1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100"

Transcripción

1 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = m; v sonido = 340 m/s) (junio 2000) a) Como v= λ f, entonces λ= v/f = 340 m. b) Calculamos ω= 2πf = 2π s -1, k= 2π/λ = π/170 m -1 y tomamos la fase inicial nula. Tomamos como ecuación de la onda armónica propagándose hacia +, y = A sen(ωt -kx) y, en este caso, y = 10-8 sen(2πt πx/170) (S.I.). 2. Dos corchos que flotan en la superficie del agua de un estanque son alcanzados por una onda que se produce en dicha superficie, tal que los sucesivos frentes de onda son rectas paralelas entre sí que avanzan perpendicularmente a la recta que une ambos corchos. Se observa que los corchos realizan 8 oscilaciones en 10 segundos, y que oscilan en oposición de fase. Sabiendo que la distancia entre los corchos es 80 cm y que ésta es la menor distancia entre puntos que oscilan en oposición de fase, calcular la velocidad de propagación de la onda en el agua. (Septiembre 2002) Al oscilar en oposición de fase, los dos puntos están separados por media longitud de onda, que será, entonces, λ = 1'6 m. La frecuencia será f= 8 oscilaciones / 10 s = 0'8 Hz, así que de v = λf tenemos v= 1'6 0'8 m/s = 1'28 m/s. 3. Dada la onda descrita por la ecuación y= 0'20 sen[π(20x +100t)] escrita en unidades del sistema internacional, calcular: a) La amplitud, longitud de onda, periodo, frecuencia angular, frecuencia lineal, velocidad y sentido de propagación de la onda. b) La velocidad transversal de un punto situado a 0'30 m del origen cuando t= 5' s. Interpretar físicamente el resultado. (junio 2003) Ecuación de una onda armónica que se propaga hacia - : y= A sen(ωt+kx). Entonces la amplitud vale A= 0'20 m, la frecuencia angular ω= 100π s -1 y entonces de ω= 2πf tenemos que f= 50 Hz, y el periodo es T = 1/f = 0'02 s. El número de ondas k= 20π m -1 y la longitud de onda λ= 2π/k = 0'1 m. La velocidad de propagación es v= ω/k =5 m/s. La velocidad de oscilación de los puntos alcanzados por la onda es v y = dy =20 cos 100 t 20 x m/s dt

2 Entonces v y (x= 0'3 m, t= 0'005 s)= 0 m/s, es decir, el punto está instantáneamente en reposo (en un extremo de su trayectoria de oscilación). 4. Sea una cuerda tensa muy larga. Hacemos que uno de los extremos (O) realice un movimiento armónico simple en una dirección perpendicular a la cuerda, de amplitud A= 0'3 m y frecuencia f=2 Hz, de forma que la perturbación se propaga a lo largo de la cuerda con una velocidad de 5 m/s. Sabiendo que en el instante inicial la elongación del punto O es nula: a) Escribir la ecuación de onda; b) Hallar la elongación y velocidad transversal de un punto P situado a 10 m de 0,4 segundos después de iniciado el movimiento. Interpretar el resultado. (septiembre 2003) a) Tomamos como ecuación la de una onda avanzando hacia + : y(x,t)= A sen(ωt -kx +φ 0 ). De v= λf, tenemos que λ= 5/2 m= 2'5 m. Entonces k= 2π/λ=4π/5 m -1. Como ω= 2πf, entonces ω= 4π s -1. Según el enunciado, y(0,0)= A sen φ 0 =0, entonces φ 0 vale 0 ó π. El enunciado no permite decidir cuál de los dos valores es el correcto, así que tomaremos φ 0 =0. Entonces la ecuación de onda es: y(x,t)= 0'3 sen(4πt -4π/5 x) (S.I.). b) y(10 m,0'4 s)= -0'285 m. Como la velocidad de oscilación es v y = dy/dt, nos queda v y = 1'2π cos(4πt -4π/5 x), así que v y (10 m, 0'4 s)= 1'16 m/s. 5. La distancia entre los extremos de una cuerda de una guitarra es 66 cm. Si la frecuencia fundamental del sonido que emite cuando se pulsa es 440 Hz, calcular: a) La longitud de onda de la onda estacionaria generada en la cuerda. b) La velocidad de propagación de la onda en la cuerda. (junio 2004) La frecuencia fundamental en una cuerda sujeta por los dos extremos es f= v/2l, donde v es la velocidad de propagación de la onda incidente y L es la longitud de la cuerda. Entonces v= 2Lf= 580'8 m/s. De v= λf, obtenemos λ= v/f= 1'32 m. El último resultado lo podemos comprobar fácilmente, ya que para la frecuencia fundamental, λ= 2L. 6. Dos altavoces separados una distancia de 3'00 m están emitiendo sendas ondas acústicas idénticas y en fase. Consideremos una recta paralela a la que une los altavoces y que está a 8'00 m de la misma. Un oyente recorre dicha recta encontrando puntos en los que la intensidad del sonido es máxima y otros en los que es mínima. En concreto, en O encuentra un máximo y en P, situado a 0'350 m de O, encuentra el primer mínimo. Calcular la frecuencia de ondas emitidas. (v sonido = 340 m/s) (septiembre 2005)

3 La amplitud resultante será A r =2A cos k x 2, y para que sea nula cos k x 2 =0. De aquí, deducimos (para el primer nodo): k x 2 = 2. Entonces =2 x y f = v = v 2 x. Como x 1 = 1' m y x 2 = 1' m, entonces f= 1319 Hz. 7. Sea una cuerda tensa muy larga en la que sometemos a uno de sus extremos a un movimiento armónico simple en la dirección perpendicular a la cuerda, con una amplitud de 2 cm y una frecuencia de 5 Hz. Sabiendo que la velocidad de propagación de la onda por la cuerda es de 600 m/s, escribir su ecuación de onda. (junio 2006) y x,t =2 sen 10 t± 60 x 0 cm. (El signo depende del sentido de propagación de la onda). 8. La ecuación de una onda transversal que se propaga en una cuerda es y= 0'2 sen (400t-20x) estando x e y expresados en cm y t en segundos. Hallar: a) La amplitud, periodo, frecuencia, longitud de onda y velocidad de propagación. b) Posición y velocidad del punto situado en x=2 en el instante t=1. (junio 2007) A= 0'2 m; f= π/200 Hz; T= 200/π s; λ= π/10 m, v= 20 m/s. y(2 m, 1 s)= 0'0265 m; v y = -79'3 m/s. 9. Dibujar dos ondas transversales del mismo periodo y: a) De la misma amplitud pero una de

4 doble longitud de onda que la otra. b) De la misma longitud de onda, en fase, pero con las amplitudes en relación A l = 2A 2. c) De la misma amplitud y longitud de onda pero desfasadas π rad. Cuál es en este caso la amplitud de la onda superposición de las dos ondas? Razonar la respuesta. (junio 08) a) b) c) La onda resultante es nula, al estar las ondas incidentes en inversión de fase. 10. Una onda transversal se propaga por una cuerda según la ecuación: y(x,t) = 0,4sen(100πt - 0,5π x+ π/2) expresada en el S. l. de unidades. Calcular:

5 a) La longitud de onda y la velocidad de propagación. b) La velocidad de vibración de una partícula de la cuerda situada en x = 2m en el instante t = 0,5s c) La diferencia de fase de dos puntos de la cuerda separados 50cm. d) El instante en que un punto situado a 1 m del origen alcanza por primera vez velocidad nula. (junio 2008) a) λ= 2π/k = 2π/0'5π m= 4 m. v= ω/k = 100π / 0'5π m/s = 200 m/s. b) v y (x,t)= 40π cos(100πt -0'5πx +π/2). v y (2 m, 0'5 s)= 0 m/s. c) ΔΦ= k Δx=0'5π 2 = π. Están en inversión de fase. d) v y (1 m,t)= 40π cos(100πt -0'5π +π/2) = 40π cos(100πt)=0 100πt = ±π/2 + 2πk, con k número entero. El paso por primera vez (y tiempo positivo) da t= 1/200 s. 11. Una onda armónica sinusoidal se propaga en el sentido positivo del eje OX con una frecuencia de 100 Hz, una velocidad de 500 m/s y con una amplitud de 15 cm. Si en el instante inicial una partícula del medio situada en el origen ocupa la máxima elongación positiva: a)escribir la ecuación de onda. b) Determinar la diferencia de fase entre dos puntos del medio separados 2 m. c) Cuál es la máxima velocidad de vibración de las partículas del medio? (septiembre 2008) a) y(x,t)= 0'15 sen(200πt 2π/5 x + π/2) (S.I.) b) ΔΦ= k Δx = 2π/5 2= 4π/5. c) v máx = Aω= 0'15 2π 100 m/s= 30π m/s. 12. La ecuación de una onda que se propaga por una cuerda tensa es y(x,t)= 0'05 sen (25πt -2πx) en unidades del sistema internacional. a) Explicar qué tipo de onda es y cuáles son su amplitud, su frecuencia y la velocidad de propagación. b) Representar gráficamente la forma de la onda en el instante inicial en 0 x 1 m. c) Calcular el instante en que un punto situado a 30 cm del origen alcanza por primera vez velocidad nula. (septiembre 2009) a) Es una onda armónica que se propaga en sentido positivo. La ecuación general es y(x,t)= A sen(ωt-kx), así que la amplitud es A= 0'05 m, la frecuencia angular ω= 25π s -1, la frecuencia f= ω/2π = 12'5 Hz, el numero de ondas k= 2π m -1 y la velocidad de propagación v= ω/k= 12'5 m/s. b) y(x, t=0) = 0'05 sen(-2πx) c) La velocidad de oscilación es v(x,t)= dy/dt = 1'25π cos(25πt-2πx) (m/s).

6 De v(0'3 m, t)= 0 obtenemos que cos(25πt-0'6π)= 0 y 25πt-0'6π= π/2 + nπ siendo n un número entero. Si el punto debe tener velocidad nula por primera vez, entonces n=0 y t= 0'044 s. 13. En un extremo de una cuerda tensa horizontal de 5 m, se provoca un movimiento oscilatorio armónico perpendicular a la dirección de la cuerda, cuya elongación es de 8 cm cuando han transcurrido 0'5 s desde su comienzo. Se observa que la onda producida tarda en llegar al otro extremo 2 s y que la distancia entre dos crestas sucesivas es de 1'5 m. a) Determinar la frecuencia, longitud de onda y amplitud del movimiento ondulatorio. b) Calcular la velocidad de un punto situado a 1'5 m del origen de la onda al cabo de 0'6 s de iniciado el movimiento ondulatorio. c) Hallar el desfase entre dos puntos separados 2 m. (Dar los resultados en unidades S.I.) (junio 2010) a) v= 5m 2s =2' 5m/s ; =1 ' 5m ; v= f f = 2' 5 1' 5 Hz= 5 3 Hz ; El enunciado es un poco ambiguo, pero vamos a suponer que en el instante inicial, el extremo de la cuerda está en +A. Si la ecuación de la onda es y= A sen t kx 0, tenemos que A= A sen 0 y 0 = 2. Como =2 f = 10 3 s 1 escribir y= A sen 10 3 t 4 3 x 2. y k = 2 = 4 3 m 1 Entonces y 0m,0' 5 s =0' 08m= A sen m= 1 2 A, así que A=0'16 m. podemos b) y=0 ' 16sen 10 3 t 4 3 x 2 v y = 8 15 cos 10 3 t 4 3 x 2 S.I. v y 1 ' 5 m,0 ' 6 s = 8 15 cos =0 m/ s (está en el otro extremo de la oscilación). c) La fase de la onda es = 10 3 t 4 3 x 2 instante determinado es = 2 1 = 4 3 x= 4 3 2=8 3, y la diferencia de fase entre dos puntos en un. 14. La ecuación de una onda armónica que se propaga en una cuerda es, expresada en el S.I. de unidades: y x,t =0,5 sen 0,1 t x 3. Determinar: a) La velocidad de propagación de la onda, la longitud de onda y el periodo. b) La velocidad transversal de un punto de la cuerda situado en x= 2 cm en el instante t=10 s. c) La aceleración máxima del punto anterior en el movimiento de oscilación. (julio 2010)

7 a) =0,1 s 1 T= 2 =20 Hz ; k= m 1 = 2 k =2 m ; v= k =0'1 m/s. b) v y 2m,10 s =0' 5 0' 1 cos 0' /3 m/ s= 0' 025 m/s= 0' 0785 m/s. c) a máx = 2 A= 0 ' 1 0 ' 5 m/s 2 =0 '0493 m /s La cuerda de una guitarra vibra de acuerdo con la ecuación y x,t =0 ' 01sen 10 x cos 200 t, expresada en el Sistema Internacional. a) Indicar de qué tipo de onda se trata y calcular la amplitud y la velocidad de propagación de las ondas en la cuerda que han originado esa onda. b) Determinar la amplitud de la oscilación de la partícula situada en x=0'25 m y su velocidad transversal cuando t= 1'5 s. Explicar el resultado obtenido. (julio 2011) solución: a) A r =2A=0'01 m A=5 mm ; v= k = m/s=20 m /s. b) A r x =0 ' 01sen 10 x A r x=0' 25 m =0' 01 m. v y x, t = 2 sen 10 x sen 200 t v y 0 ' 25 m,1 ' 5 s = m/ s=0 m/ s. El punto es un antinodo (vientre) y está en ese instante en el punto de máxima elongación positiva. 16. La ecuación de una onda que se propaga en una cuerda es y= 0'01 sen (2t-3x), estando x e y expresados en metros y t en segundos. a) Cuál es el periodo, la longitud de onda y la velocidad de propagación? b) En t= 1 s, cuál es el desplazamiento y la velocidad de vibración del punto x= 10 cm? c) Cuál es la diferencia de fase entre dos puntos separados 5 cm? (junio 2012) a) =2 s 1 T= 2 = Hz ; k =3 m 1 = 2 k = 2 3 m=2 '09 m ; v= k =0' 667 m /s. b) y x=0' 1m,t=1 s =0' 01 sen 2 0' 3 m=9' m. v y x,t =0' 02cos 2t 3x m/s v y 0' 1m,1s = 2' m/ s. c) =2t 3 x ; = 2 1 =3 x=3 0 ' 05=0 ' 15.

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Tema 6: Movimiento ondulatorio.

Tema 6: Movimiento ondulatorio. Tema 6: Movimiento ondulatorio. 1. Ondas: conceptos generales. 2. Estudio cualitativo de algunas ondas. Fenómenos ondulatorios más evidentes en cada una: a) Ondas en una cuerda b) Ondas en la superficie

Más detalles

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio?

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio? 2º Bachillerato: Ondas (generalidades) 1. Concepto de onda Cuando se produce una variación de una magnitud física en un punto del espacio, se produce una perturbación (del equilibrio). Por ejemplo, se

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π ONDAS. 1. Considere la siguiente ecuación de una onda : y ( x, t ) = A sen ( b t - c x ) ; a. qué representan los coeficientes A, b, c? ; cuáles son sus unidades? ; b. qué interpretación tendría que la

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO 5 MOVIMIENTO ONDULATORIO 5.. EL MOVIMIENTO ONDULATORIO. Indica cómo podemos comprobar que, cuando una onda se propaga por una cuerda, hay transporte de energía, pero no transporte de materia. Un procedimiento

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1. Superposición de ondas. 2. Ondas estacionarias. 3. Pulsaciones. 4. Principio de Huygens. 5. Difracción. 6. Refracción. 7. Reflexión. 8. Efecto Doppler. Física 2º Bachillerato

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS

ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS OPCIÓN A. Considere la siguiente ecuación de una onda : y ( x, t ) A sen ( b t - c x ) ; a) qué representan los coeficientes A, b, c? ; cuáles

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5 013-Julio-Fase Específica (Asturias) Se nos da la expresión de la longitud de onda de los armónicos, aunque podríamos deducirla al tratarse de un caso de ondas estacionarias con un límite fijo (el extremo

Más detalles

MOVIMIENTO ONDULATORIO ONDAS

MOVIMIENTO ONDULATORIO ONDAS ONDAS ON01 J94 Queremos determinar la profundidad de un pozo midiendo, con un cronómetro que aprecia décimas de segundo, el tiempo entre el momento de dejar caer una piedra al fondo y el momento en que

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

1. Las gráficas nos informan

1. Las gráficas nos informan Nombre y apellidos: Puntuación: 1. Las gráficas nos informan Una partícula de 50 g de masa está realizando un movimiento armónico simple. La figura representa la elongación en función del tiempo. 0,6 0,5

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO.

PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. Problemas de Física. 2º de Bachillerato. I.E.L. Curso 2015-2016 1 PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. ECUACION DEL MOVIMIENTO VIBRATORIO 1 Una partícula de masa m = 20g oscila armónicamente

Más detalles

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS 1. Justifica si las siguientes cuestiones son verdaderas o falsas: a) La amplitud de un movimiento vibratorio es igual a la elongación de la partícula.

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Ondas y Óptica Cuestiones y Problemas PAU Física 2º Bachillerato

Ondas y Óptica Cuestiones y Problemas PAU Física 2º Bachillerato Ondas y Óptica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato 1. a) Si queremos ver una imagen ampliada de un objeto, qué tipo de espejo tenemos que utilizar? Explique, con ayuda de un esquema,

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO 5 MOVIMIENTO ONDULATORIO 5.5. SUPERPOSICIÓN DE ONDAS. INTERFERENCIAS 1. Dos ondas de la misma f, y A se mueven en la misma dirección y sentido. Calcula la amplitud de la onda resultante, sabiendo que la

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Descripción física y clasificación de los fenómenos ondulatorios. 2. Ondas monodimensionales armónicas. 3. Ecuación del movimiento ondulatorio. 4. Intensidad de una onda. 5. Fenómenos

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO ONDAS MECANICAS INTRODUCCIÓN Las ondas son perturbaciones de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando

Más detalles

Movimientos periódicos PAU

Movimientos periódicos PAU 01. Un muelle de masa despreciable y de longitud 5 cm cuelga del techo de una casa en un planeta diferente a la Tierra. Al colgar del muelle una masa de 50 g, la longitud final del muelle es 5,25 cm. Sabiendo

Más detalles

Siendo y la elongación, A la amplitud, ω = 2πν la pulsación, y φ 0 la fase inicial

Siendo y la elongación, A la amplitud, ω = 2πν la pulsación, y φ 0 la fase inicial Capítulo 2 Vibraciones y ondas 2.1. Conceptos previos. Ecuación del movimiento armónico simple: La ecuación de un movimiento armónico simple puede ser expresada por cualquiera de las siguientes expresiones:

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Física II clase 5 (25/03) Definición

Física II clase 5 (25/03) Definición Física II clase 5 (25/03) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Definición Una onda

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

, para que pase por el punto de coordenadas (0,0,0). Con qué velocidad pasará por dicho punto?

, para que pase por el punto de coordenadas (0,0,0). Con qué velocidad pasará por dicho punto? Movimiento de cargas en campos magnéticos Febrero 97 Dado un campo magnético definido por la siguiente condición: B = 0 para z < 0 obtener razonadamente las coordenadas del punto del plano z = 0 por el

Más detalles

Laboratorio de Física, CC Físicas, UCM Curso 2013/ ONDAS ESTACIONARIA. CUERDA VIBRANTE

Laboratorio de Física, CC Físicas, UCM Curso 2013/ ONDAS ESTACIONARIA. CUERDA VIBRANTE Laboratorio de ísica CC ísicas UCM Curso 0/0-6- ONDAS ESTACIONARIA. CUERDA VIBRANTE UNDAMENTO TEÓRICO Ondas Estacionarias: Cuerda ibrante Considérese una cuerda de longitud L que está sujeta por un extremo

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 10. Ondas

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 10. Ondas FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +5 EMA 0. Ondas Moimiento ondulatorio http://web.educastur.princast.es/proyectos/fisquiweb/moond/index.htm http://www.sociedadelainformacion.com/departfqtobarra/ondas/index.htm

Más detalles

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s ONDAS MECÁNICAS EJERCICIOS PROPUESTOS 1. Cuál es la velocidad de una onda transversal a lo largo de un hilo etálico soetido a la tensión de 89,0N si una bobina del iso que tiene 305,0 pesa 35,50N? v =

Más detalles

Clasificación de las ondas Distinción entre ondas longitudinales y transversales, ondas estacionarias y viajeras Periodo y frecuencia Relación entre

Clasificación de las ondas Distinción entre ondas longitudinales y transversales, ondas estacionarias y viajeras Periodo y frecuencia Relación entre Clasificación de las ondas Distinción entre ondas longitudinales y transversales, ondas estacionarias y viajeras Periodo y frecuencia Relación entre longitud de onda, frecuencia y velocidad de propagación

Más detalles

Problemas Resueltos Primera Parte

Problemas Resueltos Primera Parte IES Rey Fernando VI San Fernando de Henares Departamento de Física y Química Problemas Resueltos Primera Parte Movimiento Armónico Simple Movimiento Ondulatorio El Sonido Profesor : Jesús Millán Crespo

Más detalles

= 1,0 m/s la velocidad de propagación de la onda en la cuerda (2), determine la distancia

= 1,0 m/s la velocidad de propagación de la onda en la cuerda (2), determine la distancia TALLER DE CIENCIAS PARTE FÍSICA COMÚN Figura para el ejercicio 1 al 4 1. Si sabemos que en la cuerda (1) la velocidad de propagación de la onda es v = 1,5 m/s, y que la longitud de onda vale λ = 30 cm,

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

ONDAS. Objetivo: 1. Comprender el concepto de onda. 2. Reconocer las características de una onda. Criterio A: Describir conocimiento científico

ONDAS. Objetivo: 1. Comprender el concepto de onda. 2. Reconocer las características de una onda. Criterio A: Describir conocimiento científico LAS ONDAS ONDAS Objetivo: 1. Comprender el concepto de onda. 2. Reconocer las características de una onda. Criterio A: Describir conocimiento científico DEFINICIÓN Es la propagación o transmisión de energía

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com VIBRACIONES Y ONDAS 1- La ecuación de una onda en una cuerda es: yx,t0,02sen8x96t S.I. a) Indique el significado físico de las magnitudes que aparecen en esa ecuación y calcule el periodo, la longitud

Más detalles

TEMA I.11. Condición de Frontera y Principio de Superposición. Dr. Juan Pablo Torres-Papaqui

TEMA I.11. Condición de Frontera y Principio de Superposición. Dr. Juan Pablo Torres-Papaqui TEMA I.11 Condición de Frontera y Principio de Superposición Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias

Más detalles

Problemas. De estos parámetros deducimos frecuencia, periodo, longitud de onda y velocidad de la onda

Problemas. De estos parámetros deducimos frecuencia, periodo, longitud de onda y velocidad de la onda Problemas. La función de onda de una onda armónica que se mueve sobre una cuerda es y(x,t)=,3sen(,x-3,5t) en unidades del SI. Determinar la dirección del movimiento, velocidad, longitud de onda, frecuencia

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE 1.- La ecuación del movimiento de un móvil viene expresada por: x = 4 sen(8t + 2) Halla la amplitud, el período, la frecuencia y la fase. Sol.: 4 ; π/4 seg; 4/ π s -1 ; n = 2

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

ONDAS NOMBRE: CURSO:

ONDAS NOMBRE: CURSO: 1 ONDAS NOMBRE: CURSO: 1. investiga las siguientes definiciones: a. pulso b. onda c. fuente de propagación d. medio de propagación 2. confecciona un diagrama conceptual que describa la clasificación de

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio Movimiento Ondulatorio 1 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

I.E.S. FRANCISCO GARCIA PAVÓN. DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO CURSO: B2CT FECHA: 16/11/2011

I.E.S. FRANCISCO GARCIA PAVÓN. DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO CURSO: B2CT FECHA: 16/11/2011 FÍSICA Y QUÍMICA CURSO 0-0 NOMBRE: SOLUCIONADO CURSO: BCT FECHA: 6//0 FÍSICA TEMA. M.A.S. TEMA. MOVIMIENTOS ONDULATORIOS. NORMAS GENERALES - Escriba a bolígrafo. - No utilice ni típex ni lápiz. - Si se

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

1. Escribe en el recuadro la letra correspondiente a cada elemento del movimiento oscilatorio.

1. Escribe en el recuadro la letra correspondiente a cada elemento del movimiento oscilatorio. COLEGIO JUVENTUDES UNIDAS Asignatura: undecimo Periodo: 1 Formulas EVALUACION DE COMPROBACION PRIMER PERIODO x = Acos (wt + φ) v = wasen(wt + φ) a = w 2 Acos(wt + φ) F = ma a = w 2 A v = wa w = 2π T, w

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO:

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO: 1 EJERCICIOS DE ONDA NOMBRE: CURSO: 1. investiga las siguientes definiciones: a. pulso b. onda c. fuente de propagación d. medio de propagación 2. confecciona un diagrama conceptual que describa la clasificación

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1 OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8

Más detalles

RESUMEN DE FÍSICA - 2º BACH.

RESUMEN DE FÍSICA - 2º BACH. pg. 1 de 6 RESUMEN DE FÍSIC - 2º BCH. PRTE I Emiliano G. Flores egonzalezflores@educa.madrid.org Este documento contiene un resumen de los conceptos y expresiones matemáticas más significativas de la materia

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

VIBRACIONES Y ONDAS. Cuestiones

VIBRACIONES Y ONDAS. Cuestiones VIBRACIONES Y ONDAS Cuestiones 1 La aceleración del movimiento de una partícula viene expresada por la relación: a = ky, siendo y el desplazamiento respecto a la posición de equilibrio y k una constante.

Más detalles

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO EXAMEN COMPLEO El alumno elegirá una sola de las opciones de problemas, así como cuatro de las cinco Cuestiones propuestas. No deben resolverse problemas

Más detalles

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f.

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f. Actividad 1 Sobre el extremo izquierdo de una cuerda tensa y horizontal se aplica un movimiento vibratorio armónico simple, perpendicular a la cuerda, que tiene una elongación máxima de 0,01 m y una frecuencia

Más detalles

Función de onda: f x, t

Función de onda: f x, t DE LAS OSCILACIONES A LAS ONDAS CÁTEDRA DE FÍSICA FFyB - UBA Los fenómenos ondulatorios están relacionados con innumerables fenómenos físicos: -Hablar -Escuchar la radio -Tocar un instrumento -Tirar una

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles