2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74"

Transcripción

1 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 74.5 Dependencia Lineal, Independencia Lineal, Wronskiano Dependencia Lineal Definición.5. Se dice que un conjunto de funciones f, f,... fn ( ) es linealmente dependiente en un intervalo I si eisten constantes c, c,..., cn no todas ceros tales que cf + cf +,..., + cf = 0 () n n Para toda en el intervalo. Si el conjunto de funciones no es linealmente dependiente en el intervalo, entonces se considera linealmente independiente. [] En otras palabras, un conjunto de funciones es linealmente independiente en un intervalo I si las únicas constantes para las que se cumple (), para toda en el intervalo son c = c =... = c n = 0 En el caso de un conjunto formado por dos funciones, si ese conjunto es linealmente dependiente en un intervalo, eisten constantes, que no son cero todas a la vez, tales que para toda en el intervalo por consiguiente: cf + cf = () 0 Si suponemos que c f ( c / c ) f 0, entonces = () Esto es, si un conjunto de dos funciones es linealmente independiente, entonces una función es un múltiplo constante de la otra. Por lo tanto, llegamos a la conclusión de que un conjunto de dos funciones es linealmente independiente cuando ninguna es múltiplo constante de la otra en el intervalo. Sean y, y,..., yn n, en un intervalo I sí y sólo sí n soluciones de la ecuación diferencial, lineal, homogénea y de orden I. Entonces, el conjunto de soluciones es linealmente independiente en W y, y,..., y 0 (4) n (Conocido como el wronskiano del conjunto de soluciones) para toda en el intervalo.

2 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 75 Otra definición Definición.5. Dos funciones definidas en un intervalo abierto I, ( y y y ), se dice que son linealmente independientes en I si se cumple que ninguna es un múltiplo constante de la otra. Dos funciones se dice que son linealmente dependientes en un intervalo abierto si se cumple que no son linealmente independientes allí; esto es, una de ellas es un múltiplo constante de la otra. [] Siempre podemos determinar si dos funciones f y g son linealmente dependientes en un intervalo I observando si uno de los dos cocientes f / g o g/ f es una constante en I. Conjunto de Funciones Linealmente Dependientes Ejemplo.5. Teniendo y () t = sen ( t) y y () t = cos ( t) linealmente dependientes en el intervalo (0,). Podemos escribir c () sen t +c cos ( t) = 0 aplicando identidad trigonométrica se n ( t ) = cos ( t) combinación lineal de las funciones., determinar si son, si hacemos c = y c =, y, observamos que se cumple la Ejemplo.5. Teniendo = linealmente dependientes en el intervalo (0,). Podemos escribir () ( t) identidad trigonométrica sec () t = + tan ( t) funciones es igual a cero. y ( t ) tan t sec t y y ( t ) =, determinar si son c tan t sec +c = 0, haciendo c = y c =, y aplicando, observamos que la combinación lieal de las Ejemplo.5. El conjunto de las funciones f = sen, f = cos, f = sec, f ( ) = tan ( ) (5) 4

3 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 76 π π Es linealmente dependiente en,. [] Porque c sen + c cos + c sec + c tan = 0 (6) 4 Cuando c = c =, c =, c =, (aplicando identidades). 4 Un conjunto de funciones f, f,... fn ( ) es linealmente dependiente en un intervalo al menos si una función se puede epresar como combinación lineal de las funciones restantes. Ejemplo.5.4 El conjunto de funciones f f f f = + 5, = + 5, =, 4 = (7) es linealmente dependiente, en el intervalo (0, ), porque f ( ) se puede escribir como una combinación lineal de f = f + ( 5) f intervalo (0, ). [] + 0 f ( ) para toda en el Nos interesan las funciones linealmente independientes, o mejor dicho las Soluciones Linealmente Independientes de una ecuación diferencial lineal. Los siguientes pares de funciones son linealmente independientes en toda la recta real 4 sen e e + y y y y y cos; e e ; ; Pero la función idénticamente cero y cualquier otra función f son linealmente dependientes en todo intervalo ya que 0* 0 f =

4 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 77 También, las funciones f = sen y g = sen cos son linealmente dependientes en cualquier intervalo puesto que f = g (una identidad trigonométrica). Wronskiano Definición.5. Suponga que cada una de las funciones f, f,..., fn ( ) poseen al menos n derivadas, su determinante f fn f f f, f,... fn ( ))=.... n n f f W( n n formado por las funciones y sus n derivadas, se le conoce como Wronskiano de las funciones. Otra definición Definición.5.4 Wronskiano de soluciones Suponga que y y y son dos soluciones de la ecuación lineal homogénea de segundo orden y + p y + q y = 0 En el intervalo abierto I en el que p y q son continuas. Si y y son linealmente dependientes, en y I, entonces W( y, y ) = 0 (8) Si y y son linealmente independientes, en cada punto de y I, entonces W( y, y) 0 (9) Cómo podemos resolver el Wronskiano?

5 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 78 Para resolver un determinante de, Para resolver un determinante de *, Una opción es agregando filas f f * W ( f, f ) = = [( f )] [ ( f )] Suponiendo que son tres funciones, agregamos filas en la parte inferior de la matriz (la primera y la segunda), y de manera cruzada (formando una diagonal) empezando por el elemento (,) f, multiplicamos los elementos, continuamos con el elemento (,),, los multiplicamos y se los sumamos al producto anterior, y hacemos lo propio terminando con el elemento (,) f, después restamos el producto de los elementos de la diagonal invertida ( diagonales) (,, ) f f f W f f f = f f f (,, ) = [( )( ) + ( )( ) + ( )( ) ] [( )( f ) + ( f )( ) + ( f )( ) ] W f f f f f f f f f f f f Otra opción es agregando columnas f f f f f W( f, f, f) = [ ] [( )( f ) ( f )( ) ( )( f )] W( f, f, f ) = ( f )( f )( f ) + ( f )( f )( f ) + ( f )( f )( f ) + + Otra manera de resolverlo sin tener que agregar filas o columnas es método de cofactores.

6 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 79 El cual consiste en elegir una columna o un renglón de la matriz. (paso ) Seleccionamos un coeficiente de la columna o renglón. Si la suma de sus subíndices es par lo asociamos con un signo +, si la suma es impar con un signo -. La fila y la columna en que se encuentre el coeficiente las eliminamos. (paso ) Calculamos el determinante de la matriz que haya resultado multiplicándola por coeficiente con el signo que se le asoció. Realizamos el paso y el paso con los demás coeficientes de la columna o renglón que seleccionamos. Finalmente sumamos los valores obtenidos. Suponiendo que seleccionamos la fila f f f W( f, f, f) = W( f, f, f )= ( + )( f ) + ( )( f ) + ( + )( f ) f f f f f f Otra manera de resolverlo también sin tener que agregar filas o columnas es f f f Teniendo W( f, f, f) = Desarrollar W ( f, f, f) = [( f)( f )( f ) + ( f)( f )( f ) + ( f )( f )( f) ] [( )( f )( f ) + ( f )( f )( f ) + ( f )( f )( f )] Ejemplo.5.5 Comprobar si los conjuntos de funciones son linealmente independientes en, el intervalo

7 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 80 Siendo f =, f =, f 4 hacia abajo sus n derivadas = escribimos las funciones en una fila, y 4 W,,4 = (0) Resolviendo el determinante agregando filas W,,4 = W = ( 6) + ()()(4 ) + (0)( )(4 6 ) + + (0)(4 ) ()(4 6 ) ()( )( 6) W,,4 = = 0 () Por lo tanto son linealmente dependientes Ejemplo.5.6 Teniendo f 0, f, f 0 = = = e W 0,, e = 0 e () 0 0 e e W 0,, e = (0)()( e ) + (0)(0)( e ) + ( e )(0) (0)()( e ) + (0)( e ) + (0)( e )(0) W 0,, e = 0 ()

8 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 8 Como el wronskiano es igual a cero, son linealmente dependiente. Ejemplo.5.7 Determinar si son o no linealmente independiente las siguientes funciones f =, f ( ) =, f = + + W,, + = (4) W (,, + ) = ( + ) ( ) ( ) W,, + = (0) ( )(0) + ( + )(0) = 0, son linealmente dependientes Ejemplo.5.8 Determinar si son o no linealmente dependientes las siguientes funciones = +, =, = f f f + W +,, = (5) 0 0 W + = + + +,, ()() ()(0) (0) (0)()( ) + ()() + (0)( + ) W +,, = + = (6) En este caso el wronskiano es diferente de cero, son linealmente independiente Determinando soluciones linealmente independientes

9 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 8 Sean y, y ( ), y n, n soluciones de la ecuación diferencial lineal homogénea de orden n, en un intervalo I. Entonces el conjunto de soluciones es linealmente independiente en I si y solo si el wronskiano es diferente de cero para toda en el intervalo. (W 0 I). [] Cuando un conjunto de soluciones es un conjunto fundamental de soluciones Todo conjunto y, y,..., yn de n soluciones linealmente independientes de la ecuación diferencial lineal homogénea de orden n, en un intervalo I es un conjunto fundamental de soluciones en el intervalo. Dadas dos funciones y y y, el wronskiano es el determinante de dichas funciones y sus derivadas y y W = = y y y y y y Escribimos ya sea W( y,y ) o W( ), dependiendo si deseamos enfatizar las dos funciones o el punto en el que se evaluará el wronskiano. Ejemplo.5.9 Siendo y e y e homogénea y 9y = 0 en el intervalo ( (, ), por inspección las soluciones son linealmente independientes en el eje, []. =, =, soluciones de la ecuación diferencial lineal Si observamos el wronskiano, podemos corroborar que el determinante es diferente de 0 para toda. e e We (, e = = ( e )( e ) ( e )( e ) = 6 e e (7) Llegando a la conclusión de que en consecuencia, y, y y = ce + ce, forman un conjunto fundamental de soluciones, y es la solución general de la ecuación en el intervalo. Ejemplo.5.0 Las funciones y = e, y = e, y = e satisfacen la ecuación diferencial

10 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 8 y 6 y + y 6 y = 0 Su wronskiano e e e we (, e, e ) = e e e e 4e 9e w e e e e e e e e e e e e e e e e e e e e e (,, ) = ( ) ( ) we e e e 6 (,, ) = 0 Ejemplo.5. teniendo las funciones cos( ) y sen( ) su wronskiano sería sen cos cos W sen = = + sen sen (cos, ) cos = Para las funciones e y e tenemos e e We (, e) = e = e e + e. Siendo estos ejemplos de pares de soluciones linealmente independientes de ecuaciones diferenciales. De tal manera que dadas dos soluciones de la ecuación diferencial, eisten eactamente dos posibilidades El wronskiano W es idénticamente cero si las soluciones son linealmente dependientes. El wronskiano nunca es cero si las soluciones son linealmente independientes. La última condición es lo que se requiere para demostrar que y = cy + cy es la solución general de la ecuación diferencial de orden si y y y son soluciones linealmente independientes.

11 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 84 Ejemplo.5. Dada la siguiente ecuación diferencial y funciones solución, determinar si son linealmente independientes o no. y y + y = 0 y = e y = e y = e y = e y = e y = 4e Sustituyendo en la ecuación diferencial y e ( e ) + ( e ) = 0 Sustituyendo en la ecuación diferencial y 4e ( e ) ( e ) + = 0 (8) 4e 6e + e = 0 e e We (, e ) e e e e e = = = Por lo tanto We (, e ) 0, y el conjunto de funciones son linealmente independientes Ejemplo.5. Dada la siguiente ecuación diferencial y soluciones determinar si son Linealmente independientes o no. y + y 6y = 0 y = y = Obteniendo las derivadas de ambas soluciones y = y = 4 y = y = 5 Sustituyendo en la ecuación diferencial y () + 6 = 0 (9)

12 .5 Dependencia Lineal, Independencia Lineal, Wronskiano =0 Sustituyendo en la ecuación diferencial y 5 4 ( ) + ( ) 6 = = 0 Observamos que sí las satisfacen, desarrollando el Wronskiano W (, ) = 4 W(, ) = = 5 0 (0) Observamos que el conjunto de funciones es linealmente independiente 5 5 Ejemplo.5.4 Teniendo y 0y + 5y = 0 y siendo y = e, y = e, comprobar si satisfacen las ecuaciones y si son o no linealmente independiente. y = e y 5 5 y = e + e y = 5e y y = 5e + 0e 5 5 Sustituyendo y y sus derivadas en la ecuación diferencial obtenemos e 0(5 e ) + 5e = 0 e e + e = () Sustituyendo y y sus derivadas en la ecuación diferencial obtenemos (5e + 0 e ) 0(5 e + e ) + 5e = 0 e e e e e = 0

13 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 86 Por lo que las dos soluciones satisfacen la ecuación, y su Wronkiano es We e 5 5 (, ) 5 5 e e = e 5e + e We (, e ) = 5e + e 5e = e () 5 5 Como W( e, e ) 0, se concluye que son soluciones linealmente independiente al ser el wronskiano diferente de cero. Ejemplo.5.5 Teniendo y + 4y = 0 y = cos y = sen no linealmente independiente y si satisfacen la ecuación comprobar si son o y = sen y = cos y = 4cos y = 4sen Sustituyendo y y sus derivadas en la ecuación diferencial 4cos + 4 cos = 0 () sustituyendo y y sus derivadas en la ecuación diferencial 4sen + 4 sen =0 (4) Las dos funciones satisfacen la ecuación diferencial El Wronskiano W cos( ), sen sen cos = sen cos = + W cos, sen cos sen

14 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 87 = + ( ) W cos, sen cos sen W cos, sen = () = por lo tanto son funciones linealmente independientes

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

MÉTODO DE VARIACIÓN DE PARÁMETROS

MÉTODO DE VARIACIÓN DE PARÁMETROS MÉTODO DE VARIACIÓN DE PARÁMETROS El método de variación de parámetros es aplicado en la solución de ecuaciones diferenciales no homogéneas de orden superior de las cuales sabemos que la solución de la

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Sistemas de Ecuaciones Lineales, Método de Gauss. Parte I

Sistemas de Ecuaciones Lineales, Método de Gauss. Parte I Sistemas de Ecuaciones Lineales, Método de Gauss Parte I Ecuación lineal con n incógnita ES cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

DETERMINANTES. 2. Resuelve el siguiente determinante aplicando la regla de Sarrus:

DETERMINANTES. 2. Resuelve el siguiente determinante aplicando la regla de Sarrus: DETERMINNTES. Calcula el determinante de la siguiente matriz: 3 4 3 0..(3.0 2.0).0 0 0 3 4 0 0 3 Hemos sumado a la segunda fila la primera cambiada de signo. continuación hemos sumado a la tercera fila

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior OBJETIVOS PARTICULARES Describir los conceptos de combinación lineal, dependencia e independencia lineal, conjunto fundamental de soluciones y solución

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Lección 8 Sistemas de ecuaciones diferenciales lineales 1 Sistemas de Ecuaciones Diferenciales Consideremos el sistema A + S X + S k 1 k 2 Inicialmente se añaden 2 moles de S y 1 mol de A d[a] dt = k 1

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Ejercicio 3 de la Opción A del modelo 1 de 2008.

Ejercicio 3 de la Opción A del modelo 1 de 2008. Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1

Más detalles

E IDENTIFICAR ECUACIONES E IDENTIDADES

E IDENTIFICAR ECUACIONES E IDENTIDADES DISTINGUIR OBJETIVO E IDENTIFICAR ECUACIONES E IDENTIDADES NOMBRE: CURSO: FECHA: IDENTIDADES Y ECUACIONES Una igualdad algebraica está formada por dos epresiones algebraicas separadas por el signo igual

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

Unidad 1: Sistemas de Ecuaciones lineales. Método de Gauss.

Unidad 1: Sistemas de Ecuaciones lineales. Método de Gauss. Unidad : Sistemas de cuaciones lineales. Método de Gauss. Sistemas de ecuaciones lineales: Una ecuación lineal tiene la forma: a b c dt n,,, t son las incógnitas, a, b, c, d son los coeficientes, n es

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

APUNTES ALGEBRA SUPERIOR

APUNTES ALGEBRA SUPERIOR 1-1-016 APUNTES ALGEBRA SUPERIOR Apuntes del Docente Esp. Pedro Alberto Arias Quintero. Departamento De Ciencias Básicas, Unidades Tecnológicas de Santander. Contenido MATRICES Y DETERMINANTES... ELEMENTOS

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

1.9 Sustituciones diversas 49

1.9 Sustituciones diversas 49 1.9 Sustituciones diversas 49 1.9 Sustituciones diversas En ocasiones tenemos ecuaciones diferenciales que no corresponden a ninguna forma de ecuación conocida, donde, para resolverlas fácilmente recurrimos

Más detalles

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior MATEMÁTICAS II Práctica 3: Ecuaciones diferenciales de orden superior DEPARTAMENTO DE MATEMÁTICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 En esta

Más detalles

Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43

Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43 Determinante de una matriz cuadrada Toda matriz cuadrada A lleva asociado un número, llamado determinante de A, y que denotaremos mediante el símbolo. Este número, entre otras cosas, permite saber cuándo

Más detalles

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Tema 1 Sistemas de ecuaciones lineales 11 Definiciones Sea K un cuerpo Una ECUACIÓN LINEAL CON COEFICIENTES EN K es una expresión del tipo a 1 x 1 + + a n x n = b, en la que n es un número natural y a

Más detalles

TEMA 3 SISTEMAS DE ECUACIONES LINEALES

TEMA 3 SISTEMAS DE ECUACIONES LINEALES TEM SISTEMS DE ECUCIONES LINELES. Sistemas de ecuaciones lineales. Epresión matricial. Ejemplo Epresa en forma matricial los siguientes sistemas de ecuaciones lineales: 9 5, Solution is: 9, 9 Se trata

Más detalles

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común.

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común. Recurrencias Def. Progresión geométrica. Es una sucesión infinita de números, como: 5, 45, 135, donde el cociente de cualquier término entre su predecesor es una constante, llamada razón común. (Para nuestro

Más detalles

2.- Sistemas lineales.

2.- Sistemas lineales. 2.- Sistemas lineales. 2.1.-Definiciones previa. 2.1.1.-Ecuación lineal con n incógnitas: Cualquier expresión del tipo:, donde a i, b, ú. Los valores a i se denominan coeficientes, b término independiente

Más detalles

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas. PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

b 11 b b 1n b 21 b b 2n. b n1 b n2... b nn

b 11 b b 1n b 21 b b 2n. b n1 b n2... b nn 1429 Un cuadrado de n n números enteros se dice que es mágico si la suma de los números de cada una de sus filas o columnas, así como de cada una de las dos diagonales principales, es el mismo Encontrar

Más detalles

DETERMINANTES UNIDAD 3. Página 76

DETERMINANTES UNIDAD 3. Página 76 UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y

Más detalles

EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante:

EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante: EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante: 3 7 1 2 0 1 1 3 6 a) Usando la Regla de Sarrus. b) Desarrollando por los elementos de la primera columna. 2º/ Obtén el valor del determinante

Más detalles

CAPÍTULO VIII MATRICES

CAPÍTULO VIII MATRICES MTRICES Y DETERMINNTES 23 CPÍTULO VIII MTRICES 8. INTRODUCCIÓN Se da por entendido el concepto de transformación lineal entre dos espacios vectoriales sobre un mismo cuerpo, y se determina la matriz asociada

Más detalles

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS 1.- DEFINICIÓN DE SISTEMAS DE ECUACIONES LINEALES Definición: se llama sistema de ecuaciones lineales al

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS Para encontrar la solución de la Ecuacion diferencial de orden n definida por Donde los son constantes y f(x) es un función

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO ) D = ( 4 2

Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO ) D = ( 4 2 EXAMEN DE MATEMATICAS II 1ª EVALUACIÓN Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO 2015-16 Opción A 1.- Considera las matrices A = ( 1 2 2 1 ), B = ( 2 1 0) y C = ( 1 5 0 ) a) [1,5 puntos]

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente. 1 MATRICES Una matriz es una tabla ordenada de escalares a ij de la forma La matriz anterior se denota también por (a ij ), i =1,..., m, j =1,..., n, o simplemente por (a ij ). Los términos horizontales

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 010 011). Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí. Demostrar

Más detalles

1. Lección 3: Matrices y Determinantes

1. Lección 3: Matrices y Determinantes Apuntes: Matemáticas Empresariales II 1. Lección 3: Matrices y Determinantes Se define matriz de orden n m a todo conjunto de n m elementos de un cuerpo K, dispuestos en n filas y m columnas: A n m = (

Más detalles

MATRICES. TIPOS DE MATRICES Según el aspecto de las matrices, éstas pueden clasificarse en:

MATRICES. TIPOS DE MATRICES Según el aspecto de las matrices, éstas pueden clasificarse en: Repaso de Matrices MATRICES Una matriz es una tabla ordenada de escalares a ij de la forma La matriz anterior se denota también por (a ij ), i =1,..., m, j =1,..., n, o simplemente por (a ij ). Los términos

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.3 Ecuaciones diferenciales lineales de orden n En esta sección presentaremos un método general para resolver ED lineales de orden n cuya forma es

Más detalles

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector UNIDAD I: MATRICES Vectores en el plano Un vector,, es un segmento con una dirección que va del punto A (origen) al punto B (etremo).un vector es un segmento orientado que va del punto A (origen) al punto

Más detalles

Matemáticas. D e t e r m i n a n t e s

Matemáticas. D e t e r m i n a n t e s Matemáticas D e t e r m i n a n t e s El determinante de una matriz cuadrada es un número que se obtiene a partir de los elementos de la matriz. Su estudio se justifica en cuanto que simplifica la resolución

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema 2: Determinantes 1. Introducción En este tema vamos a asignar a cada matriz cuadrada de orden, un número real que llamaremos su determinante y escribiremos. Vamos a ver cómo se calcula. Consideremos

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES)

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) Instrucciones: Resolver los 5 problemas justificando todas sus afirmaciones y presentando todos sus cálculos. 1. Sea F un campo.

Más detalles

Anexo. Aplicaciones de los Determinantes

Anexo. Aplicaciones de los Determinantes Anexo. Aplicaciones de los Determinantes 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Cálculo del rango usando determinantes... 3 1.1 Ejemplo: Estudio del Rango de la matriz

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 1. Determinante wronskiano 2 1.1. Wronskiano de f 1 (t), f 2 (t),..., f n (t)............... 3 1.2. Derivada

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

Lo rojo sería la diagonal principal.

Lo rojo sería la diagonal principal. MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

MATRICES Y DETERMINANTES II.

MATRICES Y DETERMINANTES II. MATRICES Y DETERMINANTES II. Matriz adjunta es la matriz cuadrada que se obtiene al sustituir cada elemento por su adjunto correspondiente. Calcula la matriz adjunta: 2 2 2 A =( 2 1 0 ) 3 2 2 Primero calculamos

Más detalles

Tema 5. Matrices y Determinantes

Tema 5. Matrices y Determinantes Tema 5. Matrices y Determinantes 1. Definiciones 2. Operaciones Propiedades 3. Determinantes Orden 2 Orden 3: Regla de Sarrus Orden mayor de 3 Propiedades 4. Matriz inversa Ecuaciones matriciales 5. Rango

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

DIVISIÓN SINTÉTICA. Para la función polinomial f x = x 3 + 2x 2 5x 6, sabiendo que x 2 es un factor, procedemos usar el

DIVISIÓN SINTÉTICA. Para la función polinomial f x = x 3 + 2x 2 5x 6, sabiendo que x 2 es un factor, procedemos usar el DIVISIÓN SINTÉTICA Sugerencias para quien imparte el curso Para abordar mejor este tema, quien imparte el curso debe cerciorarse de que los alumnos saben realizar la división larga de un polinomio. Se

Más detalles

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional página 1/11 Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional Índice de contenido Ecuación vectorial, paramétrica y continua de la recta...2 Ecuación general o implícita de la recta...5

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Método de mínimos cuadrados (Continuación)

Método de mínimos cuadrados (Continuación) Clase No. 11: MAT 251 Método de mínimos cuadrados (Continuación) Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.

Más detalles

Teoría Tema 9 Ecuaciones del plano

Teoría Tema 9 Ecuaciones del plano página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria

Más detalles

3.7. Determinantes. Definición. El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante.

3.7. Determinantes. Definición. El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante. 37 Determinantes 11 Definición de determinante Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de

Más detalles

EXAMEN EXTRAORDINARIO 8 de julio de 2016

EXAMEN EXTRAORDINARIO 8 de julio de 2016 CÁLCULO I EXAMEN EXTRAORDINARIO 8 de julio de 16 Apellidos: Titulación: Duración del eamen: horas y 3 minutos Fecha publicación notas: 18-7-16 Fecha revisión eamen: 1-7-16 Todas las respuestas deben de

Más detalles

DETERMINANTES Profesor: Fernando Ureña Portero

DETERMINANTES Profesor: Fernando Ureña Portero : CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=a ij, de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden

Más detalles

MATRICES Y DETERMINANTES MATRIZ INVERSA

MATRICES Y DETERMINANTES MATRIZ INVERSA Índice Presentación... 3 Determinante de una matriz... 4 Determinante de matrices de orden 2 y 3... 5 Determinante de una matriz... 6 Ejemplo... 7 Propiedades del cálculo de determinantes... 8 Matriz inversa...

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Colisiones. Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A = 0/0

IES Fco Ayala de Granada Junio de 2014 (Colisiones. Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A = 0/0 IES Fco Ayala de Granada Junio de 04 (Colisiones Modelo ) Soluciones GermánJesús Rubio Luna Opción A Ejercicio opción A, modelo Junio Colisiones 04 a [ 5 puntos] Sabiendo que lim es finito, calcula a y

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

MATEMÁTICAS II: MATRICES Y DETERMINANTES

MATEMÁTICAS II: MATRICES Y DETERMINANTES MATRICES Llamaremos matriz de números reales de orden (o dimensión) m n a un conjunto ordenado de m n números reales, dispuestos en m filas y n columnas: A a 11 a 12 a 13 a 1j a 1n a 21 a 22 a 23 a 2j

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles