Se pide: a) La variable aleatoria es discreta o x si 0 x 4 .- Sea la función de probabilidad de una variable aleatoria: i 4 5 Probabilidad k P X. Se pide. A) La función de distribución. B) Primer cuartil. C) k si,. Si la función de densidad de una v. a. continua

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD EJERCICIOS 5 Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Una compañía de seguros utiliza la

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

Ejercicios distribuciones discretas probabilidad

Ejercicios distribuciones discretas probabilidad Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Modelos de distribuciones discretas y continuas Discretas En la versión actual de Rcdmr podemos encontrar las distribuciones discretas estudiadas en este curso y para cada una de ellas están disponibles

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Probabilidad y Simulación

Probabilidad y Simulación Probabilidad y Simulación Estímulo del Talento Matemático Real Academia de Ciencias 4 de febrero de 2006 Entendiendo el azar Queremos entender un fenómeno aleatorio (azar, incertidumbre). Entenderlo lo

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería, Estadística Problemas de examenes: Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Problemas resueltos del Tema 3.

Problemas resueltos del Tema 3. Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

Teoría de la Decisión Estadística Ejercicios

Teoría de la Decisión Estadística Ejercicios Teoría de la Decisión Estadística Ejercicios 1. Una librería debe decidir cuántas revistas pedir. Las compra a 20 euros y las vende a 25. Las revistas que no vende al final del día no tienen valor. La

Más detalles

A veces pueden resultar engañosas ya que según el método de cálculo, las rentabilidades pasadas pueden ser diferentes. Un ejemplo:

A veces pueden resultar engañosas ya que según el método de cálculo, las rentabilidades pasadas pueden ser diferentes. Un ejemplo: MÉTODOS DE GESTIÓN DE UNA CARTERA DE VALORES RENTABILIDAD Y VOLATILIDAD RENTABILIDAD La rentabilidad de un activo es la suma de las plusvalías generadas y cobradas y los dividendos pagados, es decir puede

Más detalles

TALLER N 5 DE ESTADÍSTICA

TALLER N 5 DE ESTADÍSTICA UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS PEDAGOGÍA EN MATEMÁTICA Y COMPUTACIÓN TALLER N 5 DE ESTADÍSTICA Integrante 1 : Victor Córdova Cornejo (heibubu@hotmail.com) Integrante 2 : Rodrigo

Más detalles

La estrategia básica para jugar blackjack.

La estrategia básica para jugar blackjack. La estrategia básica para jugar blackjack. Por Carlos Zilzer. Concepto básico: En cada turno, el jugador tiene que seleccionar una de 3 posibles jugadas: Plantarse, Pedir una carta o Doblar la apuesta.

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

Puede dar pérdida un Casino?

Puede dar pérdida un Casino? Puede dar pérdida un Casino? por Ernesto Mordecki En esta nota calculamos la probabilidad de que pierda la banca en la ruleta, en un período dado de tiempo. uestro enfoque consiste en determinar cuantas

Más detalles

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

Seguro de Vida. Folletos para los Participantes

Seguro de Vida. Folletos para los Participantes Folletos para los Participantes Nationwide y el Marco Nationwide son marcas federales de servicio registradas de Nationwide Mutual Insurance Company. Folleto 1 El valor que usted tiene para sus sobrevivientes

Más detalles

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1 Ejemplo: Basándose en ciertos estudios una compañía a clasificado de acuerdo con la posibilidad de encontrar petróleo en tres tipos de formaciones. La compañía quiere perforar un pozo en determinado lugar

Más detalles

Guía de Ejercicios. Matemática 11

Guía de Ejercicios. Matemática 11 Guía de Ejercicios Matemática 11 Matemática 11 Resolver: 1) 5 + 3x 31 3x 5) 3(2x 1) > 4+5(x 1) 6) x + 4 3 > 2x 3 +1 4 1 7) 4 (2x 1) x

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD 1 PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o

Más detalles

Estadística Actuarial I. Prácticas de Simulación con Excel. Enunciados de las prácticas y guía para su realización

Estadística Actuarial I. Prácticas de Simulación con Excel. Enunciados de las prácticas y guía para su realización Estadística Actuarial I Prácticas de Simulación con Excel Enunciados de las prácticas y guía para su realización Introducción Este documento contiene los enunciados de las prácticas a resolver por los

Más detalles

BALEARES JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Contesta de manera clara y razonada una de las dos opciones propuestas.

BALEARES JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Contesta de manera clara y razonada una de las dos opciones propuestas. BALEARES JUNIO 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Contesta de manera clara y razonada una de las dos opciones propuestas. OPCIÓN A ) Tres familias van a una pizzería. La primera familia

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA N o 1: Estadística y Probabilidades Profesor: Hugo S. Salinas. Primer Semestre 2011 1. Señalar

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE TRABAJO DE VERANO 2014 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: ARITMÉTICA Y ÁLGEBRA CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE Números: reales, irracionales, racionales.

Más detalles

Guía. probabilidades. Comprender. Una. para las L A VENTA JA DE L A C A SA

Guía. probabilidades. Comprender. Una. para las L A VENTA JA DE L A C A SA L A VENTA JA DE L A C A SA Una Guía para las Comprender probabilidades AMERICAN GAMING ASSOCIATION 1299 Pennsylvania Avenue, NW Suite 1175 Washington, DC 20004 202-552-2675 www.americangaming.org 2012

Más detalles

Aplicación 1: Asegurarse contra los malos resultados (contra la incertidumbre)

Aplicación 1: Asegurarse contra los malos resultados (contra la incertidumbre) 4. Aplicaciones Aplicación 1: Asegurarse contra los malos resultados (contra la incertidumbre) En general, gente es aversa al riesgo. Sufre desutilidad del riesgo un individuo tal vez estaría dispuesto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera:

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera: INTRODUCCIÓN AL VALOR ESPERADO Y VARIANZA (5 MINUTOS) Cuando nos hablan del promedio de que ocurra un evento, cómo sabemos con certeza qué tan cerca estamos de alcanzar ese promedio? Esta pregunta nos

Más detalles

SISTEMA CON UN SERVIDOR

SISTEMA CON UN SERVIDOR TALLER 6 : Problemas de Líneas de Espera. 1.SISTEMA CON UN SERVIDOR. Una compañía estatal tiene un numero de estaciones para el pesado de camiones a lo largo de una gran autopista, para verificar que el

Más detalles

Universidad Austral de Chile Escuela de Ingeniería Comercial

Universidad Austral de Chile Escuela de Ingeniería Comercial Escuela de Ingeniería Comercial Ayudantía # 01, Incertidumbre y Seguros Profesor: Carlos R. Pitta 1 1 cpitta@spm.uach.cl Problema # 01: Durante el último clásico Colo-Colo vs la U Jorge el hincha apostó

Más detalles

Administración de Inventarios

Administración de Inventarios Administración de Inventarios Los inventarios son bienes tangibles que se tienen para la venta en el curso ordinario del negocio o para ser consumidos en la producción de bienes o servicios para su posterior

Más detalles

TALLER: Renta Variable 1. C. Si la empresa A se fusiona con la empresa B, la cual es del mismo tamaño, y si no existen sinergias económicas,

TALLER: Renta Variable 1. C. Si la empresa A se fusiona con la empresa B, la cual es del mismo tamaño, y si no existen sinergias económicas, I. TALLER: Renta Variable 1 A. Su corredor le dice que la desviación estándar de los rendimientos de una cartera depende sólo de las desviaciones estándar de los activos individuales y de la cantidad de

Más detalles

CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA

CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA Interpolación de términos en una sucesión. Cálculo del término general de sucesiones muy sencillas. Distinción entre progresiones aritméticas y geométricas. Interpolación

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles.

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. OPCION A: 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. k t si t [0,2] b) Sea f(t)= 0 en el resto Calcular k para que f sea de densidad, calcular la función de distribución. 2. a) De

Más detalles

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D.

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D. UNIVERSIDAD DE PUERTO RICO FACULTAD DE ADMINISTRACION DE EMPRESAS INSTITUTO DE ESTADISTICA ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus, Ph.D. Presentación Este curso ofrece al estudiante, la posibilidad

Más detalles

5.1. PROBLEMAS DERIVADOS DE LA ASÍMETRIA DE INFORMACIÓN- Riesgo Moral

5.1. PROBLEMAS DERIVADOS DE LA ASÍMETRIA DE INFORMACIÓN- Riesgo Moral 5.1. PROBLEMAS DERIVADOS DE LA ASÍMETRIA DE INFORMACIÓN- Riesgo Moral Matilde Machado Evidencia La cuestión es simple: Un individuo con seguro médico va más o menos veces al médico que el mismo individuo

Más detalles

Ejercicios sobre tiempo y riesgo, Tema 3

Ejercicios sobre tiempo y riesgo, Tema 3 Ejercicios sobre tiempo y riesgo, Tema 3 Microeconomía I En clase se hará especial énfasis en los ejercicios 7.3, 7.4, 7.5, 7.6, 7.7, 7.9, 7.12 (parte de esta pregunta quedará más clara cuando se termine

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Dada una función f : D R R y un intervalo I D

Más detalles

Clase 8: Distribuciones Muestrales

Clase 8: Distribuciones Muestrales Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas

Más detalles

Unidad 4: Variables aleatorias

Unidad 4: Variables aleatorias Unidad 4: Variables aleatorias Logro de la unidad 4 Al finalizar la unidad 4, el alumno aplica el concepto de variable aleatoria, valor esperado y probabilidad para la toma de decisiones en un trabajo

Más detalles

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA MaMaEuSch (Management Mathematics for European School) http://www.mathematik.uni-kl.de/~mamaeusch/ Modelos matemáticos orientados a la educación Clases

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación EXAMEN RESUELTO DE ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO / FECHA: de Enero de Duración del examen: 3 horas Fecha publicación

Más detalles

MICROECONOMÍA Grado en ADE Universitat de València Prof. Carlos Peraita 1 TEMA 6. Los mercados con información asimétrica

MICROECONOMÍA Grado en ADE Universitat de València Prof. Carlos Peraita 1 TEMA 6. Los mercados con información asimétrica MICROECONOMÍA Grado en ADE Universitat de València Prof. Carlos Peraita 1 EMA 6 Los mercados con información asimétrica MICROECONOMÍA Grado en ADE Universitat de València Prof. Carlos Peraita 2 EMA 6 6.1

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 2: PROBABILIDAD Plan Común de Ingeniería 1. En un torneo de baloncesto vacacional participan cuatro

Más detalles

Programación Lineal: Modelos PLE

Programación Lineal: Modelos PLE Programación Lineal: Modelos PLE CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas Programación Lineal: Modelos PLE euresti@itesm.mx 1 / 35 Introduccion Introduccion En esta lectura se verán cómo

Más detalles

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0)

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0) 1. La rueda de una ruleta se divide en 25 sectores de igual área que se enumeran del 1 al 25. Encuentra una fórmula para la distribución de probabilidades de la v.a. X que representa el número obtenido

Más detalles

LA DISTRIBUCIÓN NORMAL

LA DISTRIBUCIÓN NORMAL LA DISTRIBUCIÓN NORMAL Autores: Ángel A. Juan (ajuanp@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS CARACTERÍSTICAS Y REPRESENTACIÓN DE UNA DISTRIBUCIÓN

Más detalles

Como construir carteras eficientes a medida

Como construir carteras eficientes a medida Un caso práctico desarrollado por el programa EFE 2000 de la empresa SciEcon Como construir carteras eficientes a medida El diseño de carteras eficientes involucra siempre un proceso de optimización. Si

Más detalles

Determinar el tamaño del lote óptimo a comprar, así como la frecuencia de adquisición.

Determinar el tamaño del lote óptimo a comprar, así como la frecuencia de adquisición. Unidad I. Administración de inventarios. 1.1 Introducción. 1.2 Propósito de los inventarios. 1.3 Problemas de decisión. 1.4 Estructuras de costos de inventario. 1.5 Demanda independiente versus demanda

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Investigación Operativa Práctica 6: Simulación Guión práctico: Generación de Números Aleatorios y Simulación Monte Carlo Curso 08/09 Objetivo: Aprender

Más detalles

Unidad 16. Depreciación

Unidad 16. Depreciación Unidad 16 Depreciación INTRODUCCIÓN Desde el momento mismo en que se adquiere un bien, éste empieza a perder valor. Esta pérdida de valor es conocida como depreciación. La depreciación se define como la

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

15 Distribuciones continuas. La distribución normal

15 Distribuciones continuas. La distribución normal Distribuciones continuas. La distribución normal ACTIVIDADES INICIALES Solucionario.I. Representa la función valor absoluto: x si x 0 y x x si x 0 Y O X.II. Representa la función: 2x 3 si x f(x) si x 4

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página):

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página): Univ. de Alcalá. Estadística 2014-15 Dpto. de Física y Matemáticas Grado en Biología. Examen final. Miércoles, 21 de Enero de 2015. Apellidos: Nombre: INSTRUCCIONES (LEER ATENTAMENTE). Puedes descargar

Más detalles

Números aleatorios. Contenidos

Números aleatorios. Contenidos Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método

Más detalles

CAPÍTULO 5 DISTRIBUCIONES DE PROBABILIDADES

CAPÍTULO 5 DISTRIBUCIONES DE PROBABILIDADES CAPÍTULO 5 DISTRIBUCIONES DE PROBABILIDADES En este capítulo se introducirá el concepto de variable aleatoria, cuya importancia radica en introducir modelos matemáticos en el cálculo de probabilidades.

