Capítulo IV. Estadísticas cuánticas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo IV. Estadísticas cuánticas."

Transcripción

1 Capítulo I. stadísticas cuáticas. Lcció 6 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. stadísticas d Bos-isti y d rmi-dirac. Lcció 7 Gas idal d rmi: lctros mtals. Lcció 8 Gas idal d Bos: l hlio. Codsació d Bos-isti. Lcció 9 Gas d fotos. ució d distribució d Plack

2 Lcció 6 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. stadísticas d Bos-isti y d rmi-dirac.

3 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. Hmos tratado partículas clásicas: (gas idal diluido º stados accsibls >> º d partículas (muy difícil qu coicida los mismos os cuáticos l fcto d qu las partículas sa distiguibls o idistiguibls s sólo stadístico:! : º d prmutacios d moléculas idistiguibls. Pro a altas dsidads o baas tmpraturas sí pud ocurrir qu varias partículas tga los mismos os cuáticos y habrá qu hacr cosidracios cuáticas sobr los stados prmitidos. Cuática: propidads d las fucios d oda d las partículas y d los stados los qu stá

4 Itroducció a las stadísticas cuáticas. Sistma: partículas {} idistiguibls stá u stado co fució d oda: Como so idistiguibls al itrcambiarlas: Ψ( Ψ( Ψ( s dcir al cambiarlas como mucho cambia l sigo d la fució d oda: Ψ( ± Ψ( stado simétrico: stado atisimétrico: Ψ( + Ψ( Ψ( Ψ( 4

5 Itroducció a las stadísticas cuáticas. Sistma: partículas {} stados posibls {ab}. l sistma pud star los stados : Por tato la fució d oda dl sistma srá: Ψ Ψ S A C C S A [ φa ( φb ( + φa ( φb ( ] [ φ ( φ ( φ ( φ ( ] a b a Ψ( φ ( φ ( a Ψ( φ ( φ ( Si a y b so l mismo stado: φ a φ b ΨA ΨS (Pricipio d xclusió d Pauli b a b b Partículas co fució d oda atisimétrica: spi smitro frmios stadística d rmi-dirac Partículas co fució d oda simétrica: spi tro bosos stadística d Bos-isti 5

6 Itroducció a las stadísticas cuáticas. mplo: Sistma d partículas ivls d rgía ε co... úmro d stados accsibls para 8ε : clásicas frmios bosos p p p Clásicas (d rmios (i Bosos (i 8ε 6-8ε 5 6 8ε 4 6 8ε - º d stados: 6 4 Ω Clas Idist. Ω D! Ω B Ω D! Ω 6 4 > >! 6

7 7 Itroducció a las stadísticas cuáticas. Ω i i i Z β β stados ivls dgració D B Ω Ω Ω! Cuado l º d stados accsibls sa muy grad las stadísticas cuáticas tid a la clásica (idistiguibl D B Ω Ω Ω! D B Z Z Z!

8 Obtció d las fucios trmodiámicas. Sistma d u compot partículas idistiguibls si itracció. Método: úmro d stados y colctivo microcaóico Para y dados: Ω B Ω D : º d formas distitas d dividir tr las partículas si límit al º d partículas por ivl : º d formas distitas d dividir tr las partículas pro sólo ua partícula por ivl Ω B Ω D st tratamito s complicado para y grads y las rstriccios atriors (usar multiplicadors idtrmiados Usamos l colctivo macrocaóico ( y dados y s vita las rstriccios d y costats. Cosidramos como subsistma a u stado cuático uto co las partículas qu lo ocupa. studiarmos la ocupació d cada ivl y d ahí obtdrmos las fucios trmodiámicas. ( ( (d u ivl d quivalt a lo qu hicimos l gas idal co l colctivo caóico: Z total Z molécula! 8

9 stadísticas d Bos-isti y d rmi-dirac: Obtció d las fucios trmodiámicas. Sistma d u compot partículas idistiguibls si itracció. Método: úmro d stados y colctivo microcaóico Para y dados: Ω B Ω D : º d formas distitas d dividir tr las partículas si límit al º d partículas por ivl : º d formas distitas d dividir tr las partículas pro sólo ua partícula por ivl Ω B Ω D st tratamito s complicado para y grads y las rstriccios atriors (usar multiplicadors idtrmiados Usamos l colctivo macrocaóico ( y dados y s vita las rstriccios d y costats. Cosidramos como subsistma a u stado cuático uto co las partículas qu lo ocupa. studiarmos la ocupació d cada ivl y d ahí obtdrmos las fucios trmodiámicas. quivalt a lo qu hicimos l gas idal co l colctivo caóico: ( ( (d u ivl d Z total Zmolécula! 9

10 stadísticas d Bos-isti y d rmi-dirac Usamos colctivo macrocaóico Cosidramos como subsistma a u stado cuático uto co las partículas qu lo ocupa. studiarmos la ocupació d cada ivl y d ahí obtdrmos las fucios trmodiámicas. ( ( ( (d u ivl d ( / / quivalt a lo qu hicimos l gas idal co l colctivo caóico: Z total Z molécula! -D para cada ivl d rgía la ocupació sólo pud sr o. + ( / / / B- o hay límit a la ocupació d cada ivl d rgía. / / / sta sri covrg si: / <

11 stadística d rmi-dirac ( ( / / / ( + úmro mdio d partículas l sistma: l l l / ( / / + +

12 stadística d Bos-isti ( ( úmro mdio d partículas l sistma: l l l / ( / / / / /

13 Ocupació d los ivls d rgía: rmi-dirac Bos-isti Clásica(Boltzma D clásica B D ( / B ( / Cl ( / + ( /

14 Ocupació d los ivls d rgía: rmi-dirac D ( / fiitos: + Dsidad cro / fiito ct : > < Dsidad ifiita A todas las partículas lla todos los stados hasta fució d ( / Límit clásico: ( / ( / Z Distribució d Boltzma Z / Z / P 4

15 Ocupació d los ivls d rgía: Bos-isti B ( / / / / sta sri covrg si: / < < / < : : si > Si hacmos ( / / / ( Pro pud sr todo lo grad qu haga falta A todas las partículas stá l stado fudamtal. Límit clásico: / / / odos los so muy pquños: hay muchos más stados qu partículas como la stadística d Boltzma. 5

16 Obtció d las fucios trmodiámicas ( / ± + D - B l l ( / ( / ± ± cuació d stado: S l S p + k l l ± l ( ( / ± [ l ( l( ] k ± 6

17 Lcció 7 Gas idal d rmi: lctros mtals. 7

18 Gas idal d rmi: lctros mtals Gas d lctros ua caa: L Si grad ivls muy utos cotiuo d Dsidad d stados: m ω( ε dε 4π h / ε / dε / / m ε 4π ( ε / h dε + Límit clásico: / / πm h xp l h P π m / Λ << Λ << 8

19 << Λ << Pro... masa - << masa molécula: a K 5 o val lo cásico!! Límit clásico d lctros sólo si > 5 K!!! A.A. los lctros ya stá l límit d baa tmpratura!!!! (ya stá l límit A todas las partículas lla los stados co <. / m m / 8π 4π d ε ε h h / º d lctros º d stados cuáticos co < ivl d rmi: / h (varios 8m π 9

20 A todas la rgía s ciética: ε i i i 5 d P 5 ( ε ε ω ε Prsió: tropía: A S Si >: / h π π π d C S k C π

21 Lcció 8 Gas idal d Bos: l hlio. Codsació d Bos-isti.

22 Gas idal d Bos: l hlio. masa H >> masa lctró : lo fctos cuáticos o stá a.a. sólo a baa La codició para comportamito clásico s: Λ h << Λ π m k / Para l hlio líquido (4.K: Λ /.5 por tato habrá fctos cuáticos. La dgració sólo srá pquña si hay baa dsidad o alta tmpratura. ratamos l límit d dgració débil: (usamos colctivo macrocaóico / / mπ k k l k l h Λ Λ << Λ <<

23 Gas idal d Bos: l hlio. Λ h << Λ π m k / Λ << cuació d stado: p l ± π k / m / / l ( ± d h + D - B Para pquño dsarrollado l l itgrado térmio a térmio: Gas idal clásico mooatómico: p p Λ ( Λ : ucios trmodiámicas: (límit d dgració débil p C k Λ ± 5 / Λ ± Λ 7 / / C k Λ 7 / 5 / So sris : Λ l Λ ± +... / S 5 Λ l Λ ± / k +... Λ /

24 4 Gas idal d Bos: l hlio. Ahora studiamos l límit d alta dgració: grad / ( º d moléculas l stado fudamtal:. d h m d / / ( π ω + / / / π d h m º total d moléculas : / Dtro d la itgral multiplicamos umrador y domiador por Dsarrollamos sri ( / Itgramos térmito a térmio α α π α h k m ( / / Rima d ζ σ ζ α α σ σ σ σ σ σ σ σ ( ( ( (

25 Gas idal d Bos: l hlio. Otra forma d hacrlo: Supomos dsidad costat: α α ct ( α α ( ( ( para α > y < sta situació l º d moléculas l stado fudamtal s dsprcibl frt a alta: α << α grad ( α dl caso atrior + baa: α dismuuy hasta su límit α a ua ( 5

26 6 ( + / ( / / ( ( d m g d D f ε ε ε π ε ε ε / fugacidad: ( + / / / d m g ε ε ε π < < < Cosrvació dl úmro d bosos: ( ( g k m g B Λ ( ( / / / / π π... ( / / r r r dod: GAS D BOS:

27 l límit clásico: << Λ << os qudamos co l primr térmio dl dsarrollo sri y g s dcir Λ ( g Λ Aálogamt: U co: / π B 5/ B 5/ g ( π m 4 g Λ 5/ ( k ( k ( U r 5 / ( / r 4 9 r Comparado las dos xprsios: U k B 5/ / ( ( 7

28 U k B 5/ / ( ( ξ 8

29 / ( 5/ ( / ( ( 5/ d d ξ ( / ( 5/ / (.6 5 / (. 4 5 / ' ( / (.6 / ' ( 9

30 { } g / ( pro co:. 6 Λ ( / Λ... y si >.6??? g Λ * Cuado / (. 6 g y por tato Codsació d Bos-isti cuado B : Λ ( g.6 k B B π m.6 ( g /

31 B : + / + ( g Λ / ( B / U k B 5 / (.5 / ( ( k B B / C v.9kb B /

32

33

34 Lcció 9 Gas d fotos. ució d distribució d Plack 4

35 Gas idal d Bos: fotos Radiació lctromagética quilibrio térmico. Sistma aislado rgía. La frcucia pud variar o stá fio. otó: spi B polarizacios dgració. o ti masa. Sistma dfiido por y (o por Dsidad d stados: p / m p h / hν / c 8π p dp ω ( ε dε G( ν dν h rmodiámica: quilibrio 8π ν dν c hν S max rspcto d co y cts. (y G mi rspcto d co P (y ct y ct. S 5

36 p 8π c ν hν / 8π c dν ν l ( hν / 8π h c dν ν hν / dν fució d distribució d rgía dl curpo gro Plack 9 8π h c ν hν / dν 48π h c h 4 4 π 9 Ly d stfa-boltzma 4. rgía total d la radiació C p / fc d 6π. hc.7 p /.9 p sólo. tropía: + p S S + p 4 S S( 6

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3 Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1: .- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

Tema 8. Limite de funciones. Continuidad

Tema 8. Limite de funciones. Continuidad . Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.

Más detalles

Tema 11. Limite de funciones. Continuidad

Tema 11. Limite de funciones. Continuidad Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito

Más detalles

Sistemas de ecuaciones diferenciales lineales

Sistemas de ecuaciones diferenciales lineales 695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s

Más detalles

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros .8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU

Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU Tma Rpaso d Sñals y Sistmas Discrtos 4º Ig. Tlcomuicació EPS Uiv. Sa Pablo CEU Lcturas complmtarias Opp., Pro (sólo hasta.: Itroducció a TDS Importacia d TDS la igiría Prspctiva histórica Esquma d u sistma

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la lista de los

Más detalles

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS LCTROMAGNTISMO PARA INGNIRÍA LCTRÓNICA. CAMPOS Y ONDAS Odas mdios abirtos acotados Itroducció Capítulo 7 l caso tratado l capítulo atrior, l cual ua oda s propaga librmt a través d u mdio si frotras i

Más detalles

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora):

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora): EJERCICIOS de RADICALES º ESO HOJA 1: Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añade estas fórmulas al formulario, juto co la lista de los

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

Transformada de Laplace

Transformada de Laplace Traformada d Laplac Traformada d Laplac Dada ua fució d variabl cotiua f, u traformada bilatral d Laplac dfi como: t [ f ] f dt L dod ua variabl complja, σ iω Para qu ta itgral covrja, dcir, para qu ita

Más detalles

Transformador VALORES NOMINALES Y RELATIVOS

Transformador VALORES NOMINALES Y RELATIVOS Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto Matmáticas Aplicadas a las Cicias Socials II Aálisis: Drivadas Tma 6 Drivadas Drivada d ua fució u puto Tasa d variació d ua fució S llama tasa d variació mdia d ua fució f (), l itrvalo [a, b], al valor

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

Tema 2. Derivada. Técnicas de Derivación. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 2

Tema 2. Derivada. Técnicas de Derivación. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 2 Tma Drivaa. Técicas Drivació 0.- Itroucció.- Tasa Variació Mia.- Drivaa ua ució u puto..- Drivaas Latrals...- Itrprtació gométrica la rivaa..- Rlació tr cotiuia y rivabilia..- Sigiicao graico la rivaa.

Más detalles

La gama con sistema HE dispone de un control digital táctil basado en 4 modos de funcionamiento: automático, eco, confort y alta emisión (boost).

La gama con sistema HE dispone de un control digital táctil basado en 4 modos de funcionamiento: automático, eco, confort y alta emisión (boost). Radiadors d baja tmpratura Nuva gama d radiadors d altísima misió icluso co salto térmico 30ºC. Idals tato para obra uva como para mrcado d rposició. Válidos para istalacios bitubo o mootubo. Fácil matimito

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------

Más detalles

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares.

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares. Fscouímca II-Módulo d Estructura y Propdads Molculars. Bollla 4. Coctado las dscrpcos mcro/macroscópcas: Trmodámca Estadístca 4. La coxó tr la dscrpcó cuátca y las propdads trmodámcas. Hmos vsto como dscrbr

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones SISEMAS LIEALES ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s ( s) ( s) Lilidd + b ( ) ( s) b ( s) Dsplmio l impo ( ) Dsplmio l domiio s

Más detalles

DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO

DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO REPRESENTACIÓN SIMPLIFICADA DE LOS RODAMIENTOS 2 q q q q q q q q q 3 q q q q q q q q q q q

Más detalles

Continuo de carga positiva

Continuo de carga positiva Capítulo Modlos Atóicos Modlo d Thoso (898) Cotiuo d caga positiva lctos uifot distibuidos l stado d gía ás bajo los lctos dbía sta fijos sus posicios d quilibio stados xcitados los lctos viba alddo d

Más detalles

Sumando miembro a miembro estas dos igualdades, obtenemos: (5.3) Lo que demuestra que la (5.3) es también solución de la ecuación de Bessel.

Sumando miembro a miembro estas dos igualdades, obtenemos: (5.3) Lo que demuestra que la (5.3) es también solución de la ecuación de Bessel. Ecuacioes Difereciales de Orde Superior arte V Fucioes de essel Ig. Ramó Abascal rofesor Titular de Aálisis de Señales y Sistemas y Teoría de los Circuitos II e la UTN, Facultad Regioal Avellaeda ueos

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Protón Neutrón Electrón

Protón Neutrón Electrón 1 Descubrimieto de las partículas subatómicas Tema 4. Estructura Atómica y Sistema Periódico Electró (Stoey, 1891) Protó (Rutherford, 1911) Neutró (Chadwick, 193) Crookes (1.875). rayos catódicos Viaja

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Electrónica de Potencia (Especialidad de Electricidad)

Electrónica de Potencia (Especialidad de Electricidad) Electróica de Potecia (Especialidad de Electricidad). Itroducció PRÁCICA DEERMINACIÓN DE LA HD Y EL FACOR DE POENCIA MEDIANE PSPICE Y SIMPOWERSYSEM oda fució periódica que cumple ciertas propiedades puede

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07

7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07 álculo tgrl (MAT, Scc.67 r Trimstr, do Smstr doprcil 7mGuíEstudio Documto lordo : M.Sc. g. Julio ésr Lóz Zró H6 7m Guí d Estudio do Prcil Estudio d Sris d Potci SOLUONAO Guí omlmtri No.7 omtrios Grls Ést

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

( ) ( ) ( ) RESOLUCIÓN Dato: NºDiag.= 4(Nº s internos) RESOLUCIÓN RESOLUCIÓN SEMANA 4 POLÍGONOS Y CUADRILÁTEROS 11( 11 1) RPTA.: E RPTA.

( ) ( ) ( ) RESOLUCIÓN Dato: NºDiag.= 4(Nº s internos) RESOLUCIÓN RESOLUCIÓN SEMANA 4 POLÍGONOS Y CUADRILÁTEROS 11( 11 1) RPTA.: E RPTA. SEMN 4 OLÍGONOS Y URILÁTEROS 1. lcul l úmro d digols mdis d u polígoo, dod l úmro d digols s l cuádrupl dl úmro d águlos itros. ) 0 ) 7 ) ) 44 E) to: Nºig.= 4(Nº s itros) id: Nºig.Mdis= ( 1 ) =? Rmplzdo

Más detalles

Semiconductores. Dr. J.E. Rayas Sánchez

Semiconductores. Dr. J.E. Rayas Sánchez Semicoductores Alguas de las figuras de esta resetació fuero tomadas de las ágias de iteret de los autores del texto: A.R. Hambley, Electroics: A To-Dow Aroach to Comuter-Aided Circuit Desig. Eglewood

Más detalles

Juegos bipersonales de suma nula Juegos semi-infinitos. Mª Enriqueta Vercher González Universitat de València

Juegos bipersonales de suma nula Juegos semi-infinitos. Mª Enriqueta Vercher González Universitat de València Juegos bipersoales de suma ula Juegos semi-ifiitos Mª Eriqueta Vercher Gozález Uiversitat de Valècia Ídice Itroducció Juego bipersoal de suma ula Pares de equilibrio Estrategias mixtas eorema del Miimax

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

4. Refuerzo a cortante

4. Refuerzo a cortante 4. Refuerzo a cortante La adhesión del Sistema MBrace en elementos tales como vigas, permite el incremento de su resistencia a cortante, al aportar cuantía resistente a tracción en las almas y tirantes

Más detalles

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2 EJECICIOS DE ANÁLISIS FUNCIONAL (Asigatura VCAF) HOJA Ejercicio : Idicar u ejemplo de la sucesió x () (x (),x (),...) que perteezca a cada uo del par cosiderado de los espacios y que: a) Coverja e l,peroocoverjael.

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

El ÁTOMO de HIDRÓGENO

El ÁTOMO de HIDRÓGENO El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las

Más detalles

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es TURBINAS DE VAPOR Pedro Fernández Díez I.- PARÁMETROS DE DISEÑO DE LAS TURBINAS DE FLUJO AXIAL I..- INTRODUCCIÓN Para estudiar las turbinas de flujo axial, se puede suponer que las condiciones de funcionamiento

Más detalles

El juego de caracteres de LATEX.

El juego de caracteres de LATEX. Capítulo 3 El juego de caracteres de LATEX. 3.1. Algunos caracteres especiales. En L A TEX hay algunos caracteres que están reservados para algunas funciones especiales y que, por tanto, no aparecerán

Más detalles

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o 1 A n t o l o g í a : P r o m o c i ó n y A n i m a c i ó n d e l a l e c t u r a M i n i s t e r i o d e E d u c a c i ó n P ú b l i c a I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l.

Más detalles

La generación eléctrica creció un 5% en lo que va del año

La generación eléctrica creció un 5% en lo que va del año Gatilla d prsa 4 d otr d 2 La graió létria rió 5% lo q va dl año partir d la psta marha d vas trals y l irmto la fiiia d los prosos d matimitos las más atigas, la graió d rgía aompaña l rimito d la dmada.

Más detalles

CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS

CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Capítlo 17. Drivada d las Fcios Epocial, Logarítmica. CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Ejrcicio. Dibja la gráfica d la fció =, para sto lla la sigit tabla: 0 1 3 4-1 - -3-4 Vamos l sigit

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Física Cuántica Partículas idénticas.

Física Cuántica Partículas idénticas. Física Cuántica Partículas idénticas. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/18 Partículas idénticas Qué son varias partículas idénticas? Las que tienen

Más detalles

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global . Jueves, de abril Teoría sobre la programació o lieal Programació separable Dificultades de los modelos PNL PL: Etregas: material de clase PNL: Aálisis gráfico de la programació o lieal e dos dimesioes:

Más detalles

TEMA 5: Efectos de los Rectificadores sobre la red de alimentación.

TEMA 5: Efectos de los Rectificadores sobre la red de alimentación. TEMA 5 : Efctos d los Rctificadors sobr la rd d alimtació TEMA 5: Efctos d los Rctificadors sobr la rd d alimtació. Ídic TEMA 5: Efctos d los Rctificadors sobr la rd d alimtació. 5..- Factor d Potcia....

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

5.1. Tipos de convergencia

5.1. Tipos de convergencia Estadística Tema 5 Covergecia de Variables Aleatorias 51 Tipos de covergecia 52 Ley de los grades úmeros 53 Teorema cetral del límite 54 Método delta Objetivos 1 Motivació estudio secuecias de VAs 2 Covergecia

Más detalles

TEMA 3.- CINEMÁTICA Y DINÁMICA DEL MOTOR

TEMA 3.- CINEMÁTICA Y DINÁMICA DEL MOTOR TEMA.- CINEMÁTICA Y DINÁMICA DEL MOTOR 5 ..- Calcular la oblicuidad de la biela en grados, el deslizamiento, la aceleración, la velocidad instantánea y media del pistón para una posición angular de la

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es, VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal,

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x)

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x) INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 OCTUBRE

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FCULD DE INGENIERÍ Uivrdd Nciol uóo d Méico Fculd d Igirí ális d Siss y Sñls Profsor: M.I. Elizh Fosc Chávz SERIE DE FOURIER LUMN: Sáchz Cdillo Vicori GRUPO: 6 SERIE DE FOURIER od sñl priódic s pud prsr

Más detalles

6. FAST FOURIER TRANSFORM (FFT)

6. FAST FOURIER TRANSFORM (FFT) 6. FAS FOURIER RASFORM FF Las rasformadas Rápidas d Fourir so algoritmos spcializados qu prmit a u procsador digital acr l cálculo d la rasformada Discrta d Fourir d ua forma ficit, lo qu rspcta a carga

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces art Variabls alatorias rof. María B. itarlli.- Variabls alatorias discrtas imortats Distribució biomial Sa ε u xrimto alatorio. Sa u vto asociado a ε y aotamos Suogamos u xrimto alatorio ε u cuml los siguits

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

Capitulo IV. Síntesis dimensional de mecanismos

Capitulo IV. Síntesis dimensional de mecanismos Captulo IV Síntss dmnsonal d mcansmos Capítulo IV Síntss dmnsonal d mcansmos IV. Síntss dmnsonal d mcansmos. Gnracón d funcons. IV. Gnracón d trayctoras.. Introduccón a la síntss d gnracón d trayctoras..

Más detalles

Capítulo 25. Rayos X

Capítulo 25. Rayos X Capítulo 25 Rayos X 1 Generación y absorción de rayos X La frecuencia máxima de rayos X producidos por una diferencia de potencial V vale: ν max = e V h Para que un fotón de rayos X se pueda desintegrar

Más detalles

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales.

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales. ANEJO 7º Cálculo simpliicao sccions n Estao Límit Agotaminto rnt a solicitacions normals.. Alcanc En st Anjo s prsntan órmulas simpliicaas para l cálculo (imnsionaminto o comprobación sccions rctangulars

Más detalles

TEMA 2: POTENCIAS Y RAÍCES CUADRADAS

TEMA 2: POTENCIAS Y RAÍCES CUADRADAS TEMA 2: POTENCIAS Y RAÍCES CUADRADAS Segudo Curso de Educació Secudaria Oligatoria. I.E.S de Fuetesaúco. Mauel Gozález de Leó. CURSO 2011-2012 Págia 1 de 11 Profesor: Mauel Gozález de Leó Curso 2011 2012

Más detalles