Tema 9. Análisis de Varianza de un factor. Análisis de la Varianza (ANOVA) Conceptos generales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 9. Análisis de Varianza de un factor. Análisis de la Varianza (ANOVA) Conceptos generales"

Transcripción

1 Tema 9 Análss de la Varanza (ANOVA) Conceptos generales La técnca del Análss de la Varanza consste en descomponer la varabldad de una poblacón (representada por su varanza) en dversos sumandos según los factores que ntervengan en la creacón de esa varabldad. Por eemplo, s estudamos la varanza que presenta una coleccón de calfcacones que provenen de tres asgnaturas en cuatro cursos dstntos a lo largo de los últmos años, la varanza total se puede descomponer en cuatro sumandos: Parte provenente del factor asgnatura Componente aportado por los dstntos cursos Influenca de la evolucón temporal en los últmos años Varanza propa (nterna) de la poblacón. Este eemplo sería bastante compleo, porque depende de tres factores: asgnatura, curso y año. Son mucho más frecuentes los eemplos de un solo factor (por eemplo, tres métodos dstntos aplcados smultáneamente a alumnado del msmo nvel) o de dos factores (lo sería la nfluenca del sexo y la edad en un rendmento) Lo orgnal del Análss de la Varanza es que su verdadero obetvo no es la varabldad, sno otros contrastes, como la gualdad de medas o el auste en un problema de Regresón. Lo veremos en los casos que vamos a estudar. Análss de Varanza de un factor Modelo y supuestos Supongamos la exstenca de varas muestras dstntas que corresponden a los resultados obtendos en una poblacón bao la nfluenca de dstntos nveles de un factor. La palabra nveles no se debe nterpretar en sentdo ordnal. Pueden ser nveles dstntos métodos de enseñanza, lugares de nacmento o sexo. Se consderan gualmente váldos nveles cualtatvos o cuanttatvos (fos). Para far deas, supongamos un expermento consstente en medr los mnutos transcurrdos en la desaparcón de un dolor después de la admnstracón de tres tpos de analgéscos a una muestra de pacentes con mgraña Analgésco A B C

2 11 21 En este caso el factor es el tpo de analgésco, que actúa a través de tres nveles dstntos A. B y C. En la tabla se observa que dentro de cada nvel exste bastante varabldad (cada pacente tendrá su forma de reacconar), y que parece que tambén exsten dferencas entre unos nveles y otros. S calculáramos las medas nos resultaría m 1 =15; m 2 =12,5; m 3 = S las medas fueran guales, negaríamos que exstan dferencas en el efecto de los dstntos analgéscos, pero como no lo son, deberemos plantearnos un contraste de hpótess para la gualdad de medas. De hecho, el verdadero contraste que se propone el Análss de la Varanza es el de gualdad de medas. Plantearemos la hpótess nula: H 0 : m 1 =m 2 =m 3 Pero en realdad la contrastaremos descomponendo la varanza. Para ello supondremos que cada medda de mnutos se puede descomponer en tres sumandos: a = m + a + e a : Es la medda real que se observa en los suetos (12, 18, 13, 10...) y se consdera descompuesta en tres factores adtvos m: Es la meda general de todo el expermento. En el eemplo equvaldría a 15,14. a : Mde la nfluenca del factor, medante la dferenca entre la meda de cada columna y la meda general. En el eemplo se darían estas dferencas: a 1 =15-15,14=-0,14 a 2 =12,5-15,14=-2,64 a 3 =17,875.15,14=2,735 e : Mde la varacón propa de cada ndvduo. Para entenderlo meor descompondremos dos datos: La medda 8 de la segunda columna equvale a 8=15,14-2,64-4,5. En esta suma 15,14 es la meda general del expermento, -2,64 la nfluenca del medcamento B y -4,5 la dferenca aportada por el ndvduo, que ha reacconado muy rápdo. La medda 19 de la tercera columna equvale a 19=15,14+2,735+1,125. El factor medcamento aporta 2,735, porque es el más lento en actuar, y el ndvduo 1,125, que no es tan rápdo como el anteror. Modelo El conunto de supuestos más aceptado en este caso, porque permte nferencas muy smples, es el sguente: Se trabaa sobre una varable aleatora Y, a la que se le supone descompuesta de la sguente forma:

3 Y = + + donde es la meda de la poblacón, la nfluenca del factor, que equvale a la dferenca entre la meda general y la del grupo. Fnalmente, se corresponde con la dferenca propa de cada ndvduo. Se supone que todas las Y son normales e ndependentes. Llamamos n al número de suetos por grupo, y N al número total, con lo que n 1 +n 2 +n 3 =N Estmadores La meda general se estma medante m N Y Las medas de cada grupo o nvel de forma smlar: m n Y La nfluenca del factor ( ) se estma medante la dferenca = m - m Para la estmacón de la varanza deberemos antes abordar la operacón fundamental del Análss de la Varanza, que consste en descomponer en sumandos la suma de cuadrados de los datos corregda con la meda. Se dstnguen tres sumas dstntas: Suma de cuadrados total (SCT) Vene dada por la fórmula SCT ( Y Y ) 2 Que concde con el numerador de la varanza total. Esta fórmula se puede smplfcar medante esta otra: En el eemplo de arrba el valor sería SCT = ,109504*22 = 298,59 S esta suma la dvdmos entre los grados de lbertad, que son N-1, nos resultará la Meda cuadrátca Total. En este caso: MCT = 298,59/(22-1)= 14,22

4 Suma de cuadrados Intra o de error (SCE) Representa la suma de cuadrados corregdos que se da dentro de los grupos, es decr, las dferencas de los datos entre la meda de cada grupo. SCE ( Y Y ) 2 Y su expresón reducda En el eemplo su valor sería SCE=( ^2*6)+( ,5^2*8)+( ,88^2*8) = 182,88 S lo dvdmos esta suma entre los grados de lbertad N-n nos resultará la meda cuadrátca de error, que es el meor estmador de la varanza de la poblacón. MCE = 182,88/(22-3)=9,63 Suma de cuadrados Inter (entre grupos) Se defne medante la fórmula Aunque tambén se puede calcular restando, ya que se demuestra que SCT = SCI + SCE En el eemplo valdría SCI = 298,59 182,88 = 115,72 Tambén se puede hallar la meda cuadrátca Inter dvdendo entre los grados de lbertad -1 MCI=115,72/2 =57,86 En la práctca se forman tres sumas de cuadrados: que consste en sumar todos los datos por separado elevados al cuadrado. En el eemplo tendría un valor de 5339.

5 que equvale a sumar los datos de cada nvel, elevar al cuadrado y dvdr entre el número de datos. En el eemplo: S2=90 2 / / /8= 5156,13 Y por últmo, la suma S3 equvale al cuadrado de la suma total de datos dvdda entre el número total de los msmos. S3 = /22 =5040,41. De esta forma, la suma de cuadrados total es la dferenca entre S1 y S3 (se puede demostrar) SCTotal = S1 S3 = ,41 = 298,59 De gual forma, la suma de cuadrados Intra es la dferenca entre S1 y S2 SCIntra = S1 S2 = ,13 = 182,88 Y la otra dferenca será la suma Inter: SCInter= S2-S3 = 5156, ,41 = 115,72 Análss de Varanza de dos factores Modelo y supuestos Supongamos la exstenca de varas muestras dstntas que corresponden a los resultados obtendos en una poblacón bao la nfluenca de dstntos nveles de dos factores. Por eemplo, magnemos que las meddas de la tabla sguente se han obtendo en tres barros dstntos A,B y C y en tres nveles de edad: 10-30, 31-50, Podemos magnar las meddas como una valoracón que se ha recogdo en una encuesta: Barro A Barro B Barro C ,4,4,5,4 2,4,5,3,1 6,2,3,4,5,4 4,5,6,2,7 2,4,5,6,6 3,4, ,8,4,6,9 7,3,4,8,7 8,9,6,7,7 10,6,9,8,7 5,7,5,6,6 3,5,4, ,2,2,4,5 1,3,2,4,5 6,6,4,5,3,8 4,0,1,4 5,6,4,5,3 5,2,1,1,1,0 Al gual que en el caso de un factor, podemos descomponer las meddas en varos sumandos: a k = m + a + b + ab + e k a k es una medda cualquera, ndvdual, que la consderamos descompuesta en cuatro sumandos:

6 m: Es la meda total de toda la tabla. a : Mde el efecto del factor A. En el eemplo podría ser el barro, que nfluyera en la valoracón efectuada por los suetos. b : Mde el efecto del otro factor B, en nuestro caso el nvel de edad. ab : Puede que los efectos de A y B no sean adtvos sn más, sno que exsta nteraccón entre ellos. Este sumando mde dcha nfluenca mutua. S se supone que A y B son ndependentes, valdrá 0, y consderaremos un modelo sn nteraccón. e k : Contene las dferencas ndvduales. Se supone que su dstrbucón es Normal de meda 0. La hpótess nula en este caso es la de que todas las medas de los subgrupos son guales. Como en el caso anteror, el análss se basa en sumas de cuadrados y en grados de lbertad, para después dvdrlos, obtener estmadores de la varanza y compararlos medante un contraste F. S se ha entenddo el modelo de un factor, para abordar éste hay que consderar que exsten cuatro fuentes de varacón en este problema. Explcaremos cada fuente medante la resolucón que del eemplo propuesto nos brnda la hoa de cálculo. En unos temas práctcos como estos, no llenaremos la teoría de sumatoros, remtendo a manuales específcos el estudo detallado de los msmos. Fuente varacón SC G.L. CM F Factor A 29, ,63 5,05 P-valor de FA 0,165 Factor B 149, ,52 25,73 P-valor de FB 0,005 Sgnfcatva al 5% Interaccón AB 11,65 4 2,91 1,01 P-valor de FAB 0,410 Error 231, ,9 TOTAL 421,62 88 Fuente de varacón Barro: SCA=29,26. Esta suma representa la varabldad de los tres grupos formados por los barros. Se consgue de forma smlar a la de un factor. Sus grados de lbertad son 2, equvalentes al número de barros menos 1.

7 Fuente de varacón Edad: SCB= 149,04. Representa la varabldad entre edades. Como exsten tres nveles, sus grados de lbertad tambén son cuatro. Interaccón: SCAB=11,65. En algunos modelos no se consdera que haya nfluenca entre los dos factores. Esta decsón se debe tomar tenendo en cuenta conocmentos anterores, y no como consecuenca de los datos obtendos en el ANOVA. En estos temas usaremos sempre modelos con nteraccón. Sus G.L. se calculan multplcando los de los dos factores. Error: SCE=231,68. Las sumas correspondentes al error y sus grados de lbertad se suelen calcular restando los totales de los otros tres. Así se consgue más rapdez. Este sumando representa la varabldad nterna de los datos, ndependentemente de la nfluenca de los factores. Es el verdadero estmador de la varanza, y hay quen plante el ANOVA sólo para consegur este estmador. En el eemplo la meor estmacón de la varanza sería 2,9. Total: SCT=421,62. Es la suma de los factores, la nteraccón y el error. Su utldad resde en facltar los cálculos y comprobar que las sumas cuadran ben. Todos los cuadrados medos estman la varanza de la poblacón, aunque el meor estmador sea 2,9. S aplcamos el contraste F a la comparacón de estmadores, los sesgos sgnfcatvos que encontremos se deberán a nfluencas de los factores. En el eemplo ha resultado sgnfcatvo el factor edad. Análss de la regresón Modelo y supuestos Las técncas de descomposcón en sumas de cuadrados propas del ANOVA tambén se pueden aplcar a la regresón entre dos varables. El modelo teórco es el de suponer que entre dos varables X e Y exste una relacón lneal de la forma: Y = + X + e En esta fórmula supondremos lo sguente: X es cuanttatva y presenta valores fos, como los nveles en el modelo ANOVA. Estos valores dvden a los de Y en dstntos subconuntos. Se supone que los valores de Y en ellos son ndependentes entre sí (covaranza cero) Y presenta valores aleatoros dependentes de X según la relacón lneal + X a cuyo valor se añade un sumando aleatoro e. Se supone que e se dstrbuye normalmente y que las medas de Y en los dstntos conuntos dependen de las medas de X según la msma relacón lneal. Los valores de la varanza en los dstntos subconuntos son guales (homocedastcdad)

8 Lo anteror es un breve resumen de los supuestos. En manuales de Inferenca Estadístca puedes estudarlos con más ampltud. En los temas 5 y 7 estudamos los estmadores de y y los valores pronostcados Y = + X. Aquí nos nteresarán más ben las descomposcones en sumas de cuadrados y las técncas de ANOVA. Hpótess nula: =0 Hpótess alternatva: 0 (o <0 o >0) La anulacón de equvale a que todas las medas de subgrupos sean guales, porque la recta de regresón sería horzontal, luego esta hpótess nula concde con la del ANOVA de gualdad de medas. Por eso nos vale esta técnca tambén para la regresón. Explcaremos cómo: Suma de cuadrados total: SCT ( Y Y ) 2 Tene la msma expresón que en el ANOVA, y sus grados de lbertad serán N-1, porque se ha estmado un valor, que es la meda de Y. Suma de cuadrados explcada: SCT ' ( Y Y ) 2 S representamos los pronóstcos del modelo de regresón como Y, se dará entonces la dentdad Y = + X. La dferencas de Y respecto a la meda general representarán a la varabldad explcada por el modelo. Sólo tene un grado de lbertad, pues todo depende del valor de. Suma de cuadrados no explcada (o de error): SCT ( Y Y' 2 ) En ella se suman las dferencas entre los valores reales de Y y los pronostcados Y. Es decr, se suman los cuadrados de e. Representa, pues, la suma de errores, y de ahí su nombre. Le quedarán N-2 grados de lbertad, por lo que el estmador de la varanza de la poblacón será el cocente de esa suma entre N-2. Estas tres sumas se pueden estructurar de forma smlar al caso de ANOVA con un factor. Lo veremos con un eemplo: Se ha sometdo a unos suetos a unas horas de entrenamento para una prueba en la que el número de acertos depende en gran parte del maneo de un mando de uegos para ordenador de nuevo dseño. En la sguente tabla se recogen los dstntos nveles de tempo de entrenamento y las puntuacones obtendas en un determnado uego. Tempo en mnutos Resultados en puntos de 0 a

9 Se puede consderar que estos datos sguen un modelo de tpo lneal? Cuál sería su ecuacón? Qué varanza presenta la poblacón? Aplcamos el ANOVA y nos queda: Fuente varacón SC G.L. CM F Regresón 69, ,39 28,34 Error 95, ,45 TOTAL 164, ,12 P-valor de F Fcrítca al 90% Fcrítca al 95% Fcrítca al 99% 0,000 2,84 Sgnfcatva 4,09 Sgnfcatva 7,33 Sgnfcatva La F=28,34 es claramente sgnfcatva, luego exste nfluenca de tpo lneal. La estmacón de la varanza de la poblacón es el cuadrado medo de error, es decr, 4,12 La ecuacón de la recta de regresón la obtendríamos por los métodos tradconales y resultaría ser Y = 2,43+0,187X Prueba del análss de regresón Podemos combnar el análss de regresón con el de varanza para probar smultáneamente la anulacón de la pendente y la hpótess de lnealdad. El esquema de cálculo sería el msmo pero añadendo tambén las sumas de cuadrados INTER e INTRA. Sólo daremos el esquema al que daría lugar el eemplo, pues se explca por sí solo: Análss de la regresón comparado con el ANOVA Fuente varacón SC G.L. CM F INTER 70, ,69 6,76 Fcrítca al 95% Regresón 69,39 P-valor 1 69,39 26,54 de F- INTER 0,000 2,63 Sgnfcatva Desvacón regresón 1,36 3 0,45 0,17 INTRA 94, ,61 TOTAL 164, ,12 P-valor de F- REGR. P-valor de F- DESV. 0,000 4,11 Sgnfcatva 0,914 2,87

10 En él aparece somo sgnfcatva la F-INTER, luego podemos afrmar que hay efecto de los nveles. Tambén es sgnfcatva la F-REGR. y no lo es la desvacón, por lo que nos reafrmamos en que el efecto de los nveles es de tpo lneal con pendente no nula.

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1 Reconocmento de Locutor basado en Procesamento de Voz ProDVoz Reconocmento de Locutor Introduccón Reconocmento de locutor: Proceso de extraccón automátca de nformacón relatva a la dentdad de la persona

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Regresión y correlación simple 113

Regresión y correlación simple 113 Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen

Más detalles

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han

Más detalles

Análisis de la Varianza de dos factores con replicaciones: Caso Balanceado (Scheffé, 1959)

Análisis de la Varianza de dos factores con replicaciones: Caso Balanceado (Scheffé, 1959) Modelo Lneal 03 Ana M Banco 1 Análss de la Varanza de dos factores con replcacones: Caso Balanceado cheffé, 1959 En este eemplo nos nteresa el tempo de coagulacón en mnutos del plasma sanguíneo para 3

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

Diseño de la Muestra. Introducción. Tipo de muestreo y estratificación

Diseño de la Muestra. Introducción. Tipo de muestreo y estratificación Dseño de la Muestra A Introduccón Sguendo las orentacones dadas por la Ofcna Estadístca de la Unón Europea (EUROSTAT) se a selecconado una muestra probablístca representatva de la poblacón de los ogares

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Análisis de Varianza no paramétricos

Análisis de Varianza no paramétricos Capítulo VII Análss de Varanza no paramétrcos Anova de Kruskal-Walls Anova de Fredman Anova de Q de Cochran Introduccón Las técncas de análss de varanza no paramétrcos son útles cuando los supuestos de:

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

Estadística Descriptiva Análisis de Datos

Estadística Descriptiva Análisis de Datos El concepto de Estadístca Estadístca Descrptva Análss de Datos 8.1 INTRODUCCION El orgen de la Estadístca se remonta a dos tpos de actvdades humanas: los juegos de azar y las necesdades de los Estados:

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

CÁNONES ANUALES DE DE ARRENDAMIENTOS RÚSTICOS (Metodología)

CÁNONES ANUALES DE DE ARRENDAMIENTOS RÚSTICOS (Metodología) SEREARÍA EERAL ÉA MSERO DE ARULURA, ALMEAÓ Y MEDO AMBEE SUBDREÓ EERAL DE ESADÍSA ÁOES AUALES DE DE ARREDAMEOS RÚSOS (Metodología) OBJEVO El canon de arrendamento rústco se defne como el pago que realza

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES ) TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: mozas@el.uned.es PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Programa de Asesor Financiero (PAF) Nivel I

Programa de Asesor Financiero (PAF) Nivel I Programa de Asesor Fnancero (PAF) Nvel I MÓDULO 1_Fundamentos de la Inversón SOLUCIÓN_CUESTIONARIOS DEL LIBRO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO Capítulo 4: TIPOS DE INTERÉS Y RENTABILIDAD Capítulo

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS En los capítulos anterores se han analzado varos modelos usados en la evaluacón de stocks, defnéndose los respectvos parámetros. En las correspondentes fchas de ejerccos

Más detalles

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO Págna de 4 TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO INTRODUCCIÓN... 2 2 CLASIFICACIÓN DE LAS ACTIVIDADES PRODUCTIVAS... 4 3 FUNCIÓN DE PRODUCCIÓN... 3 4 CLASIFICACIÓN DE LOS PROCESOS

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

Regresión Binomial Negativa

Regresión Binomial Negativa Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado

Más detalles

ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO

ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO GOBIERNO DE CHILE MINISTERIO DE HACIENDA Dreccón de Presupuestos ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO Dvsón de Control de Gestón Santago, Mayo 2009 CHILE PRESENTACIÓN * El anexo que a contnuacón se

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

4 Contraste de hipótesis en el modelo de regresión múltiple

4 Contraste de hipótesis en el modelo de regresión múltiple 4 Contraste de hpótess en el modelo de regresón múltple Ezequel Urel Unversdad de Valenca Versón: 9-13 4.1 El contraste de hpótess: una panorámca 1 4.1.1 Formulacón de la hpótess nula y de la hpótess alternatva

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

USOS Y EXTENSIONES DEL MODELO LINEAL CON K VARIABLES

USOS Y EXTENSIONES DEL MODELO LINEAL CON K VARIABLES Unversdad de San Andrés Departamento de Economía Econometría Semestre de otoño USOS Y ETENSIONES DEL MODELO LINEAL CON K VARIABLES Marana Marchonn marana@depeco.econo.unlp.edu.ar Varables explcatvas bnaras

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR ACADEMIA DE MATEMÁTICAS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR ACADEMIA DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR ACADEMIA DE MATEMÁTICAS GUÍA PARA PREPARAR EL EXAMEN EXTRAORDINARIO DE ESTADISTICA Y PROBABILIDAD

Más detalles

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA)

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA) SECREARÍA ENERAL ÉCNICA MINISERIO DE ARICULURA, ALIMENACIÓN Y MEDIO AMBIENE SUBDIRECCIÓN ENERAL DE ESADÍSICA PRECIOS MEDIOS ANUALES DE LAS IERRAS DE USO ARARIO (MEODOLOÍA) OBJEIVO: Desde 1983 el Mnstero

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles