TEMA 3: DISTRIBUCIONES BIDIMENSIONALES.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 3: DISTRIBUCIONES BIDIMENSIONALES."

Transcripción

1 TEMA 3: DISTRIBUCIOES BIDIMESIOALES. 3.. Cocetos Geerales Distribucioes bidimesioales de frecuecias Tablas de correlació y cotigecia Distribucioes margiales y codicioadas Mometos e distribucioes bidimesioales: Mometos resecto al orige (o cetrados) Mometos resecto a la media (cetrados): La covariaza Ideedecia estadística: Cocetos Geerales. Hasta ahora hemos estudiado sobre cada observació de las que forma la muestra el valor que reseta u determiado carácter. E este tema estudiaremos sobre cada observació dos caracteres (or eemlo: eso y altura, edad y salario,...). Estos dos caracteres tedrá uas variables asociadas que deotaremos or X e Y. cada variable tomara uos valores x, x 2,...,x (la variable X) y y, y 2,..., y (la variable Y). A la variable (X,Y) la llamaremos variable estadística bidimesioal y sus valores será los ares de valores (x i, y ). Los razoamietos que resetaremos ara dos variables (estadística bidimesioal) so extraolables e mayor o meor medida ara variables (estadística -dimesioal). Reresetació umérica. La tabla estadística más secilla ara reresetar ua variable bidimesioal cosiste e colocar e dos columas los ares de valores segú se ha ido observado. U mismo subídice afecta a ambos elemetos del ar y os idica que observació os ha roorcioado dicho ar de valores (x i, y i ), el último subídice, es igual al úmero de observacioes: EJEMPLO : LA SUPERFICIE E HECTAREAS(X) Y PRODUCCIO E Qm.(Y) DE 5 FICAS: FICA SUP.Ha.(X) PRODUC. Qm(Y) Distribucioes bidimesioales de frecuecias Tablas de correlació y cotigecia. E esta reresetació los distitos valores de la variable X los otamos x i i=, 2,..., y los distitos valores de la variable Y los otamos y i i=, 2,...,. A cada observació le corresode u ar de valores (x i, y ). Al umero de observacioes que ha resetado el valor x i de X e y de Y se le deomia frecuecia absoluta del ar (x i, y ) y se ota como i. DEPARTAMETO DE MÉTODOS CUATITATIVOS E IFORMÁTICOS FACULTAD DE CIECIAS DE LA EMPRESA UIVERSIDAD POLITÉCICA DE CARTAGEA -8

2 TEMA 3: DISTRIBUCIOES BIDIMESIOALES. otaremos co f i a la frecuecia relativa de dicho ar: i f i = Dode es el úmero de observacioes: i i= = = OTA: (iterretació del doble sumatorio) i= = + 2 i = ( i ) = i= = = = = = Es fácil comrobar que: = i= = i = = i= Se deomia distribució bidimesioal de frecuecias al couto de valores (( x i, y ), i ) dode i=,2,..., y =,2,...,. Esta distribució bidimesioal se rereseta adecuadamete mediate ua tabla de doble etrada llamada tabla de correlació: i X/Y y y 2 y 3... y x x x EJEMPLO 2: DISTRIBUCIO SEGÚ SALARIOS (Y, E EUROS) Y EDADES(X) DE U GRUPO DE 00 JOVEES. X/Y SUMA FILA * SUMA COL * CUADO ALGUA DE LAS VARIABLES ESTA AGRUPADAS E ITERVALOS SE TOMA COMO VALOR x i O y LA MARCA DE CLASE. 42 = 3 SIGIFICA QUE 3 DE LOS CIE JOVEES TIEE 23 AÑOS Y U SALARIO ETRE 00 Y 50 EUROS. DEPARTAMETO DE MÉTODOS CUATITATIVOS E IFORMÁTICOS FACULTAD DE CIECIAS DE LA EMPRESA UIVERSIDAD POLITÉCICA DE CARTAGEA 2-8

3 TEMA 3: DISTRIBUCIOES BIDIMESIOALES. Si las variables obeto de estudio fuera cualitativas, la tabla se deomiaría tabla de cotigecia. Si llamamos:. = Σ i co fio, dicho valor se corresode co la suma de las frecuecias absolutas de la columa de uestra tabla. Si llamamos: i. = Σ i co i fio, dicho valor se corresode co la suma de las frecuecias absolutas de la fila i de uestra tabla. El úmero total de observacioes tambié uede obteerse como: = i = i. = i= = i= = E uestro eemlo 2 los i. y los. so los datos que aarece e la última columa y fila resectivamete Distribucioes margiales y codicioadas.. Distribucioes margiales. De estas tablas de doble etrada (de correlació o cotigecia), es osible extraer la iformació corresodiete a cada ua de las variables (ideedietemete de la otra), osibilidad relevate ya que su aálisis como variable uidimesioal uede ser de utilidad. A las distribucioes uidimesioales extraídas de ua variable bidimesioal se les deomia distribucioes margiales. Éste ombre deriva del hecho de que las frecuecias de la distribució margial se obtiee sumado e el marge de la derecha o iferior de la tabla de correlació las corresodietes frecuecias bidimesioales. Dada ua tabla de correlació de ua variable bidimesioal (X, Y) las distribucioes margiales ara X e Y será: Distrib. Margial rimera Distrib. Margial seguda X i. f i. Y.. f. x. f. y. f. x 2 2. f 2. y 2. 2 f x. f. y. f. SUMAS Dode: i... f i. = = Σ f i CO i FIJO f. = = Σ f i CO FIJO E uestro eemlo 2 las distribucioes margiales seria: La distribució margial rimera: X i SUMA COL. 00 DEPARTAMETO DE MÉTODOS CUATITATIVOS E IFORMÁTICOS FACULTAD DE CIECIAS DE LA EMPRESA UIVERSIDAD POLITÉCICA DE CARTAGEA 3-8

4 TEMA 3: DISTRIBUCIOES BIDIMESIOALES. La distribució margial seguda: Y SUMA COL. 00 ota: a las medidas (media, variaza,...) calculadas sobre la distribució margial se les añade el calificativo de margial (media margial, variaza margial,...). Distribucioes Codicioadas. Las distribucioes codicioadas exresa como se distribuye, segú ua de las dos variables, el couto de observacioes que cumle ua codició. Esta codició viee exresada or u valor o couto de valores que reseta la otra variable. Es decir, la distribució codicioada de X cuado y toma el valor y c o el couto de valores y r O la distribució codicioada de Y cuado x toma el valor x c o el couto de valores x r Utilizado uestro eemlo 2, ua distribució codicioada, seria la distribució segú salarios (variable Y) codicioada a que la edad (variable X) sea 2 años, (x 2 = 2). Es decir la distribució de la variable y codicioada a que la variable X tome el valor 2 (Y x= 2 ). y x= 2 / Se uede observar que cada ua de las filas de frecuecias de la tabla de correlació defie ua distribució codicioada ara la variable y, salvo la última que defie su distribució margial. Aálogamete cada ua de las columas de frecuecias de la tabla de correlació defie ua distribució codicioada ara la variable x, salvo la última que defie su distribució margial. Las distribucioes codicioadas so distribucioes uidimesioales a las cuales se les uede alicar todo lo coocido ara ese tio de distribucioes. A las características calculadas sobre las distribucioes codicioadas se les añade el calificativo de codicioada (media codicioada, variaza codicioada,...). Para las distrib. codicioadas Y x i otaremos las frecuecias relativas como f / i : i f / i = i. Y aálogamete ara las distribucioes codicioadas X y i DEPARTAMETO DE MÉTODOS CUATITATIVOS E IFORMÁTICOS FACULTAD DE CIECIAS DE LA EMPRESA UIVERSIDAD POLITÉCICA DE CARTAGEA 4-8

5 TEMA 3: DISTRIBUCIOES BIDIMESIOALES Mometos e distribucioes bidimesioales: Mometos resecto al orige (o cetrados). Se defie el mometo resecto al orige de la variable bidimesioal (X, Y) de orde ( r, s) y lo deotamos como a r s Casos articulares: a rs = i= = x r i y s i a 0 = es la media margial de X a 0 = es la media margial de Y Mometos resecto a la media (cetrados): La covariaza. Se defie el mometo resecto a la media de la variable bidimesioal (X, Y) de orde ( r, s) y lo deotamos como m r s m rs = i= = ( x i x) r ( y y) s i Casos articulares: m 0 = 0 = m 0 m 2 0 = es la variaza margial de X m 0 2 = es la variaza margial de Y El mometo resecto a la media más imortate es la covariaza que se ota y defie como: m = ( xi x)( y y) i= = i S La covariaza ayuda a cuatificar la covariació etre dos variables del siguiete modo: Cuado S xy > 0, hay ua tedecia a que a mayores observacioes de X corresoda mayores observacioes de Y. Por eemlo, a mayor catidad de agua de lluvia e u año, suele corresoder ua meor cosecha. Cuado S xy < 0, la tedecia resulta cotraria; es decir, a mayor valor de X solemos ecotrar meores valores de Y. Por eemlo, a mayor reta er cáita e los aíses suele corresoder ua meor mortalidad ifatil. XY Este valor deederá de los valores de las variables, or tato de sus uidades. Para oder elimiar las uidades y teer ua medida adimesioal utilizamos el COEFICIETE DE CORRELACIÓ (r xy ) S xy r xy = S S x y DEPARTAMETO DE MÉTODOS CUATITATIVOS E IFORMÁTICOS FACULTAD DE CIECIAS DE LA EMPRESA UIVERSIDAD POLITÉCICA DE CARTAGEA 5-8

6 TEMA 3: DISTRIBUCIOES BIDIMESIOALES. siedo tambié ivariate frete a trasformacioes lieales (cambio de orige y escala) de las variable. Citamos las siguietes roiedades: Es u coeficiete adimesioal. - r xy Si hay relació lieal ositiva r xy > 0 y róximo a. Si hay relació lieal egativa r xy <0 y róximo a -. Si o hay relació lieal r xy se aroxima a 0. Si X e Y so ideedietes S xy = 0 y or tato r xy = 0. RECAPITULACIO A) TABLA DE CORRELACIO/COTIGECIA: X/Y y y 2 y 3... y... y i. x x x m m m2 m3... m... m m.... x B) DISTRIB.MARGIALES Y CODICIOADAS: MARGIAL ª(X) MARGIAL 2ª(Y) COD.Y x m COD.X y X i. f i. Y. f. Y x m /m X y i/ x. f. y. f. y m x x 2 2. f 2. y 2. 2 f. y 2 m2 x x m m. f m x m m y. f. y m x. f x y. f. y m Σ m.. DEPARTAMETO DE MÉTODOS CUATITATIVOS E IFORMÁTICOS FACULTAD DE CIECIAS DE LA EMPRESA UIVERSIDAD POLITÉCICA DE CARTAGEA 6-8

7 TEMA 3: DISTRIBUCIOES BIDIMESIOALES. Frecuecias Relativas: f i. = i./ f. =. / f /m = m / m. ; f i/ = i /. Medias Margiales: x = (/) Σ x i i. = Σ x i f i. ; y = (/) Σ y. = Σ y f. Medias Codicioadas: x = (/. ) Σ x i i = Σ x i f i/ ; y m = (/ m.) Σ y m = Σ y f /m Relacioes etre distrib. Margiales y codicioadas: i i i. - f i = = = f /i f i. i. i i. - f i = = = f i/ f.. - x = (/) Σ x i i. = Σ x i f i. = Σ x i Σ f i = Σ x i Σ f i/ f. = Σ (Σx i f i/ )f. = Σ x f. - y = (/) Σ y. = Σ y f. = Σ y Σ f i = Σ y Σ f /i f i.= Σ (Σy f /i ) f i.= Σ y i f i Ideedecia estadística: Dos variables X e Y so estadísticamete ideedietes cuado el codicioamieto o tiee igú efecto difereciador. (Piésese que si las características e estudio so, or eemlo, el eso(x) y el úmero de miembros de la uidad familiar (y), e riciio y al meos ituitivamete, la variable eso se comortara ideedietemete del codicioamieto que odamos hacer e cuato al úmero de miembros de la uidad familiar). E térmios de frecuecias relativas, la ideedecia estadística se traducirá (codició de ideedecia) e que: f /i = f. Y f i/ = f i. i, Y dado que f i = f /i f i. = f i/ f. E caso de ideedecia estadística, tedremos que: f i = f i. f. i, O e térmios de frecuecias absolutas: i i.. i = i = i, Estas dos últimas exresioes so las que se suele tomar como caracterizació de la ideedecia. Veamos que: si dos variables x e y so estadísticamete ideedietes etoces su covariaza es cero m = 0(el reciroco o tiee or que ser cierto): DEPARTAMETO DE MÉTODOS CUATITATIVOS E IFORMÁTICOS FACULTAD DE CIECIAS DE LA EMPRESA UIVERSIDAD POLITÉCICA DE CARTAGEA 7-8

8 TEMA 3: DISTRIBUCIOES BIDIMESIOALES. Recordemos que m = a - a 0 a 0 Vamos a demostrar que si hay ideedecia a = a 0 a 0 a = (/) Σ Σ x i y i = Σ Σ x i y i = Σ Σ x i y i.. = Σ x i i. Σy. = a 0 a 0 Por tato: Ideedecia Covariaza cero Covariaza cero Ideedecia Bibliografía básica * Mª Ageles alacios, Ferado A. Lóez Herádez, José García Córdoba y Mauel Ruiz Marí. ITRODUCCIÓ A LA ESTADÍSTICA PARA LA EMPRESA. Librería Escarabaal * Martí-Pliego Lóez, Fco. Itroducció a la estadística ecoómica y emresarial. Ed. Thomso * Casas, J. M., Callealta, J., úñez, J., Toledo, M. y Ureña, C. (986). Curso Básico de Estadística Descritiva. I..A.P. * Hermoso Gutiérrez, J. A. y Herádez Bastida, A. (997). Curso Básico de Estadística Descritiva y Probabilidad. Ed. émesis. Para saber más o aclarar dudas: htt://www3.ui.es/~mateu/t2-ig2.doc htt://descartes.cice.mecd.es/estadistica/distrib_bidimesioales/distribucioes_bidimes ioales.htm htt://www.eumed.et/curseco/libreria/drm/ca3.df htt://ersoal.redestb.es/ztt/tem/t5_distribucioes_bidimesioales.htm htt://www.aulafacil.com/cursoestadistica/lecc-0-est.htm htt://www.ugr.es/~salias/activi/c4.df DEPARTAMETO DE MÉTODOS CUATITATIVOS E IFORMÁTICOS FACULTAD DE CIECIAS DE LA EMPRESA UIVERSIDAD POLITÉCICA DE CARTAGEA 8-8

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

5 Variables aleatorias bidimensionales y de mayor dimension.

5 Variables aleatorias bidimensionales y de mayor dimension. 5 Variables aleatorias bidimesioales de maor dimesio. Edgar Acua ESMA 4 Edgar Acua Sea S el esacio muestral de u eerimeto aleatorio. Sea s s dos ucioes que asiga u umero real a cada elemeto s de S. Etoces

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

EL MODELO DE MERCADO (MODELO DE ÍNDICE ÚNICO, O MODELO DE UN SOLO FACTOR).

EL MODELO DE MERCADO (MODELO DE ÍNDICE ÚNICO, O MODELO DE UN SOLO FACTOR). 1 EL MODELO DE MERCADO (MODELO DE ÍNDCE ÚNCO, O MODELO DE UN SOLO FACTOR). Disoemos de las tasas de redimieto de u cojuto de activos co riesgo (i = 1,,, ) y disoemos tambié de la tasa de redimieto de u

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

[ELEMENTOS DE ESTADÍSTICA PARA LA INVESTIGACIÓN.]

[ELEMENTOS DE ESTADÍSTICA PARA LA INVESTIGACIÓN.] 2010 Uiversidad de La Habaa. Facultad de Ecoomía. Departameto de Estadística e Iformática. Profesora: MSc. Mirielys Mirada Iglesias. [ELEMENTOS DE ESTADÍSTICA PARA LA INVESTIGACIÓN.] MATERIAL DE ESTUDIO

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Tema 1. Estadística Descriptiva

Tema 1. Estadística Descriptiva Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 1 Estadística Descriptiva 1 Itroducció 1 2 Coceptos geerales 2 3 Distribucioes de frecuecias 3 4 Represetacioes

Más detalles

3. Igualdad de proporciones

3. Igualdad de proporciones 1 La prueba de Pearso Tema 10 1. Bodad de ajuste. Idepedecia 3. Igualdad de proporcioes 4. Medidas de asociació 5. Errores tipificados 1. Bodad de ajuste Objetivo: Comprobar si ua distribució teórica de

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente.

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente. º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA.- ESTADÍSTICA DESCRIPTIVA.- TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística : Es la ciecia que estudia cojutos de datos obteidos de la realidad. Estos datos

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios 69 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució Biomial Cosideremos los siguietes

Más detalles

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... }

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... } SEÑALES DE TIEMPO DISCRETO SEÑALES Y SISTEMAS DE TIEMPO DISCRETO Las señales está clasificadas de maera amplia, e señales aalógicas y señales discretas. Ua señal aalógica será deotada por a t e la cual

Más detalles

Métodos de reducción de varianza

Métodos de reducción de varianza Métodos de reducció de variaza Clase ro 1 Curso 010 Métodos de reducció de variaza E la mayoría de las simulacioes, los experimetos tiee por obetivo obteer valores medios de los resultados que se muestrea

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL I.E.S. Virge de la Paz. Alcobedas DEPARTAMETO DE MATEMÁTICAS Itroducció ESTADÍSTICA UIDIMESIOAL El ombre de Estadística alude al eorme iterés de esta rama matemática para los asutos del Estado y su itroducció

Más detalles

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales Ídice 5 Itroducció a la Iferecia Estadística Muestreo e poblacioes ormales 51 51 Itroducció 51 52 Estadísticos y mometos muestrales 53 521 Media muestral Propiedades 54 522 Variaza muestral Propiedades

Más detalles

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices. Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su

Más detalles

4 El Perceptrón Simple

4 El Perceptrón Simple El Perceptró Simple. Itroducció Ua de las características más sigificativas de las redes euroales es su capacidad para apreder a partir de algua fuete de iformació iteractuado co su etoro. E 958 el psicólogo

Más detalles

2.- Estudio Poblacional y Muestral Univariante

2.- Estudio Poblacional y Muestral Univariante .- Estudio Poblacioal y Muestral Uivariate Població: Colectivo de persoas o elemetos co ua característica comú, objeto de estudio. Imposibilidad de estudio de esta característica e toda la població - Coste

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es MATEMÁTICAS I 1º Bachillerato Capítulo 9: 393 Ídice 1. ESTADÍSTICA DESCRIPTIVA UNIDIMENSIONAL 1.1. INTRODUCCIÓN 1.. MÉTODO ESTADÍSTICO 1.3. CONCEPTOS BÁSICOS 1.4. TIPOS DE VARIABLES 1.5. DISTRIBUCIONES

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Uiversidad de Atofagasta Fac. de Ciecias Básicas Depto. de Matemáticas A. Alarcó, L. Media, E. Rivero, R. Zuñiga Segudo Semestre 204 Sistema de ecuacioes lieales El sistema de ecuacioes lieales a, + a,2

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

REPASO DE ESTADÍSTICA

REPASO DE ESTADÍSTICA Aputes IN 56B; Profesor: Viviaa Ferádez I. Coceptos de Probabilidad A. Variables Discretas REPASO DE ESADÍSICA. E el mudo existe estados posibles (evetos), e algua fecha futura. Ejemplo: u eveto es el

Más detalles

TEMA 4. Series de números reales. Series de Potencias.

TEMA 4. Series de números reales. Series de Potencias. TEMA 4 Series de úmeros reales. Series de Potecias.. Sucesió de úmeros reales Las sucesioes de úmeros reales so ua buea herramieta para describir la evolució de ua magitud discreta, y el ite surge al estudiar

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

Rectificador de media onda

Rectificador de media onda Electróica y microelectróica ara cietíficos ectificador de media oda Como u diodo ideal uede mateer el flujo de corriete e ua sola direcció, se uede utilizar ara cambiar ua señal de ca a ua de cd. E la

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

3. Las medidas de centralización

3. Las medidas de centralización FUOC XP00/71004/00017 21 Las medidas de cetralizació 3. Las medidas de cetralizació La mediaa y la media aritmética Los diagramas de tallos y hojas y los histogramas proporcioa ua descripció geeral de

Más detalles

5.1. Tipos de convergencia

5.1. Tipos de convergencia Estadística Tema 5 Covergecia de Variables Aleatorias 51 Tipos de covergecia 52 Ley de los grades úmeros 53 Teorema cetral del límite 54 Método delta Objetivos 1 Motivació estudio secuecias de VAs 2 Covergecia

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES PROCESAMIENTO DIGITAL DE SEÑALES TEMA : FUNDAMENTOS DE SISTEMAS DE TIEMPO DISCRETO. Señales y Sistemas de Tiempo Discreto Se itroducirá coceptos de señales y sistemas de tiempo discreto. Para ello se detallará

Más detalles

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra.

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra. Capítulo 6 Muestreo Estadístico E esta tema setaremos las bases del muestreo estadístico y estudiaremos las distribucioes de alguos estadísticos a partir de ua muestra. 6.1. Coceptos básicos Auque e el

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Tema 6. Variables cualitativas o atributos

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Tema 6. Variables cualitativas o atributos Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gil José María Sarabia Alegría DPTO. DE ECONOMÍA Este tema se publica bajo Licecia: Creative Commos BY-NC-SA 4.0 Itroducció Las variables cualitativas

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

Introducción al Análisis de la Varianza

Introducción al Análisis de la Varianza Itroducció al Aálisis de la Variaza F. Javier Cara Uiversidad Politécica de Madrid Curso 013/14 Distribucioes import. e Aalisis de la Variaza Sea X 1, X,...,X, Y 1, Y,...,Y m, variables aleatorias idepedietes

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

CAPITULO 1. Teorema del Binomio

CAPITULO 1. Teorema del Binomio CAPITULO 1 Teorema del Biomio Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes que ivolucre u úmero fiito

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles