Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización"

Transcripción

1 Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización Ejercicio. Decidir cuáles de las siguientes aplicaciones son lineales. Cuál es la dimensión del espacio imagen? a f(x, x 2, x 3 = (x 2 + x 3, 2x + x 2, 3x x 2 + x 3 b f(x, x 2, x 3 = (x, x 2 +, x c f(x, x 2, x 3 = (x x 2 + x 3, x 3 a es lineal. La dimensión de la imagen es 3 b no es lineal (f(0 0 c es lineal. La dimensión de la imagen es 2. Ejercicio 2. Demostrar que existe una sóla transformación lineal de R 3 en sí mismo que tranforma los vectores a, a 2, a 3 en b, b 2, b 3. a b a = (2, 3, 5 a 2 = (0,, 2, a 3 = (, 0, 0 b = (,, b 2 = (,,, b 3 = (2,, 2 a = (2, 0, 3 a 2 = (4,, 5, a 3 = (3,, 2 b = (, 2, b 2 = (4, 5, 2, b 3 = (,, En ambos casos {a i } forman una base, y siempre existe una aplicación lineal que lleve los elementos de la base del espacio de salida a elementos arbitrarios del espacio de llegada (defínela como f( i λ ia i = i λ ib i. La unicidad se sigue de la linealidad: si hubiese dos funciones f f lineales con f(a i = b i, existiría v tal que f(v f (v

2 (en caso contrario f = f. Pero v = i λ ia i, luego f(v = i λ i f(a i = i λ i b i = i λ i f (a i = f (v Contradicción. Observación: en a {b i } es asimismo una base. Por lo tanto, la aplicación lineal consiste en un cambio de base. Ejercicio 3. Demostrar que la proyección de R 3 sobre la recta (, 0, 0 paralelamente al plano (0,, 0, (0, 0, es una aplicación lineal. Cuál es el núcleo de dicha aplicación? La aplicación viene dada por Es lineal, ya que f(x, x 2, x 3 = (x, 0, 0 f (λ(x, x 2, x 3 + µ(y, y 2, y 3 = (λx + µy = λf(x, x 2, x 3 + µf(y, y 2, y 3 Su imagen es el eje OX y su núcleo el plano L((0,, 0, (0, 0,. Ejercicio 4. Sea la aplicación lineal f : R 3 R 3 definida por f(x, y, z = (2x + y + 4z, x + y + 2z, x + y + 3z. Determinar el núcleo y la imagen de dicha aplicación.. ker(f = {0}. 2. Im(f = R 3. Ejercicio 5. Sea la aplicación lineal f : R 3 R 3 definida por f(x, y, z = ( 2x + y + z, x y, x z. Determinar unas ecuaciones paramétricas y cartesianas (o implícitas del núcleo y de la imagen de f. Calcular la dimensión y una base de cada uno de los dos subespacios. Estudiar si f es inyectiva y/o sobreyectiva. 2

3 Para Im(f:. Unas ecuaciones paramétricas son x = λ y = µ, λ, µ R z = λ µ 2. Una base está dada por B Im(f = {(, 0,, (0,, }. Deducimos por tanto que dim(im(f = 2. Como Im(f R 3, f no es sobreyectiva. 3. Unas ecuaciones cartesianas de Im(f son {(x, y, z : x + y + z = 0}. Para ker(f:. Unas ecuaciones cartesianas de ker(f son 2. Unas ecuaciones paramétricas son x = λ y = λ, λ R z = λ { (x, y, z : { } x y = 0. y z = 0 3. Una base de ker(f sería B ker(f = {(,, } y, por tanto, dim(ker(f =. Como ker(f {0}, la aplicación f no es inyectiva. Ejercicio 6. Sea la aplicación lineal f : R 3 R 3 definida por f(x, y, z = (x + y, x + z, x + y + z. Estudiar si la aplicación es inyectiva y/o sobreyectiva. Dar una base de la imagen de f. Estudiar si el vector u = (,, 0 está en la imagen de f y en ese caso dar las coordenadas de u con respecto a la base anterior. Se puede ver que ker(f = {(0, 0, 0}. Luego f es inyectiva. Por otro lado, se ve que Im(f = R 3. Por lo tanto f es sobreyectiva (así, f es un isomorfismo. Como Im(f = R 3, es obvio que u Im(f. Más aún, como podemos elegir cualquier base, escogemos la base canónica y por tanto las coordenadas del vector u en esta base son u = (,, 0 Bc. 3

4 Ejercicio 7. Existe una aplicación lineal f : R 3 R 4 tal que su núcleo está generado por los vectores (, 0, 0 y (,, 0 y la imagen está generada por (, 0, 0, 0 y (, 0, 0,? No puede existir una tal aplicación lineal ya que eso supondría que dim(ker(f = 2 y dim(im(f = 2, pero la fórmula de la dimensión para aplicaciones lineales nos dice que en este caso dim(ker(f+dim(im(f = 3. Ejercicio 8. Dar las matrices asociadas a las aplicaciones lineales correspondientes a los ejercicios., 2. y 3. de esta hoja. Dar la dimensión del núcleo y de la imagen de cada una de las aplicaciones..a.c ( a En bases {a i } en el espacio de salida y {b i } en el de llegada, la matriz es la identidad. En base canónica, la matriz es: b En bases {a i } en el espacio de salida y canónica en el de llegada la matriz es De la canónica a la canónica:

5 Ejercicio 9 (*. Demostrar que el giro de ángulo α en el plano es una transformación lineal. Determina su matriz. Pista: utiliza las coordenadas polares (r cos θ, r sin θ para definir la función. A continuación, emplea las relaciones trigonométricas para el seno y el coseno de la suma. Recordemos que un punto en el plano siempre puede escribirse como f((rcosθ, rsinθ donde r es la distancia al 0 y θ es el ángulo que la recta que pasa por el punto y el 0 forma con el lado positivo del eje OX. Así, un giro de ángulo α viene dado por f(rcosθ, rsinθ = (rcos(θ + α, rsin(θ + α Desarrollando: ( rcos(θ + α rsin(θ + α = ( r(cosθcosα sinθsinα r(sinθcosα + cosθsinα cosα sinα = sinα cosα rcosθ rsinθ Luego la aplicación viene dada por multiplicación de los vectores por una matriz. Puesto que esta operación es lineal, se sigue que la aplicación es lineal. Ejercicio 0. Demostrar que la transformación de R 3 en sí mismo indicada abajo es lineal. x f x 2 x 3 = (x, x 2, x 3, (, 2, donde u, v indica el producto escalar de dos vectores. Cuál es la matriz en la base siguiente? B = {(, 0,, (2, 0,, (,, 0} La linealidad de la aplicación f se prueba como en los ejercicios anteriores. 5

6 La matriz de f en la base B viene dada por M B,B (f = Ejercicio. Aclarar si son semejantes entre sí las siguientes matrices: (a A = 3 5, B = (b A = , B = (a No son semejantes puesto que los determinantes son diferentes. (b No son semejantes puesto que las trazas son diferentes. Ejercicio 2. Encontrar el polinomio característico de las siguientes matrices: (a , (b (a t 3 + 6t t + 38 (b t 3 t 2 + 8t 62 (ct 2 6t + 3(t 2 9t + 28 (dt (t 3(t 5(t 6, (c , (d Ejercicio 3. Demostrar, usando las propiedades del determinante, que una matriz tiene el mismo polinomio característico que su traspuesta. P A (λ = det(a λi = det((a λi t = det((a t λi t = det((a t λi = P A t(λ. 6

7 ( 2 2 Ejercicio 4. Sea A = 3 : (a Encontrar todos los autovalores y sus correspondientes autovectores (b Encontrar una matriz no singular P de forma que A = P DP, siendo D una matriz diagonal. (c Encontrar A 6 y A 4 3A 3 6A 2 + 7A + 3I. (a Autovalores: λ =, λ 2 = 4. Autovectores: v = (2,, v 2 = (, ( 2 (b P = ( (c A 6 = ( 2 A 4 3A 3 6A 2 + 7A + 3I = 0 Ejercicio 5. Sea A = ( : (a Encontrar todos los autovalores y sus correspondientes autovectores (b Encontrar una matriz no singular P de forma que A = P DP, siendo D una matriz diagonal. (c Encontrar A 6 y A 4 5A 3 + 7A 2 2A + 5I. (a Autovalores: λ =, λ 2 = 4. Autovectores: v = (,, v 2 = (, 2 ( (b P = 2 ( (c A 6 = ( 9 3 A 4 5A 3 + 7A 2 2A + 5I =

8 Ejercicio 6. Repetir el ejercicio anterior para la siguiente matriz: ( 5 6 A = 2 2 (a Autovalores: λ =, λ 2 = 2. Autovectores: v = (3, 2, v 2 = (2, ( 3 2 (b P = 2 ( (c A 6 = ( 2 6 A 4 5A 3 + 7A 2 2A + 5I = 2 9 Ejercicio 7. Sea A = : (a Encontrar todos los autovalores y una base de autovectores de A sabiendo que los autovalores son enteros positivos. (b Encontrar una matriz no singular P de forma que A = P DP, siendo D una matriz diagonal. (a Autovalores: λ = 3, λ 2 = 3, λ 3 = 5. Autovectores: v = (,, 0, v 2 = (, 0,, v 3 = (, 2,. La base de autovectores es {v, v 2, v 3 }. (b P = Ejercicio 8. Repetir el ejercicio anterior para las siguientes matrices: (a 7 5, (b 3 5 3, (c

9 (a.a Autovalores: λ = 2, λ 2 = 2, λ 3 = 4. Autovectores: v = (,, 0, v 3 = (0,,. La base de autovectores es {v, v 3 }. Notemos que tiene dimensión 2 y por tanto la matriz no diagonalizará. (a.b La matriz no diagonaliza. (b.a Autovalores: λ = 2, λ 2 = 2, λ 3 = 4. Autovectores: v = (,, 0, v 2 = (, 0,, v 3 = (,, 2. La base de autovectores es {v, v 2, v 3 }. (b.b P = (c.a Autovalores: λ = 3, λ 2 = 3, λ 3 =. Autovectores: v = (,, 0, v 2 = (, 0,, v 3 = (2,,. La base de autovectores es {v, v 2, v 3 }. 2 (c.b P = 0 0 Ejercicio 9. Para cada una de las siguientes matrices, encontrar todos los autovalores, autovectores y una matriz no singular P que diagonalice la matriz ( 2 3 (a 2 5 (d 4, (b , (e, (c (a.a Autovalores: λ =, λ 2 = 4. Autovectores: v = (3,, v 2 = (, 2. ( 3 (a.b P = 2 (b.a Autovalores: λ =, λ 2 = 5. Autovectores: v = (2,, v 2 = (2, 3. ( 2 2 (b.b P = 3 9,

10 (c.a Autovalores: λ =, λ 2 =, λ 3 = 2. Autovectores: v = (,, 0, v 2 = (,, 2, v 3 = (,,. (c.b P = 0 2 (d.a Autovalores: λ =, λ 2 =, λ 3 = 22. Autovectores: v = (2,,, v 2 = (2, 3,, v 3 = (, 2, (d.b P = (e.a Autovalores: λ = 5, λ 2 = 5, λ 3 = 6. Autovectores: v = (0,, 2, v 2 = ( 5, 8, 4, v 3 = (4, 2, (e.b P = Ejercicio 20 (*. Hallar la k-ésima potencia de la siguiente matriz (celda de Jordan: α α J = 0 0 α α α Pista: Escribe J como αi +A e investiga cuanto valen las potencias de A. Concluye expandiendo el binomio, teniendo en cuenta que I y A conmutan. Sea A = En primer lugar, notemos que:

11 A 2 = , A 3 = o, lo que es lo mismo A m vale en la superdiagonal m-ésima y 0 en el resto de posiciones de la matriz. Para m > n, A m = 0. Por tanto, tenemos que: J k = (αi + A k = k i=0 ( k α k i I k i A i = i min{k,n } i=0 ( k α k i A i i donde en el penúltimo paso hemos usado que I y A conmutan y en el último que para i > n, A i = 0. Ahora, cada una de las matrices que aparecen en el sumatorio no comparte entradas no nulas con ninguna de las demás y por tanto, tenemos que la superdiagonal j-ésima tendrá entradas iguales al coeficiente que acompaña a A j : J k = ( k 0 α k k α k k 2 α k 2... k k α k k 0 0 ( 0 k 0 α k k α k k 2 α k 2... k k α k k 0 ( 0 0 k 0 α k k α k k 2 α k 2... k k α k k ( k 2 α k 2 ( k α k k 2 α k 2 ( k 0 α k k α k α k ( k 0

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1. APLICACIONES LINEALES 1. Estudiar si las siguientes aplicaciones son lineales: a) f : R 2 R 3, f(x, y) = (x + y, y, x 2y). Sí es lineal. b) f : R 2 R, f(x, y) = xy. No es lineal. Basta observar que

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0).

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). a) Demostrad que (1,3,4), (1,1,1) i (0,1,1) son una base de R³. b) Decid

Más detalles

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA TEST DE ÁLGEBRA 1.- Sea f:r 4 -----> R 5 una apli. lineal a) Dim ker(f) tiene que ser 3 b) Dim ker(f) será 4 c) Dim ker(f) es 5 2.- El sistema homogéneo 3 x % 8 y % ð z 0 y & z 0 a) tiene soluciones no

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1 APLICACIONES LINEALES El objetivo de este capítulo es el estudio de las aplicaciones lineales u homomorfismos entre espacios vectoriales Este tipo de aplicaciones respeta la estructura de espacio vectorial

Más detalles

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide: .- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009)

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) ÁLGEBRA Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) I. Se considera el homomorfismo f : P 2 (IR) P 2 (IR) definido por las siguientes condiciones: (1) Los polinomios sin

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

ÁLGEBRA LINEAL I Soluciones a la Práctica 6

ÁLGEBRA LINEAL I Soluciones a la Práctica 6 ÁLGEBRA LINEAL I Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos,

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

Aplicaciones lineales

Aplicaciones lineales Capítulo 4 Aplicaciones lineales 4.1. Introduccción a las aplicaciones lineales En el capítulo anterior encontramos la aplicación de coordenadas x [x] B que asignaba, dada una base del espacio vectorial,

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de 1 (a) f(x 1, x 2, x 3 ) = (x 1 + x 3, x 2 + x 3, x 1 + x 3, x 2 + x 3 ) (b) f(x 1, x 2, x

Más detalles

Problemas y Ejercicios Resueltos. Tema 3: Aplicaciones Lineales.

Problemas y Ejercicios Resueltos. Tema 3: Aplicaciones Lineales. Problemas y Ejercicios Resueltos. Tema : Aplicaciones Lineales. Ejercicios 1.- Determinar cuáles de las siguientes aplicaciones son lineales: (i) f : R R 2 definida por f((x, y, z)) = (x y, y + 2z). (ii)

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Transformaciones Lineales Definiciones básicas de Transformaciones Lineales wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 007-009 Contenido 1 Transformaciones Lineales 11 Núcleo e imagen

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. Prácticas de Matemáticas I y Matemáticas II con DERIVE 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar si el

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

APLICACIONES LINEALES. DIAGONALIZACIÓN

APLICACIONES LINEALES. DIAGONALIZACIÓN I.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin demostrar, cuáles de las siguientes afirmaciones

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones.

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones. Tema 4 Producto escalar En bachiller habéis visto los conceptos de producto escalar, longitud, distancia y perpendicularidad en R y R 3 En este tema del curso se generalizan estos conceptos a R n, junto

Más detalles

Espacio afín. Transformaciones afines y movimientos

Espacio afín. Transformaciones afines y movimientos Capítulo Espacio afín. Transformaciones afines y movimientos. Espacio afín y espacio afín métrico Definición. El espacio afín (tridimensional) está constituido por los siguientes elementos. El espacio

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Diagonalización de matrices

Diagonalización de matrices diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles

4.1 El espacio dual de un espacio vectorial

4.1 El espacio dual de un espacio vectorial Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

4 Aplicaciones lineales

4 Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 4 Aplicaciones lineales 4. Aplicación lineal Sean V y W dos espacios vectoriales sobre el mismo cuerpo K (en general, R o C. Una aplicación

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Práctica de Aplicaciones Lineales

Práctica de Aplicaciones Lineales practica5.nb 1 Práctica de Aplicaciones Lineales Aplicaciones lineales y matrices Las matrices también desempeñan un papel muy destacado en el estudio de las aplicaciones lineales entre espacios vectoriales

Más detalles

INTRO. VECTORES. NÚM. COMPLEJOS

INTRO. VECTORES. NÚM. COMPLEJOS INTRO. VECTORES. NÚM. COMPLEJOS El presente tema se dedicará al estudio de los conceptos de vectores y números complejos. Se comenzará con un pequeño estudio de los vectores del plano y sus propiedades

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Álgebra Lineal y Geometría Grupo A Curso 2009/10. Sistemas de ecuaciones lineales

Álgebra Lineal y Geometría Grupo A Curso 2009/10. Sistemas de ecuaciones lineales Álgebra Lineal y Geometría Grupo A Curso 2009/10 Sistemas de ecuaciones lineales NOTA: Los problemas con asterisco, (*), tienen un grado mayor de dificultad. 1) Resolver los tres sistemas de ecuaciones

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración

Más detalles

Introducción al Álgebra Lineal

Introducción al Álgebra Lineal UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Álgebra Lineal Ramón Bruzual Marisela Domínguez Caracas, Venezuela Septiembre

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal Mariano Echeverría Introducción al Curso El álgebra lineal se caracteriza por estudiar estructuras matemáticas en las que es posible tomar sumas entre distintos elementos de cierto

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

Clasificación de métricas.

Clasificación de métricas. Clasificación de métricas. 1. El problema de clasificación. Como bien sabemos, el par formado por una métrica T 2 (esto es, un tensor 2-covariante simétrico) sobre un espacio vectorial E, (E, T 2 ), constituye

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES Espacios Vectoriales y Aplicaciones Lineales 4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA 1.- Espacios Vectoriales..- Propiedades de un Espacio Vectorial..-

Más detalles

Álgebra y Matemática Discreta Sesión de Prácticas 10

Álgebra y Matemática Discreta Sesión de Prácticas 10 Álgebra y Matemática Discreta Sesión de Prácticas 10 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 18 Nov 2013-24 Nov 2013 Núcleos e Imágenes Definición Sea f : V W una aplicación lineal. Se

Más detalles

Tópicos. en Álgebra Lineal

Tópicos. en Álgebra Lineal Tópicos en Álgebra Lineal Miguel A Marmolejo L Manuel M Villegas L Departamento de Matemáticas Universidad del Valle Índice general Introducción 1 Índice de guras iii Capítulo 1 Prerrequisitos 1 11 Matrices

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA

EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA OPCIÓN A EJERCICIO 1 Halle el punto P simétrico del punto P ( 3, 4, 0) respecto del plano Л que contiene a la recta s : x = y 2 = z 1 y al

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Problemas teóricos Muchos de estos problemas me los han enseñado mis colegas: profesores Flor de María Correa Romero, Carlos Domínguez Albino, Sergio González Govea, Myriam Rosalía

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

Algebra Lineal: Aplicaciones a la Física, Curso 2012

Algebra Lineal: Aplicaciones a la Física, Curso 2012 Algebra Lineal: Aplicaciones a la Física, Curso 2012 5. Transformaciones lineales Una transformación lineal (TL es una función F : V V entre dos espacios vectoriales V,V sobre el mismo cuerpo K que satisface

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat 2012. Examen para Nivel Superior Primera Etapa. Problemas

Concurso Nacional de Matemáticas Pierre Fermat 2012. Examen para Nivel Superior Primera Etapa. Problemas 1 Concurso Nacional de Matemáticas Pierre Fermat 2012 Examen para Nivel Superior Primera Etapa Instrucciones: No utilizar celular (éste deberá de estar apagado), calculadora ó cualquier otro medio en el

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS SUMA DE VECTORES OBJETIVOS Usar la mesa de fuerzas

Más detalles

Elementos de álgebra vectorial

Elementos de álgebra vectorial Hier auf glatten Felsenwegen laufe ich tanzend dir entgegen, tanzend wie Du pfeifst und singst : der Du ohne Schiff und Ruder, als der Freiheit frei ster Bruder ueber wilde Meere springst. Friedrich Nietzsche

Más detalles

Teoría Tema 5 Espacios vectoriales

Teoría Tema 5 Espacios vectoriales página 1/14 Teoría Tema 5 Espacios vectoriales Índice de contenido Puntos en 2 y 3 dimensiones...2 Vectores en el plano...5 Suma de vectores...7 Combinación lineal de vectores...8 Sistema generador...10

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

(Ec.1) 2α + β = b (Ec.4) (Ec.3)

(Ec.1) 2α + β = b (Ec.4) (Ec.3) Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,

Más detalles

Ortogonalidad y Series de Fourier

Ortogonalidad y Series de Fourier Capítulo 4 Ortogonalidad y Series de Fourier El adjetivo ortogonal proviene del griego orthos (recto) y gonia (ángulo). Este denota entonces la perpendicularidad entre dos elementos: dos calles que se

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

x R, y R Según estas coordenadas dividiremos al plano en cuatro cuadrantes a saber:

x R, y R Según estas coordenadas dividiremos al plano en cuatro cuadrantes a saber: Apéndice A Coordenadas A.1 Coordenadas en el Plano R A.1.1 Cartesianas (x, y) Dotar al plano bidimensional R de coordenadas cartesianas D es establecer una biyección entre el conjunto de puntos del plano

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística.

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Índice General 1 PRACTICAS CON MATHEMATICA 2 1.1 Introducción...

Más detalles

TEMA 4: CALCULO NUMERICO DE AUTOVALORES

TEMA 4: CALCULO NUMERICO DE AUTOVALORES Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 4: CALCULO NUMERICO DE AUTOVALORES 1 INTRODUCCION La determinación de autovalores y autovectores de una matriz cuadrada A de orden n es un problema

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

TEMA 2: Grupos. El grupo Simétrico.

TEMA 2: Grupos. El grupo Simétrico. Álgebra y Estructuras Discretas Grupo B de la Ingeniería Técnica de Sistemas TEMA 2: Grupos. El grupo Simétrico. 1. Definición de Grupo. Propiedades Básicas. Definición 1. Dado un conjunto no vacío G,

Más detalles

Aplicaciones Lineales y Multilineales Continuas

Aplicaciones Lineales y Multilineales Continuas Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones

Más detalles

Definición operacional, independientemente de cualquier sistema de referencia

Definición operacional, independientemente de cualquier sistema de referencia Carácter de las magnitudes físicas: Magnitudes escalares y vectoriales. Vectores unitarios, Operaciones con vectores. No todas las magnitudes físicas tienen las mismas características matemáticas El carácter

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles