1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100"

Transcripción

1 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = m; v sonido = 340 m/s) (junio 2000) a) Como v= λ f, entonces λ= v/f = 340 m. b) Calculamos ω= 2πf = 2π s -1, k= 2π/λ = π/170 m -1 y tomamos la fase inicial nula. Tomamos como ecuación de la onda armónica propagándose hacia +, y = A sen(ωt -kx) y, en este caso, y = 10-8 sen(2πt πx/170) (S.I.). 2. Dos corchos que flotan en la superficie del agua de un estanque son alcanzados por una onda que se produce en dicha superficie, tal que los sucesivos frentes de onda son rectas paralelas entre sí que avanzan perpendicularmente a la recta que une ambos corchos. Se observa que los corchos realizan 8 oscilaciones en 10 segundos, y que oscilan en oposición de fase. Sabiendo que la distancia entre los corchos es 80 cm y que ésta es la menor distancia entre puntos que oscilan en oposición de fase, calcular la velocidad de propagación de la onda en el agua. (Septiembre 2002) Al oscilar en oposición de fase, los dos puntos están separados por media longitud de onda, que será, entonces, λ = 1'6 m. La frecuencia será f= 8 oscilaciones / 10 s = 0'8 Hz, así que de v = λf tenemos v= 1'6 0'8 m/s = 1'28 m/s. 3. Dada la onda descrita por la ecuación y= 0'20 sen[π(20x +100t)] escrita en unidades del sistema internacional, calcular: a) La amplitud, longitud de onda, periodo, frecuencia angular, frecuencia lineal, velocidad y sentido de propagación de la onda. b) La velocidad transversal de un punto situado a 0'30 m del origen cuando t= 5' s. Interpretar físicamente el resultado. (junio 2003) Ecuación de una onda armónica que se propaga hacia - : y= A sen(ωt+kx). Entonces la amplitud vale A= 0'20 m, la frecuencia angular ω= 100π s -1 y entonces de ω= 2πf tenemos que f= 50 Hz, y el periodo es T = 1/f = 0'02 s. El número de ondas k= 20π m -1 y la longitud de onda λ= 2π/k = 0'1 m. La velocidad de propagación es v= ω/k =5 m/s. La velocidad de oscilación de los puntos alcanzados por la onda es v y = dy =20 cos 100 t 20 x m/s dt

2 Entonces v y (x= 0'3 m, t= 0'005 s)= 0 m/s, es decir, el punto está instantáneamente en reposo (en un extremo de su trayectoria de oscilación). 4. Sea una cuerda tensa muy larga. Hacemos que uno de los extremos (O) realice un movimiento armónico simple en una dirección perpendicular a la cuerda, de amplitud A= 0'3 m y frecuencia f=2 Hz, de forma que la perturbación se propaga a lo largo de la cuerda con una velocidad de 5 m/s. Sabiendo que en el instante inicial la elongación del punto O es nula: a) Escribir la ecuación de onda; b) Hallar la elongación y velocidad transversal de un punto P situado a 10 m de 0,4 segundos después de iniciado el movimiento. Interpretar el resultado. (septiembre 2003) a) Tomamos como ecuación la de una onda avanzando hacia + : y(x,t)= A sen(ωt -kx +φ 0 ). De v= λf, tenemos que λ= 5/2 m= 2'5 m. Entonces k= 2π/λ=4π/5 m -1. Como ω= 2πf, entonces ω= 4π s -1. Según el enunciado, y(0,0)= A sen φ 0 =0, entonces φ 0 vale 0 ó π. El enunciado no permite decidir cuál de los dos valores es el correcto, así que tomaremos φ 0 =0. Entonces la ecuación de onda es: y(x,t)= 0'3 sen(4πt -4π/5 x) (S.I.). b) y(10 m,0'4 s)= -0'285 m. Como la velocidad de oscilación es v y = dy/dt, nos queda v y = 1'2π cos(4πt -4π/5 x), así que v y (10 m, 0'4 s)= 1'16 m/s. 5. La distancia entre los extremos de una cuerda de una guitarra es 66 cm. Si la frecuencia fundamental del sonido que emite cuando se pulsa es 440 Hz, calcular: a) La longitud de onda de la onda estacionaria generada en la cuerda. b) La velocidad de propagación de la onda en la cuerda. (junio 2004) La frecuencia fundamental en una cuerda sujeta por los dos extremos es f= v/2l, donde v es la velocidad de propagación de la onda incidente y L es la longitud de la cuerda. Entonces v= 2Lf= 580'8 m/s. De v= λf, obtenemos λ= v/f= 1'32 m. El último resultado lo podemos comprobar fácilmente, ya que para la frecuencia fundamental, λ= 2L. 6. Dos altavoces separados una distancia de 3'00 m están emitiendo sendas ondas acústicas idénticas y en fase. Consideremos una recta paralela a la que une los altavoces y que está a 8'00 m de la misma. Un oyente recorre dicha recta encontrando puntos en los que la intensidad del sonido es máxima y otros en los que es mínima. En concreto, en O encuentra un máximo y en P, situado a 0'350 m de O, encuentra el primer mínimo. Calcular la frecuencia de ondas emitidas. (v sonido = 340 m/s) (septiembre 2005)

3 La amplitud resultante será A r =2A cos k x 2, y para que sea nula cos k x 2 =0. De aquí, deducimos (para el primer nodo): k x 2 = 2. Entonces =2 x y f = v = v 2 x. Como x 1 = 1' m y x 2 = 1' m, entonces f= 1319 Hz. 7. Sea una cuerda tensa muy larga en la que sometemos a uno de sus extremos a un movimiento armónico simple en la dirección perpendicular a la cuerda, con una amplitud de 2 cm y una frecuencia de 5 Hz. Sabiendo que la velocidad de propagación de la onda por la cuerda es de 600 m/s, escribir su ecuación de onda. (junio 2006) y x,t =2 sen 10 t± 60 x 0 cm. (El signo depende del sentido de propagación de la onda). 8. La ecuación de una onda transversal que se propaga en una cuerda es y= 0'2 sen (400t-20x) estando x e y expresados en cm y t en segundos. Hallar: a) La amplitud, periodo, frecuencia, longitud de onda y velocidad de propagación. b) Posición y velocidad del punto situado en x=2 en el instante t=1. (junio 2007) A= 0'2 m; f= π/200 Hz; T= 200/π s; λ= π/10 m, v= 20 m/s. y(2 m, 1 s)= 0'0265 m; v y = -79'3 m/s. 9. Dibujar dos ondas transversales del mismo periodo y: a) De la misma amplitud pero una de

4 doble longitud de onda que la otra. b) De la misma longitud de onda, en fase, pero con las amplitudes en relación A l = 2A 2. c) De la misma amplitud y longitud de onda pero desfasadas π rad. Cuál es en este caso la amplitud de la onda superposición de las dos ondas? Razonar la respuesta. (junio 08) a) b) c) La onda resultante es nula, al estar las ondas incidentes en inversión de fase. 10. Una onda transversal se propaga por una cuerda según la ecuación: y(x,t) = 0,4sen(100πt - 0,5π x+ π/2) expresada en el S. l. de unidades. Calcular:

5 a) La longitud de onda y la velocidad de propagación. b) La velocidad de vibración de una partícula de la cuerda situada en x = 2m en el instante t = 0,5s c) La diferencia de fase de dos puntos de la cuerda separados 50cm. d) El instante en que un punto situado a 1 m del origen alcanza por primera vez velocidad nula. (junio 2008) a) λ= 2π/k = 2π/0'5π m= 4 m. v= ω/k = 100π / 0'5π m/s = 200 m/s. b) v y (x,t)= 40π cos(100πt -0'5πx +π/2). v y (2 m, 0'5 s)= 0 m/s. c) ΔΦ= k Δx=0'5π 2 = π. Están en inversión de fase. d) v y (1 m,t)= 40π cos(100πt -0'5π +π/2) = 40π cos(100πt)=0 100πt = ±π/2 + 2πk, con k número entero. El paso por primera vez (y tiempo positivo) da t= 1/200 s. 11. Una onda armónica sinusoidal se propaga en el sentido positivo del eje OX con una frecuencia de 100 Hz, una velocidad de 500 m/s y con una amplitud de 15 cm. Si en el instante inicial una partícula del medio situada en el origen ocupa la máxima elongación positiva: a)escribir la ecuación de onda. b) Determinar la diferencia de fase entre dos puntos del medio separados 2 m. c) Cuál es la máxima velocidad de vibración de las partículas del medio? (septiembre 2008) a) y(x,t)= 0'15 sen(200πt 2π/5 x + π/2) (S.I.) b) ΔΦ= k Δx = 2π/5 2= 4π/5. c) v máx = Aω= 0'15 2π 100 m/s= 30π m/s. 12. La ecuación de una onda que se propaga por una cuerda tensa es y(x,t)= 0'05 sen (25πt -2πx) en unidades del sistema internacional. a) Explicar qué tipo de onda es y cuáles son su amplitud, su frecuencia y la velocidad de propagación. b) Representar gráficamente la forma de la onda en el instante inicial en 0 x 1 m. c) Calcular el instante en que un punto situado a 30 cm del origen alcanza por primera vez velocidad nula. (septiembre 2009) a) Es una onda armónica que se propaga en sentido positivo. La ecuación general es y(x,t)= A sen(ωt-kx), así que la amplitud es A= 0'05 m, la frecuencia angular ω= 25π s -1, la frecuencia f= ω/2π = 12'5 Hz, el numero de ondas k= 2π m -1 y la velocidad de propagación v= ω/k= 12'5 m/s. b) y(x, t=0) = 0'05 sen(-2πx) c) La velocidad de oscilación es v(x,t)= dy/dt = 1'25π cos(25πt-2πx) (m/s).

6 De v(0'3 m, t)= 0 obtenemos que cos(25πt-0'6π)= 0 y 25πt-0'6π= π/2 + nπ siendo n un número entero. Si el punto debe tener velocidad nula por primera vez, entonces n=0 y t= 0'044 s. 13. En un extremo de una cuerda tensa horizontal de 5 m, se provoca un movimiento oscilatorio armónico perpendicular a la dirección de la cuerda, cuya elongación es de 8 cm cuando han transcurrido 0'5 s desde su comienzo. Se observa que la onda producida tarda en llegar al otro extremo 2 s y que la distancia entre dos crestas sucesivas es de 1'5 m. a) Determinar la frecuencia, longitud de onda y amplitud del movimiento ondulatorio. b) Calcular la velocidad de un punto situado a 1'5 m del origen de la onda al cabo de 0'6 s de iniciado el movimiento ondulatorio. c) Hallar el desfase entre dos puntos separados 2 m. (Dar los resultados en unidades S.I.) (junio 2010) a) v= 5m 2s =2' 5m/s ; =1 ' 5m ; v= f f = 2' 5 1' 5 Hz= 5 3 Hz ; El enunciado es un poco ambiguo, pero vamos a suponer que en el instante inicial, el extremo de la cuerda está en +A. Si la ecuación de la onda es y= A sen t kx 0, tenemos que A= A sen 0 y 0 = 2. Como =2 f = 10 3 s 1 escribir y= A sen 10 3 t 4 3 x 2. y k = 2 = 4 3 m 1 Entonces y 0m,0' 5 s =0' 08m= A sen m= 1 2 A, así que A=0'16 m. podemos b) y=0 ' 16sen 10 3 t 4 3 x 2 v y = 8 15 cos 10 3 t 4 3 x 2 S.I. v y 1 ' 5 m,0 ' 6 s = 8 15 cos =0 m/ s (está en el otro extremo de la oscilación). c) La fase de la onda es = 10 3 t 4 3 x 2 instante determinado es = 2 1 = 4 3 x= 4 3 2=8 3, y la diferencia de fase entre dos puntos en un. 14. La ecuación de una onda armónica que se propaga en una cuerda es, expresada en el S.I. de unidades: y x,t =0,5 sen 0,1 t x 3. Determinar: a) La velocidad de propagación de la onda, la longitud de onda y el periodo. b) La velocidad transversal de un punto de la cuerda situado en x= 2 cm en el instante t=10 s. c) La aceleración máxima del punto anterior en el movimiento de oscilación. (julio 2010)

7 a) =0,1 s 1 T= 2 =20 Hz ; k= m 1 = 2 k =2 m ; v= k =0'1 m/s. b) v y 2m,10 s =0' 5 0' 1 cos 0' /3 m/ s= 0' 025 m/s= 0' 0785 m/s. c) a máx = 2 A= 0 ' 1 0 ' 5 m/s 2 =0 '0493 m /s La cuerda de una guitarra vibra de acuerdo con la ecuación y x,t =0 ' 01sen 10 x cos 200 t, expresada en el Sistema Internacional. a) Indicar de qué tipo de onda se trata y calcular la amplitud y la velocidad de propagación de las ondas en la cuerda que han originado esa onda. b) Determinar la amplitud de la oscilación de la partícula situada en x=0'25 m y su velocidad transversal cuando t= 1'5 s. Explicar el resultado obtenido. (julio 2011) solución: a) A r =2A=0'01 m A=5 mm ; v= k = m/s=20 m /s. b) A r x =0 ' 01sen 10 x A r x=0' 25 m =0' 01 m. v y x, t = 2 sen 10 x sen 200 t v y 0 ' 25 m,1 ' 5 s = m/ s=0 m/ s. El punto es un antinodo (vientre) y está en ese instante en el punto de máxima elongación positiva. 16. La ecuación de una onda que se propaga en una cuerda es y= 0'01 sen (2t-3x), estando x e y expresados en metros y t en segundos. a) Cuál es el periodo, la longitud de onda y la velocidad de propagación? b) En t= 1 s, cuál es el desplazamiento y la velocidad de vibración del punto x= 10 cm? c) Cuál es la diferencia de fase entre dos puntos separados 5 cm? (junio 2012) a) =2 s 1 T= 2 = Hz ; k =3 m 1 = 2 k = 2 3 m=2 '09 m ; v= k =0' 667 m /s. b) y x=0' 1m,t=1 s =0' 01 sen 2 0' 3 m=9' m. v y x,t =0' 02cos 2t 3x m/s v y 0' 1m,1s = 2' m/ s. c) =2t 3 x ; = 2 1 =3 x=3 0 ' 05=0 ' 15.

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio?

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio? 2º Bachillerato: Ondas (generalidades) 1. Concepto de onda Cuando se produce una variación de una magnitud física en un punto del espacio, se produce una perturbación (del equilibrio). Por ejemplo, se

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5 013-Julio-Fase Específica (Asturias) Se nos da la expresión de la longitud de onda de los armónicos, aunque podríamos deducirla al tratarse de un caso de ondas estacionarias con un límite fijo (el extremo

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS

ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS OPCIÓN A. Considere la siguiente ecuación de una onda : y ( x, t ) A sen ( b t - c x ) ; a) qué representan los coeficientes A, b, c? ; cuáles

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS 1. Justifica si las siguientes cuestiones son verdaderas o falsas: a) La amplitud de un movimiento vibratorio es igual a la elongación de la partícula.

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Descripción física y clasificación de los fenómenos ondulatorios. 2. Ondas monodimensionales armónicas. 3. Ecuación del movimiento ondulatorio. 4. Intensidad de una onda. 5. Fenómenos

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

= 1,0 m/s la velocidad de propagación de la onda en la cuerda (2), determine la distancia

= 1,0 m/s la velocidad de propagación de la onda en la cuerda (2), determine la distancia TALLER DE CIENCIAS PARTE FÍSICA COMÚN Figura para el ejercicio 1 al 4 1. Si sabemos que en la cuerda (1) la velocidad de propagación de la onda es v = 1,5 m/s, y que la longitud de onda vale λ = 30 cm,

Más detalles

Siendo y la elongación, A la amplitud, ω = 2πν la pulsación, y φ 0 la fase inicial

Siendo y la elongación, A la amplitud, ω = 2πν la pulsación, y φ 0 la fase inicial Capítulo 2 Vibraciones y ondas 2.1. Conceptos previos. Ecuación del movimiento armónico simple: La ecuación de un movimiento armónico simple puede ser expresada por cualquiera de las siguientes expresiones:

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO ONDAS MECANICAS INTRODUCCIÓN Las ondas son perturbaciones de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando

Más detalles

Problemas Resueltos Primera Parte

Problemas Resueltos Primera Parte IES Rey Fernando VI San Fernando de Henares Departamento de Física y Química Problemas Resueltos Primera Parte Movimiento Armónico Simple Movimiento Ondulatorio El Sonido Profesor : Jesús Millán Crespo

Más detalles

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s ONDAS MECÁNICAS EJERCICIOS PROPUESTOS 1. Cuál es la velocidad de una onda transversal a lo largo de un hilo etálico soetido a la tensión de 89,0N si una bobina del iso que tiene 305,0 pesa 35,50N? v =

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio Movimiento Ondulatorio 1 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Problemas. De estos parámetros deducimos frecuencia, periodo, longitud de onda y velocidad de la onda

Problemas. De estos parámetros deducimos frecuencia, periodo, longitud de onda y velocidad de la onda Problemas. La función de onda de una onda armónica que se mueve sobre una cuerda es y(x,t)=,3sen(,x-3,5t) en unidades del SI. Determinar la dirección del movimiento, velocidad, longitud de onda, frecuencia

Más detalles

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO:

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO: 1 EJERCICIOS DE ONDA NOMBRE: CURSO: 1. investiga las siguientes definiciones: a. pulso b. onda c. fuente de propagación d. medio de propagación 2. confecciona un diagrama conceptual que describa la clasificación

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f.

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f. Actividad 1 Sobre el extremo izquierdo de una cuerda tensa y horizontal se aplica un movimiento vibratorio armónico simple, perpendicular a la cuerda, que tiene una elongación máxima de 0,01 m y una frecuencia

Más detalles

Problemas Resueltos de Física 2. Alumno. Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés

Problemas Resueltos de Física 2. Alumno. Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés Problemas Resueltos de Física 2 Alumno Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés 25 de Abril de 2013 Índice general 1. Movimientos Periódicos 2 1.1. Superposición de Movimientos

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE 1.- La ecuación del movimiento de un móvil viene expresada por: x = 4 sen(8t + 2) Halla la amplitud, el período, la frecuencia y la fase. Sol.: 4 ; π/4 seg; 4/ π s -1 ; n = 2

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

VIBRACIONES Y ONDAS. Cuestiones

VIBRACIONES Y ONDAS. Cuestiones VIBRACIONES Y ONDAS Cuestiones 1 La aceleración del movimiento de una partícula viene expresada por la relación: a = ky, siendo y el desplazamiento respecto a la posición de equilibrio y k una constante.

Más detalles

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO EXAMEN COMPLEO El alumno elegirá una sola de las opciones de problemas, así como cuatro de las cinco Cuestiones propuestas. No deben resolverse problemas

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

Las ondas: Sonido y Luz

Las ondas: Sonido y Luz Las ondas: Sonido y Luz El movimiento ondulatorio El movimiento ondulatorio es el proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas. Clases de ondas

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 4 Movimiento ondulatorio Ejercicio 1 La nota musical la tiene una frecuencia, por convenio internacional de 440 Hz. Si en el aire se propaga con una velocidad de 340 m/s y

Más detalles

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Ondas Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Este documento contiene material multimedia. Requiere Adobe Reader 7.1 o superior para poder ejecutarlo. Las animaciones fueron realizadas por

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

DOCUMENTO 02 CLASIFICACION DE LAS ONDAS

DOCUMENTO 02 CLASIFICACION DE LAS ONDAS DOCUMENTO 02 CLASIFICACION DE LAS ONDAS RESUMEN CONCEPTOS DE LA CLASE ANTERIOR Relaciones importantes f = 1 T v = λ.f la longitud de onda y la frecuencia varían en forma inversamente proporcional para

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Ondas I: ondas y sus características Nº Ejercicios PSU 1. Dentro de las características de las ondas mecánicas se afirma que MC I) en su propagación existe transmisión

Más detalles

BEAT RAMON LLULL CURS INCA

BEAT RAMON LLULL CURS INCA COL LEGI FÍSICA BEAT RAMON LLULL CURS 2007-2008 INCA 1. Escriba la expresión matemática de una onda armónica unidimensional como una función de x (distancia) y t (tiempo) y que contenga las magnitudes

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO INTRODUCCIÓN Es muy probable que alguna vez hayas estado por mucho tiempo observando las ondas producidas sobre la superficie del agua en un estanque, al lanzar un objeto o caer una gota sobre ella; o

Más detalles

TEMA 3: MOVIMIENTO ONDULATORIO

TEMA 3: MOVIMIENTO ONDULATORIO http://www.textoscientificos.com/fisica/magnetismo/naturaleza-magnetismo-monopolo-magnetico 3.1 Tipos de onda ONDA: perturbación que se propaga http://upload.wikimedia.org/wikipedia/commons/4/42/blender3d_circularwaveanim.gif

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

Relación Problemas Tema 8: Movimiento Ondulatorio

Relación Problemas Tema 8: Movimiento Ondulatorio 0.- Una partícula vibra según la ecuación Relación Problemas Tema 8: Movimiento Ondulatorio y 0,03 sen 10 t 2 (S.I.) Calcular: a) Amplitud, periodo y frecuencia del movimiento. b) Tiempo mínimo que transcurre

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

CAPITULO VI ONDAS ELASTICAS

CAPITULO VI ONDAS ELASTICAS CAPITULO VI ONDAS ELASTICAS - 140 - 6. ONDAS ELASTICAS La onda elástica es la perturbación efectuada sobre un medio material y que se propaga con movimiento uniforme a través de este mismo medio. La rapidez

Más detalles

VIBRACIONES Y ONDAS 1

VIBRACIONES Y ONDAS 1 VIBRCIONES Y ONDS Contenidos ().- Movimiento Vibratorio rmónico Simple... Ecuaciones del M.V..S... Dinámica del M.V..S..3. El péndulo simple..4. Energía de un oscilador armónico..- Movimiento Ondulatorio...

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1 OPCIÓN A - PROBLEMA 1 Tenemos tres partículas cargadas q 1 = - 20 C, q 2 = + 40 C y q 3 = - 15 C, situadas en los puntos de coordenadas A (2,0), B (4,0) y C (0,3), respectivamente. Calcula, sabiendo que

Más detalles

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones:

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones: ONDAS ONDAS Las ondas son perturbaciones que se propagan a través del medio. Medio Isótropo: cuando sus propiedades físicas son las mismas en todas las direcciones. Medio físico homogéneo: cuando se considera

Más detalles

PROBLEMAS M.A.S. Y ONDAS

PROBLEMAS M.A.S. Y ONDAS PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido

Más detalles

, (1) = 344 (3) (2) sonido

, (1) = 344 (3) (2) sonido !"" # # " $% " %& % % ' %& (% ) $ *!+& ' 1. INTRODUCCIÓN: En esta práctica estudiaremos la propagación de ondas sonoras (ondas armónicas producidas por un diapasón*) en el interior de un tubo semiabierto,

Más detalles

Propagación de Ondas en Medios Continuos

Propagación de Ondas en Medios Continuos Propagación de Ondas en Medios Continuos FÍSICA I, Dpto. Física - UNS Las ondas están relacionadas con muchísimos fenómenos cotidianos y no tan cotidianos. Están por todos sitios a nuestro alrededor: El

Más detalles

INMACULADA HERNÁNDEZ CARRASCO ROSARIO GARVÍN FLORES NAZARET CAMPOS MARTÍN

INMACULADA HERNÁNDEZ CARRASCO ROSARIO GARVÍN FLORES NAZARET CAMPOS MARTÍN INMACULADA HERNÁNDEZ CARRASCO ROSARIO GARVÍN FLORES NAZARET CAMPOS MARTÍN PROBLEMA 2 A través de la ecuación: X=7sen (2t+Π/6) Nos pide a) El desplazamiento de la partícula cuando t=0s Con la ecuación de

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Qué es una onda? Hincapié

Qué es una onda? Hincapié Qué es una onda? Todos hemos visto ondas que empiecen cuando se lanza una piedra al agua Hay que diferenciar entre Velocidad de la onda Velocidad del agua Onda: un concepto abstracto La onda no transporta

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Tema 7. Movimientos oscilatorio y ondulatorio

Tema 7. Movimientos oscilatorio y ondulatorio Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 7. Movimientos oscilatorio y ondulatorio

Más detalles

TEMA I.12. Ondas Estacionarias en una Cuerda. Dr. Juan Pablo Torres-Papaqui

TEMA I.12. Ondas Estacionarias en una Cuerda. Dr. Juan Pablo Torres-Papaqui TEMA I.12 Ondas Estacionarias en una Cuerda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles