Unidad I Funciones Expresar una función. Dominios

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad I Funciones Expresar una función. Dominios"

Transcripción

1 Unidad I Funciones Epresar una función 1. Un rectángulo tiene un perímetro de 0m. Eprese el área del rectángulo como función de la longitud de uno de sus lados.. Un rectángulo tiene un área de 16 m. Eprese su perímetro como función de la longitud de uno de sus lados.. Una ventana normanda tiene la forma de un rectángulo coronado por un semicírculo. Si el perímetro de la ventana es de 0 pies, eprese el área A como función del ancho. Dominios 1.. 𝑓 𝑥 𝑥³ + 𝑥² 𝑥 1. 𝑓 𝑥 𝑥! 𝑥² 𝑥 𝑥 1. 𝑥 1 𝑓 𝑥 𝑥5 𝑥. 𝑥 Academia de Matemáticas, Física e Informática 𝑓 𝑥 𝑥! 𝑥! 𝑥 𝑥. 𝑥 𝑓 𝑥 𝑥 5 𝑓 𝑥 𝑥 𝑥 1 6𝑥 5 𝑥 Guía Anual Matemáticas 6 Área 1 y

2 . 5. 𝑓 𝑥 𝑓 𝑥 𝑥! 𝑥 𝑥! + 𝑥 8. 𝑓 𝑥 𝑓 𝑥 𝑥 𝑥 𝑥 𝑥+ 𝑥 Academia de Matemáticas, Física e Informática 𝑥! + 6𝑥 + 5 𝑥 9. 𝑓 𝑥 𝑥+1 𝑥5 𝑓 𝑥 𝑥 𝑥 𝑥6 𝑥 Guía Anual Matemáticas 6 Área 1 y

3 Rangos 1. 𝑓 𝑥 𝑥 + 𝑥 +. 𝑓 𝑥 6𝑥 𝑥 𝑓 𝑥 𝑦 𝑦.. 5. 𝑓 𝑥 𝑥+ 𝑓 𝑥 𝑥+ 𝑓 𝑥 𝑦 8. 𝑓 𝑥 𝑦 6. 𝑦 7. 𝑥 + 𝑥 𝑥 𝑥+ 𝑦 Academia de Matemáticas, Física e Informática 𝑥! + 1 𝑦 9. 𝑓 𝑥 𝑥+1 𝑥5 𝑓 𝑥 𝑦 𝑥 𝑥6 𝑦 Guía Anual Matemáticas 6 Área 1 y

4 Función inversa 1. f ( ). f ( ) + f. ( ) f 1 ( ). f ( ) + 1 f 1 ( ) 5. f ( ) + f 1 ( ) 6. f ( ) 1 f 1 ( ) f 1 ( ) f 1 ( ) Guía Anual Matemáticas 6 Área 1 y

5 Unidad II Límites 1. lim. lim e 0 7. lim ( ). lim ( 1) 5. lim lim lim 5 8. lim 9 Guía Anual Matemáticas 6 Área 1 y

6 9. lim lim lim lim 5 lim lim 9 1. Guía Anual Matemáticas 6 Área 1 y

7 Guía Anual Matemáticas 6 Área 1 y 15. ( ) lim 16. ( ) + lim 17. lim lim lim 0. + lim 6

8 Continuidad 1. Determinar el intervalo donde f ( ) es continua. 1. Determinar el intervalo donde 5 f ( ) es continua Determinar el intervalo donde ( ) continua. f es. Determinar el intervalo donde ( ) 15 f es continua. 5. Determinar el intervalo donde si < f ( ) es continua. si 6. Determinar el intervalo donde 1 si 0 f ( ) es continua. si > 0 7. Determinar el intervalo donde + 1 si < f ( ) es continua 1 si 8. Determina el intervalo donde si < 1 f ( ) es continua si 1 Guía Anual Matemáticas 6 Área 1 y

9 Derivada por definición (Método de los pasos) 1. f ( ) 5. f ( ) + 5. f ( ) f ( ) Guía Anual Matemáticas 6 Área 1 y

10 Unidad III Derivada f ( ). ( ) f ( ) f' ( ) q( z ) z q' ( z ) W ( θ ) θ W '( θ ) f ( ) e ( ) f ( y ) y f' ( y ) r( t ) t r' ( t ) Q( r) r Q'( r) 9. T( t) t T'( t) 1 5 ( P r) r 10. P'( r) 11. f ( ) ( ) g y) 1. g'( y) ( y f ( ) 1. f' ( ) f ( ) 1. f' ( ) f ( ) f' ( ) f ( ) + ( ) 1 Guía Anual Matemáticas 6 Área 1 y

11 Guía Anual Matemáticas 6 Área 1 y ) '( ) ( f f 18. ) '( ) ( 5 f f 19. ( ) + ) ( f' ) ( f 0. ( ) + + ) f' ( ) ( f ) ( f 1 1. ( ) ) '( ) ( ) ( 1 f f f. ( ) ( ) ) '( 1 ) ( 1 ) ( f f f. ( ) ( ) + ) f' ( ) ( f 5. ( ) ( ) + ) f' ( ) ( f 5 5

12 5. f' ( ) ( + 5) f ( ) 6. ) ( ) f ( ) + f' ( 7. + f ( ) f' ( ) f' ( ) 8. ) ( 1) ( + ) f ( ) 6 f' ( Guía Anual Matemáticas 6 Área 1 y

13 f ( ) f' ( ) f ( ) ( ) f ( ) sen(8 + 1) ( ). f ( ) sen ( ). f ( ) cos ( ) +. f ( ) cos ( ) 5. 6 f ( ) tan + ( ) f ( ) tan ( ) Guía Anual Matemáticas 6 Área 1 y

14 7. f ( ) cot + ( ) f ( ) cot 9 ( ) 9. f ( ) sec ( ) f ( ) sec ( ) 1. f ( ) csc ( ) ( ) +. f ( ) csc ( ) f ( ) arcsen ( ) ( ). f ( ) arcsen ( ) ( + ) Guía Anual Matemáticas 6 Área 1 y

15 5. f ( ) arccos ( ) ( + 5) 6. f ( ) arccos ( ) ( + 6) 6 7. f ( ) arctan ( ) ( 6 + ) + arctan( 9 + 1) f ( ) arctan( 6 ) 8. ( ) 9. f ( ) arccot ( ) ( ) 50. f ( ) arccot ( ) ( 6 + ) f ( ) arcsec 5. 9 ( ) f ( ) arcsec ( ) ( 5 + 6) Guía Anual Matemáticas 6 Área 1 y

16 5. f ( ) ln6 ( ) 5. f ( ) ln ( ) ( 8 9) 8 + f() ln f' ( ) f ( ) ln 9 9 ( ) 57. f ( ) log5 8 ( ) 58. f ( ) log6 ( ) ( 11 8) 59. f ( ) log ( ) ( + ) 60. f ( ) log ( ) ( 9) 61. f ( ) e ( ) 6. f ( ) e ( ) Guía Anual Matemáticas 6 Área 1 y

17 6. f ( ) e ( ) ( + ) 6. f ( ) e ( ) 65. f ( ) ( ) 66. f ( ) ( ) f ( ) ( ) f ( ) 7 ( ) Guía Anual Matemáticas 6 Área 1 y

18 Derivada de funciones Implícitas y y y + y y + 5 y y y y 7. + y 15 Guía Anual Matemáticas 6 Área 1 y

19 75. f ( ) Sen ( ) ( ) Cos ( ) 76. f ( ) Cos ( ) ( ) 77. f ( ) Tan ( ) ( ) 78. f ( ) Sen ( ) ( ) Cos ( ) 79. f ( ) Sen ( ) ( ) Cos ( ) Sen f ( ) 80. Cos ( ) ( ) ( ) Guía Anual Matemáticas 6 Área 1 y

20 Unidad IV Aplicaciones de la Derivada Regla de L Hopital lim 1 ln lim sen. cos sen lim 0 6. lim 0 ln ln( 1 ) 5. lim 6. lim 1 e e 0 e 1 Guía Anual Matemáticas 6 Área 1 y

21 Obtener La Ecuación de la Recta Tangente y la Ecuación de la Recta Norma de la Curva en el punto indicado. 1. Curva y en ( 1, ). Curva y 5en (, 7) Guía Anual Matemáticas 6 Área 1 y

22 7 1. Curva y en, + 5 Curva + + y 16 0 En el punto (,1) Guía Anual Matemáticas 6 Área 1 y

23 Máimos y Mínimos 1. Función f ( ) Operación. Función f Operación ( ) 6 Guía Anual Matemáticas 6 Área 1 y

24 1. Función f ( ) Función 1 f ( ) Guía Anual Matemáticas 6 Área 1 y

25 Optimización 1. Un hombre quiere sembrar un jardín utilizando un lado de su casa como muro del jardín y colocando una cerca de alambre en los tres lados restantes. Encuentra las dimensiones del jardín más grande que pueda rodear utilizando 0 pies de malla de alambre? Respuesta:. En el estacionamiento de una tienda se construirá un aneo rectangular que tenga un área de 600 pies. Las paredes de tres lados se construirán en madera que tiene un costo de $7 el pie lineal. La cuarta se construirá con tabique que tiene un costo de $1 el pie lineal. Encuentre las dimensiones del aneo de mayor tamaño y menor costo. Respuesta: Guía Anual Matemáticas 6 Área 1 y

26 . Se tiene una caja rectangular de base cuadrada cuyos lados miden y de altura h. Determina las dimensiones para que la caja tenga un volumen de 0 cm y el área total de su superficie sea mínima. Respuesta:. En la construcción de un recipiente cilíndrico de hojalata se emplean 100 in, esta cantidad incluye las tapas. Cuál es el mayor volumen posible que podría tener la lata? Respuesta: Guía Anual Matemáticas 6 Área 1 y

27 Razón de Cambio La posición de una partícula que se mueve sobre una recta horizontal es dada por 9 s ( t ) 1 t + t 18t + 8. Determinar la aceleración de la partícula cuando la velocidad es igual a cero. Una escalera de 1m de largo está apoyada sobre una pared. Encuentra la rapidez con que baja el etremo superior de la escalera cuando su etremo inferior dista 5m del muro y se separa a razón de 5m/s. Una persona está parada en un muelle y jala una lancha por medio de una cuerda. Sus manos están a m por encima del amarre de la lancha. Si la persona jala la cuerda a razón de 70cm/s. Con qué rapidez se aproima la lancha al muelle cuando se encuentra a 5m de él? Un globo de forma esférica está siendo inflado a razón de 0.16 m/min. Cuál es el volumen del globo cuando su radio está aumentando a razón de 0. m/min? Guía Anual Matemáticas 6 Área 1 y

28 Aplicaciones en la Economía 1. Una empresa estima que el costo por producir artículos es de C() ; Cuál es el costo marginal de producir 600 artículos?. En una Empresa, la función de ingreso y la función de costo son I()- +0 y C()+600. Determina la utilidad máima.. El costo estimado para producir artículos está dado por C() ; Encuentra el nivel de producción para obtener el costo promedio mínimo. Guía Anual Matemáticas 6 Área 1 y

29 Unidad V Integrales. d 1. d. d. d Guía Anual Matemáticas 6 Área 1 y

30 d 5. ( ) d ( ) 8. ( 6 ) ( 1) 7. d d 9. 8 ( 6 1)( ) d 10. ( 1 6)( ) d Guía Anual Matemáticas 6 Área 1 y

31 cos d π 1. π sen d tan( )d 1. cot( π )d. sec( π )d ( ) ( ) 5. 1 csc d Guía Anual Matemáticas 6 Área 1 y

32 Integral por Partes 1. arctan( ) d. arccos( ) d. ln( ) d. ln( ) d d d ( 1+ ) Guía Anual Matemáticas 6 Área 1 y

33 d d ( 1+ ) 8. a d 9. e d Guía Anual Matemáticas 6 Área 1 y

34 10. sin d 11. sin d 1. y sin ( y )dy 1. sin d e 15. e sen( ) d 1. send Guía Anual Matemáticas 6 Área 1 y

35 Integral de Potencias Trigonométricas 1. sen ( )d. cos ( )d d. cos ( ) d. sen ( π) tan d 6. cot d 5. ( ) Guía Anual Matemáticas 6 Área 1 y

36 π 7. tan d 8. π cot d d 9. csc ( 1) 10. sec 1 d π d 11. ( ) + d sec 1. csc ( ) Guía Anual Matemáticas 6 Área 1 y

37 Integración por sustitución Trigonométrica d. 16d 5. d. 9 d Guía Anual Matemáticas 6 Área 1 y

38 Integración por fracciones Parciales + 1. d d d. ( ) + d ( 1) Guía Anual Matemáticas 6 Área 1 y

39 Unidad VI Aplicaciones de la Integral Obtener la función 1. ( ) f (6) 0. ( y) y y y f () 0. π π ( θ ) senθ + cosθ θ f Guía Anual Matemáticas 6 Área 1 y

40 Obtener el Área bajo la Curva 1. f ( ) f( ) 1 Guía Anual Matemáticas 6 Área 1 y

41 Obtener el Área Entre las Curvas 1. y 7 y + 1. y y Guía Anual Matemáticas 6 Área 1 y

42 Solidos en Revolución y y en torno al eje Gráfica del área a girar 10 a b y y y en torno al eje Guía Anual Matemáticas 6 Área 1 y

Ejercicios para aprender a derivar

Ejercicios para aprender a derivar Ejercicios para aprender a derivar Derivación de polinomios y series de potencias Reglas de derivación: f ( ) k f '( ) 0 f ( ) a f '( ) a n n f ( ) a f '( ) an f ( ) u( ) + v( ) f '( ) u' + v' Ejemplos:

Más detalles

2015/2. Ejercicios cálculo diferencial cdx24 Derivada y aplicaciones

2015/2. Ejercicios cálculo diferencial cdx24 Derivada y aplicaciones 015/ Ejercicios cálculo diferencial cd4 Derivada y aplicaciones 6. Encuentre la derivada de la función usando la definición de derivada, y muestre que obtiene el mismo resultado encontrándola nuevamente

Más detalles

EJERCICIOS RESUELTOS

EJERCICIOS RESUELTOS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeriería Técnica Industrial. Especialidad en Mecánica. Boletin 6. Funciones de Varias Variables EJERCICIOS RESUELTOS Curso 003-004 1. En cada apartado, calcular

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL

EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA CPI EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 CAPÍTULO 1: FUNCIONES

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

APLICACIONES DEL CÁLCULO DIFERENCIAL-II

APLICACIONES DEL CÁLCULO DIFERENCIAL-II APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0

Más detalles

MATEMATICAS 1. GUIA DE EJERCICIOS DE MATEMÁTICAS 1 con SOLUCIONES Temas presentes en la guía.

MATEMATICAS 1. GUIA DE EJERCICIOS DE MATEMÁTICAS 1 con SOLUCIONES Temas presentes en la guía. MATEMATICAS 1 GUIA DE EJERCICIOS DE MATEMÁTICAS 1 con SOLUCIONES Temas presentes en la guía. 1. Propiedades de los números reales. Lógica. Desigualdades. 2. Valor Absoluto. Desigualdades con valor absoluto.

Más detalles

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 MATEMÁTICAS: º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 1.- Determina dos números cuya suma sea y tales que el producto de uno de ellos por el cubo del otro sea máimo. = 1 er número;

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

Aplicaciones de Máximos y Mínimos

Aplicaciones de Máximos y Mínimos Aplicaciones de Máximos y Mínimos Los métodos para calcular los máximos y mínimos de las funciones se pueden aplicar a la solución de algunos problemas prácticos. Estos problemas pueden expresarse verbalmente

Más detalles

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles

11 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría

11 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría Aplicaciones de las derivadas. Máimos, mínimos y monotonía Piensa y calcula Dada la gráfica de la función f representada en el margen, halla los máimos y los mínimos relativos y los intervalos de crecimiento

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA (Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA Esta clasiicación obedece a la orma en que están relacionados los elementos del dominio con los del codominio.

Más detalles

Cálculo Diferencial Taller de pre-requisitos. 1. Exponentes. Simplifique las siguientes expresiones sin usar calculadora.

Cálculo Diferencial Taller de pre-requisitos. 1. Exponentes. Simplifique las siguientes expresiones sin usar calculadora. Cálculo Diferencial Taller de pre-requisitos. Exponentes. Simplifique las siguientes expresiones sin usar calculadora. p 6s t v 5p 6st 5 v, b) (x p x ) c) 0 6 y + y y. Multiplicación. Expanda el producto

Más detalles

MURCIA JUNIO 2004. + = 95, y lo transformamos 2

MURCIA JUNIO 2004. + = 95, y lo transformamos 2 MURCIA JUNIO 4 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OBSERVACIONES IMPORTANTES: El alumno deberá responder a una sola de las dos cuestiones de cada uno de los bloques. La puntuación de las dos

Más detalles

INSTITUTO POLITECNICO NACIONAL

INSTITUTO POLITECNICO NACIONAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA DEPARTAMENTO DE MATEMATICAS PROBLEMARIO DE LA ASIGNATURA DE CALCULO DIFERENCIAL E INTEGRAL PROFESOR M EN C JORGE LUIS

Más detalles

UNIDAD 2: DERIVADAS Y APLICACIONES

UNIDAD 2: DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES ÍNDICE DE LA UNIDAD - INTRODUCCIÓN 6 - DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7 - INTERPRETACIÓN GEOMÉTRICA DE LA DERIVADA 8 4- CONTINUIDAD

Más detalles

Universidad de la Frontera Departamento de Matemática y Estadística. Problemas de Optimización. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera Departamento de Matemática y Estadística. Problemas de Optimización. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Problemas de Optimización J. Labrin - G.Riquelme 1. Una caja con base cuadrada y parte superior abierta debe

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Departamento de Matematicas UNIANDES Cálculo Diferencial. Parcial 2

Departamento de Matematicas UNIANDES Cálculo Diferencial. Parcial 2 Departamento de Matematicas UNIANDES Cálculo Diferencial Parcial Estudiante: Fecha: Sea g() = ( + 3). Entonces f (7) = 00. Verificarlo a partir de la derivada como limite. (La derivada obviamente es pero

Más detalles

CAPÍTULO 2 APLICACIONES DE LA DERIVADA

CAPÍTULO 2 APLICACIONES DE LA DERIVADA CAPÍTULO 2 APLICACIONES DE LA DERIVADA 2.1 ANÁLISIS Y TRAZO DE CURVAS 2.1.1 Estudio de la Variación de una Función a) Tabulación y Graficación de una Función b) Dominio y Rango de una Función 2.1.2 Intersecciones

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh

Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh Módulo 1 DERIVADAS 1.1 Reglas de diferenciación Reconocimiento de saberes Ejercicio 1 Relacione convenientemente cada una de las siguientes epresiones: (considere > 0 ) ln ( e ) ln ln ( e ) ln e ln + ln

Más detalles

1.5 Funciones trigonométricas

1.5 Funciones trigonométricas .5 Funciones trigonométricas Haciendo uso de las razones trigonométricas vistas anteriormente, se puede definir un nuevo tipo de función, que llamaremos f unciones trigonométricas. Notemos que para cada

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

7 Aplicaciones de las derivadas

7 Aplicaciones de las derivadas Solucionario 7 Aplicaciones de las derivadas ACTIVIDADES INICIALES 7.I. Calcula el volumen del cilindro que está inscrito en el cono de la figura: cm 8 cm Aplicando el Teorema de Pitágoras, se calcula

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol.

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE FARMACIA CATEDRA DE MATEMATICA-FISICA GUÍA N 5 : Derivadas n-ésimas y aplicaciones de la derivada I. Para cada una de las siguientes funciones calcular la derivada

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

Repaso Final. Funciones (Dominios) En las funciones siguientes encuentra el dominio de f(x) Rectas (Problemas)

Repaso Final. Funciones (Dominios) En las funciones siguientes encuentra el dominio de f(x) Rectas (Problemas) Repaso Final Funciones (Dominios) En las funciones siguientes encuentra el dominio de f() 1) f() = 1 )f() = ln (5 ) Rectas (Problemas) 1) Supóngase que el valor de cierta maquinaria disminuye el 10% anual

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q(x) en Kg) depende de la temperatura x (ºC) según la expresión. a) Calcula razonadamente cuál es la temperatura óptima

Más detalles

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π]

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π] Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo Parcial III 15 % Estudiante: Tiempo: 1 h. Fecha: 1 Resolver la ecuación para w en 0 w 2π. (2Cos(2w) 1)(2Sen(3w) 2) = 0 2 Hallar los ceros

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009 Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 2009 Práctica 4: Derivadas Notaciones: Dada una función f : R R, un punto a R y un número R que llamaremos incremento en, se define

Más detalles

Julián Moreno Mestre www.juliweb.es tlf. 629381836. / 2 Qué longitud debe tener el rectángulo para que su

Julián Moreno Mestre www.juliweb.es tlf. 629381836. / 2 Qué longitud debe tener el rectángulo para que su www.juliweb.es tlf. 69886 Ejercicios de optimización: Estrateias para resolver problemas de optimización: - Asinar símbolos a todas las manitudes a determinar. - Escribir una ecuación primaria para la

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

BLOQUE III Funciones

BLOQUE III Funciones BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica

Más detalles

EJERCICIOS DE MATEMÁTICAS B, 4º ESO. (Septiembre 2011)

EJERCICIOS DE MATEMÁTICAS B, 4º ESO. (Septiembre 2011) EJERCICIOS DE MATEMÁTICAS B, º ESO. (Septiembre ) ARITMÉTICA. Realiza las siguientes operaciones, simplificando cuando sea posible 9 e). Realiza los siguientes ejercicios con potencias 9 e) 9 8.- Realiza

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Calcular los etremos relativos de las siguientes funciones: a) f ( ) D(f) (Por ser polinómica) ; Posibles máimos o mínimos 6

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICAS 1000004 CÁLCULO DIFERENCIAL TALLER No. 1

UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICAS 1000004 CÁLCULO DIFERENCIAL TALLER No. 1 UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICAS 1000004 CÁLCULO DIFERENCIAL TALLER No. 1 1. Represente gráficamente cada una de las siguientes relaciones y determine su

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Bachillerato Internacional Matemáticas II. Curso 2014-2015 Problemas

Bachillerato Internacional Matemáticas II. Curso 2014-2015 Problemas Bachillerato Internacional Matemáticas II. Curso 04-05 Problemas REGLAS DE DERIVACIÓN. Reglas de derivación Obtener la derivada de las siguientes funciones:. y = (x 7x + ). y = (4x + 5). y = (x 4x 5x

Más detalles

Aplicaciones de la Integral Definida

Aplicaciones de la Integral Definida CAPITULO 7 Aplicaciones de la Integral Definida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Cálculo Integral. Efraín Soto Apolinar

Cálculo Integral. Efraín Soto Apolinar Cálculo Integral Efraín Soto Apolinar Índice de contenidos Diferenciales e integral indefinida. La Diferencial................................................................... 3.. Reglas de diferenciación......................................................

Más detalles

Razones de Cambio Relacionadas

Razones de Cambio Relacionadas CAPITULO 4 Razones de Cambio Relacionadas M.Sc. Sharay Meneses R. 1 Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) 2 Créditos

Más detalles

5.1 RAZÓN DE CAMBIO 5.2 PROBLEMAS PRÁCTICOS DE MÁXIMOS Y MÍNIMOS 5.3 DIFERENCIALES Y APROXIMACIONES 5.4 POLINOMIO DE TAYLOR

5.1 RAZÓN DE CAMBIO 5.2 PROBLEMAS PRÁCTICOS DE MÁXIMOS Y MÍNIMOS 5.3 DIFERENCIALES Y APROXIMACIONES 5.4 POLINOMIO DE TAYLOR 5 5. AZÓN DE CAMBIO 5. POBLEMAS PÁCTICOS DE MÁXIMOS Y MÍNIMOS 5. DIFEENCIALES Y APOXIMACIONES 5.4 POLINOMIO DE TAYLO OBJETIVOS: SE PETENDE QUE EL ESTUDIANTE: esuelva problemas de razón de cambio. esuelva

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

ACTIVIDADES UNIDAD 6: Funciones

ACTIVIDADES UNIDAD 6: Funciones ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: Dominio:, 1 1,1 1, 1,1 Imagen o recorrido:,0 1, Monotonía: - Creciente:, 1 1,0 - Decreciente: 0,11, - Máimos relativos:

Más detalles

f(x) f(x 0 ) = L IR h 0 = 0 = f (x 0 ); con lo que f (x) = 0 para todo x IR. (x x = lím x + x 0 = 2x 0 = f (x 0 ), y f (x) = 2x en IR.

f(x) f(x 0 ) = L IR h 0 = 0 = f (x 0 ); con lo que f (x) = 0 para todo x IR. (x x = lím x + x 0 = 2x 0 = f (x 0 ), y f (x) = 2x en IR. Matemáticas I : Cálculo diferencial en IR Tema Funciones derivables. Derivada de una función en un punto Definición 4.- Se dice que f: (a, b IR es derivable en el punto (a, b si f( f( = L IR es decir,

Más detalles

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas. Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...

Más detalles

ACTIVIDADES UNIDAD 6: Funciones

ACTIVIDADES UNIDAD 6: Funciones ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: - Cotas, supremo (ínfimo) y etremos absolutos en 1,1 0 f. Indica las características de la siguiente función: : Cipri

Más detalles

Cálculo Diferencial e Integral - Antiderivada. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Antiderivada. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Antiderivada. Prof. Farith J. Briceño N. Objetivos a cubrir Código : MAT-CDI. Primitiva de una función real. Método de integración: Integrales directas. Demuestre que si

Más detalles

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2 Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR

Más detalles

12 ESTUDIO DE FUNCIONES

12 ESTUDIO DE FUNCIONES ESTUDI DE FUNCINES EJERCICIS PRPUESTS. Representa las siguientes funciones lineales e indica el valor de sus pendientes. a) y b) y 5 y = + y = 5 c) y a) m 0 b) m 5 c) m y =. Representa estas funciones

Más detalles

Teoría de Conjuntos y Funciones

Teoría de Conjuntos y Funciones Elaborado por: Lic. Eleazar J. García República Bolivariana de Venezuela. Tinaco.- Estado Cojedes Teoría de Conjuntos Funciones Este capítulo comienza con el estudio de las nociones de la teoría de conjuntos

Más detalles

9 Funciones elementales

9 Funciones elementales Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x + EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS).- La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función del tiempo t, en horas, por la epresión: Tt t

Más detalles

12 Límites. y derivadas. 1. Funciones especiales. Solución: Ent(x) Dec(x) x 3,6 3,6 0,8 0,8. Signo(x) Signo(x) 1 1 1 1

12 Límites. y derivadas. 1. Funciones especiales. Solución: Ent(x) Dec(x) x 3,6 3,6 0,8 0,8. Signo(x) Signo(x) 1 1 1 1 Límites y derivadas. Funciones especiales Completa la tabla siguiente: 3,6 3,6 0, 0, Ent() Dec() Signo() P I E N S A C A L C U L A 3,6 3,6 0, 0, Ent() 4 3 0 Dec() 0,4 0,6 0, 0, 3,6 3,6 0, 0, Signo() A

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I

CÁLCULO DIFERENCIAL E INTEGRAL I COLEGIO DE BACHILLERES CÁLCULO DIFERENCIAL E INTEGRAL I FASCÍCULO. LA FUNCIÓN DERIVADA Autores: José Luis Alaníz Miranda Rosa María Espejel Mendoza Mario Luis Flores Fuentes Alberto Luque Luna Ángel Martínez

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

s(t) = 5t 2 +15t + 135

s(t) = 5t 2 +15t + 135 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000, 1-1-000 (A) Primer parcial (1) Se lanza una pelota hacia arriba a una velocidad de 15 m/seg desde el borde de un acantilado a 15 m arriba del suelo.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Máximo o mínimo de una función

Máximo o mínimo de una función Análisis: Máimos, mínimos, optimización 1 MAJ00 Máimo o mínimo de una función 1. Dados tres números reales cualesquiera r 1, r y r, hallar el número real que minimiza la función D( ) ( r ) ( r ) ( r 1

Más detalles

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN 1. En un concurso se da a cada participante un alambre de dos metros de longitud para que doblándolo convenientemente hagan con el mismo un cuadrilátero con los cuatro ángulos rectos. Aquellos que lo logren

Más detalles

4) La expresión. y A) x

4) La expresión. y A) x Nov 07 diurno ) Al factorizar ( 5 ) ( + 5), uno de los factores es 4) La epresión A) es equivalente a A) + 5 5 + 5 5 ) Al factorizar 3 3 + 4, uno de los factores es A) 3 + 5) La epresión 4 es equivalente

Más detalles

Funciones trigonométricas básicas. Propiedades básicas de las funciones trigonométricas: Seno, Coseno, Tangente, Cotangente, Secante y Cosecante.

Funciones trigonométricas básicas. Propiedades básicas de las funciones trigonométricas: Seno, Coseno, Tangente, Cotangente, Secante y Cosecante. Funciones trigonométricas básicas Propiedades básicas de las funciones trigonométricas: Seno, Coseno, Tangente, Cotangente, Secante y Cosecante. www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx

Más detalles

12. Una caja con base cuadrada y parte superior abierta debe tener un. 14. Un recipiente rectangular de almacenaje con la parte superior

12. Una caja con base cuadrada y parte superior abierta debe tener un. 14. Un recipiente rectangular de almacenaje con la parte superior 328 CAPÍTULO 4 APLICACIONES DE LA DERIVACIÓN 4.7 EJERCICIOS 1. Considere el problema siguiente. Encuentre dos números cuya suma es 23 y cuyo producto es un máximo. (a) Formule una tabla de valores, como

Más detalles

11 FUNCIONES POLINÓMICAS Y RACIONALES

11 FUNCIONES POLINÓMICAS Y RACIONALES FUNCINES PLINÓMICAS RACINALES EJERCICIS PRPUESTS. Estudia y representa la siguiente función cuadrática: f(). Es una parábola con las ramas hacia arriba, pues a 0. El vértice es el punto V, 5 8. El eje

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

MATEMÁTICA I, INGENIERÍA Y ARQUITECTURA

MATEMÁTICA I, INGENIERÍA Y ARQUITECTURA MATEMÁTICA I, INGENIERÍA Y ARQUITECTURA CICLO 0 01 Sección 0. Prof. Ing. Marta Lidia Merlos Aragón HOJA DE EJERCICIOS ADICIONALES APLICACIONES DE LA DERIVADA PARTE I: SOBRE RECTA TANGENTE Y RECTA NORMAL

Más detalles

(Apuntes en revisión para orientar el aprendizaje)

(Apuntes en revisión para orientar el aprendizaje) (Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

UNIDAD 2: Funciones racionales y con radicales 2.5.1 SITUACIONES QUE DAN LUGAR A FUNCIONES CON RADICALES

UNIDAD 2: Funciones racionales y con radicales 2.5.1 SITUACIONES QUE DAN LUGAR A FUNCIONES CON RADICALES .5 FUNCIONES CON RADICALES UNIDAD : Funciones racionales y con radicales.5.1 SITUACIONES QUE DAN LUGAR A FUNCIONES CON RADICALES Aprendizajes: - Eplora en una situación o problema que da lugar a una función

Más detalles

10 PROPIEDADES DE LAS FUNCIONES

10 PROPIEDADES DE LAS FUNCIONES 0 PRPIEDADES DE LAS FUNCINES PARA EMPEZAR Copia y completa la tabla, y representa la gráfica de la función. Se trata de una función continua? Figura 3 4 5 N.º de puntos f() hace corresponder a cada natural

Más detalles

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo. Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos

Más detalles

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores

Más detalles

A 10. 1) El conjunto solución de 3x 2 9x = (x 3) 2 es A) 2) Una solución de 2x 2 =x(4 x) + 1 es A) 1

A 10. 1) El conjunto solución de 3x 2 9x = (x 3) 2 es A) 2) Una solución de 2x 2 =x(4 x) + 1 es A) 1 ) El conjunto solución de x 9x = (x ) es,, ) Una solución de x =x( x) + es 7 5 ) El producto de dos números enteros positivos es 60 y el número menor es las tres quintas partes del número mayor. Cuál es

Más detalles

TEMA 1: Cálculo Diferencial de una variable

TEMA 1: Cálculo Diferencial de una variable TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

2.2.1 Límites y continuidad

2.2.1 Límites y continuidad . Listas de ejercicios de Cálculo Diferencial. Listas de ejercicios de Cálculo Diferencial.. Límites y continuidad 3. Hallar el dominio de las funciones reales de variable real dadas por: a) f () = b)

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que

Más detalles

RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA.

RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. 1. Sea f : IR IR definida por f() = 2 + 1, IR. Probar, utilizando la definición, que f es derivable en cualquier punto de IR. Encontrar los

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

D 07. 1) Al factorizar (x 2 25y 2 ) (x + 5y), uno de los factores es. A) x + 5y B) x 5y C) x + 5y 1 D) x 5y 1

D 07. 1) Al factorizar (x 2 25y 2 ) (x + 5y), uno de los factores es. A) x + 5y B) x 5y C) x + 5y 1 D) x 5y 1 D 07 Escuela Conciente de Matemática GAUSS 550 ) Al factorizar ( 5 ) ( + 5), uno de los factores es A) + 5 5 + 5 5 ) Al factorizar 3 3 + 4, uno de los factores es A) 3 + 3 ( ) 3) Al factorizar 6 6 9 4,

Más detalles