Más detalles

ADMINISTRACIÓN FINANCIERA DE CORTO PLAZO POLÍTICA DE CAPITAL DE TRABAJO Y REQUERIMIENTOS DE FONDOS

ADMINISTRACIÓN FINANCIERA DE CORTO PLAZO POLÍTICA DE CAPITAL DE TRABAJO Y REQUERIMIENTOS DE FONDOS ADMINISTRACIÓN FINANCIERA DE CORTO PLAZO POLÍTICA DE CAPITAL DE TRABAJO Y REQUERIMIENTOS DE FONDOS Política de Capital de Trabajo Política de Capital de Trabajo Se refiere a dos aspectos básicos: 1. Política

Más detalles

COSTO-VOLUMEN-UTILIDAD

COSTO-VOLUMEN-UTILIDAD U N I V E R S I D A D D E SAN MARTIN DE PORRES PROGRAMA LA UNIVERSIDAD INTERNA 2012 COSTO-VOLUMEN-UTILIDAD JORGE L. PASTOR PAREDES 1 ASPECTOS BASICOS Relación existente entre el volumen de ventas y la

Más detalles

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes

Más detalles

EQUILIBRIO EN MERCADOS COMPETITIVOS SEGUROS: UN ENSAYO SOBRE ECONOMÍA A DE LA INFORMACIÓN IMPERFECTA

EQUILIBRIO EN MERCADOS COMPETITIVOS SEGUROS: UN ENSAYO SOBRE ECONOMÍA A DE LA INFORMACIÓN IMPERFECTA EQUILIBRIO EN MERCADOS COMPETITIVOS SEGUROS: UN ENSAYO SOBRE ECONOMÍA A DE LA INFORMACIÓN IMPERFECTA I. MODELO BÁSICOB (W): ingreso si no tiene un accidente. (W-d): ingreso si tiene un accidente. α 1 :

Más detalles

FINANZAS INTERNACIONALES

FINANZAS INTERNACIONALES FINANZAS INTERNACIONALES Unidad 5: Manejo del Riesgo Cambiario 16. COBERTURA DEL RIESGO CAMBIARIO: OPCIONES SOBRE DIVISAS En este capítulo se revisa la estrategia de cobertura del riesgo cambiario mediante

Más detalles

Asignatura: Matemática Financiera.

Asignatura: Matemática Financiera. Asignatura : Matemática Financiera. Carrera : Ingeniería en Sistemas. Año Académico : II Año. Unidad No. V : La depreciación y el flujo neto de efectivo antes y después de impuestos. Profesor : MSc. Mauricio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas)

Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas) Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas) Ejercicio 4 1 Una persona vende automóviles nuevos para una empresa. Generalmente negocia el mayor número de autos los sábados. Ha establecido

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

EDUCACIÓN CONTINUA. Curso. Diplomado: Finanzas Empresariales EBC- Cambridge DURACIÓN: 150 HORAS. Ganar es indispensable. www.ebc.mx ALCANCES DEL CURSO

EDUCACIÓN CONTINUA. Curso. Diplomado: Finanzas Empresariales EBC- Cambridge DURACIÓN: 150 HORAS. Ganar es indispensable. www.ebc.mx ALCANCES DEL CURSO DURACIÓN: 150 HORAS ALCANCES DEL CURSO Los empresarios o integrantes del área de finanzas se hacen entre otros cuestionamientos lo siguiente: 4 Qué se debe hacer para mejorar los resultados de la empresa?

Más detalles

Fundamentos de Investigación de Operaciones Teoría de Inventarios

Fundamentos de Investigación de Operaciones Teoría de Inventarios Fundamentos de Investigación de Operaciones de mayo de 04. Introducción El costo de mantener un cierto número de unidades en inventario puede ser importante para una empresa. El objetivo de la es establecer

Más detalles

Carrera: MCM - 0531. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.

Carrera: MCM - 0531. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Mecánica MCM - 0531 3 2 8 2.- HISTORIA DEL

Más detalles

Finanzas Empresariales

Finanzas Empresariales Diplomado Duración 145 horas Conocimiento en acción Presentación Los empresarios o integrantes del área de finanzas de cualquier organización o empresa se pueden formular algunas de las siguientes preguntas:

Más detalles

LA CONCIENTIZACIÓN Y EL CONOCIMIENTO DEL SEGURO DEL INQUILINO ENTRE LOS INQUILINOS HISPANOS

LA CONCIENTIZACIÓN Y EL CONOCIMIENTO DEL SEGURO DEL INQUILINO ENTRE LOS INQUILINOS HISPANOS LA CONCIENTIZACIÓN Y EL CONOCIMIENTO DEL SEGURO DEL INQUILINO ENTRE LOS INQUILINOS HISPANOS En agosto 2014, State Farm llevó a cabo una encuesta en línea para analizar la concientización y el conocimiento

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles