Aeronaves y Vehículos Espaciales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aeronaves y Vehículos Espaciales"

Transcripción

1 Aeronaves y Vehículos Espaciales Tema 3 El Campo Fluido Francisco Gavilán Jiménez Sergio Esteban Roncero Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros Universidad de Sevilla Curso Aeronaves y Vehículos Espaciales 1

2 Contenido Descripción general de los fluidos Variables fluidos Compresibilidad Viscosidad y conductividad térmica El número de Reynolds El número de Mach Ecuación de Bernoulli Atmosfera estándar internacional Aeronaves y Vehículos Espaciales 2

3 Descripción general de los fluidos - I Las fuerzas que actúan entre las moléculas de los sólidos, líquidos y gases, definen la estructura molecular de estos, y sus propiedades. La fuerza entre dos moléculas eléctricamente neutras que no formen enlace químico se representa como función de la distancia entre ellas. La fuerza es de repulsión y fuerte para distancias menores que una cierta d 0 La fuerza es de atracción y débil para distancias mayores que d 0. Un valor típico de d 0 es m. Distancia media entre moléculas en condiciones normales presión y temperatura Líquidos: d 0 Gases: 10d 0 Aeronaves y Vehículos Espaciales 3

4 Descripción general de los fluidos - II Distinciones entre sólidos y fluidos: La propiedad que permite diferenciar entre sólidos y fluidos es la capacidad para deformarse indefinidamente bajo la acción de fuerzas exteriores. Sólidos: forma definida que cambia únicamente cuando lo hacen las condiciones externas que actúan sobre él. Fluidos (líquidos y gases) Fluidez: propiedad de un líquido para adquirir formas diferentes bajo unas mismas condiciones externas Gas: tiende a llenar completamente el recipiente que lo contiene, independientemente de la forma de éste. Líquido: se deforma hasta llenar una parte del espacio determinado por el recipiente Aeronaves y Vehículos Espaciales 4

5 Aeronaves y Vehículos Espaciales 5 Descripción general de los fluidos - III Gas Perfecto: es un gas que cumple estrictamente la condición que las moléculas del gas se mueven independientemente unas de otras: las moléculas del gas están muy distantes de otras. La energía potencial debida a la atracción entre ellas es mucho menor que la energía cinética Distinciones líquidos y gases Densidad del líquido >> densidad del gas (~1000 veces mayor) La diferencia en densidades conduce a una diferencia en la magnitud de las fuerzas requeridas para conseguir una aceleración dada (F = m a) Pero mismo tipo de movimiento Compresibilidad: capacidad para cambiar el volumen que ocupa una determinada masa de fluido (δp gases >> δp fluidos ) Meteorología Balística y aeronáutica

6 Descripción general de los fluidos - IV Hipótesis del medio continuo: A nivel molecular es muy difícil el estudio de los fluidos debido a la cantidad de moléculas implicadas gas: 1 mm 3 contiene moléculas líquidos 1000 veces mas (proporcional a la densidad) Seguimiento de las partículas esfuerzo computacional desmesurado Modelo matemático continuo: comportamiento de un fluido a nivel macroscópico Dominio fluido: se supone en cada instante el fluido ocupa de forma continua una cierta región del espacio. Variables fluidas: funciones continuas y derivables de la posición y del tiempo definidas en el dominio del fluido: Masa Cantidad de movimiento Energía Aeronaves y Vehículos Espaciales 6

7 Descripción general de los fluidos - IV Aeronaves y Vehículos Espaciales 7

8 Aeronaves y Vehículos Espaciales 8 Variables Fluidas - I Las variables fluidas se definen en cualquier punto del dominio (x) del fluido en el instante (t) promedios sobre todas las moléculas contenidas en un elemento de volumen (Ω) centrado en el punto (x) en el instante (t). Validez de los modelos macroscópicos Ω contenga un número suficientemente grande de moléculas para que los promedios no fluctúen l c distancia media entre molécula Ω sea lo suficiente pequeño para que dichas variables reflejen las variaciones del estado macroscópico del fluido L c longitud que es necesario recorrer para encontrar variaciones de dicho estado macroscópico Los problemas fluidos más frecuentes en aeronáutica están caracterizados por escalas > 10-6, Un volumen de m 3 contiene aproximadamente 10 7 moléculas de gas. HIPÓTESIS ADMMISIBLE

9 Aeronaves y Vehículos Espaciales 9 Variables Fluidas - II Presión: Es la fuerza normal por unidad de área que se ejerce en una superficie debida a la variación con el tiempo de la cantidad de momento de las moléculas del gas a medida que van impactando en dicha superficie. Densidad: Magnitud referida a la cantidad de masa contenida en un determinado volumen, y puede utilizarse en términos absolutos o relativos. Temperatura: La temperatura es una medida de la energía cinética media de las partículas del fluido. Velocidad local: La velocidad local en cualquier punto fijo B en un fluido en movimiento es la velocidad de un elemento infinitesimalmente pequeño a medida que pasa por B Energía total por unidad de masa: La Energía total es la suma de la energía cinética macroscópica por unidad de masa, de un elemento de fluido centrado en el punto en el instante t, más una energía interna contenida en dicho elemento = +

10 Equilibrio Termodinámico Local - I La termodinámica es la rama de la física que estudia la energía, la transformación entre sus distintas manifestaciones, como el calor, y su capacidad para producir un trabajo. La termodinámica muestra que se puede especificar el estado macroscópico de un fluido en equilibrio mediante los valores de algunas variables de estado: presión, densidad, temperatura, energía interna. Se tienen ecuaciones de estado que permiten relacionar unas variables termodinámicas con otras Ejemplo: pv=nrt Para aplicar las ecuaciones de estado, es necesario el equilibrio termodinámico local Aeronaves y Vehículos Espaciales 10

11 Aeronaves y Vehículos Espaciales 11 Equilibrio Termodinámico Local - II Interpretación física: En un volumen fluido existen tantas moléculas y chocan con tanta frecuencia, que puede considerarse que los intercambios energéticos son tan rápidos que se alcanza el estado de equilibrio de forma instantánea. En esta situación de equilibrio termodinámico local: El fluido parece estar localmente en equilibrio, es decir, En cada instante t, las variables termodinámicas en cada punto (x) están relacionadas entre sí como lo estarían si todo el fluido estuviese en equilibrio a la presión y temperatura locales Camino libre Distancia que una molécula recorre en media entre dos colisiones sucesivas con otras moléculas Número de Knudsen Camino libre Validez de modelos macroscópicos En consecuencia, pueden aplicarse las ecuaciones de estado

12 Fenómenos del Transporte - I En un sistema aislado del exterior, en el cual alguna propiedad de la materia no es inicialmente uniforme, ocurren cambios que tienden a llevar el sistema hacia un estado de equilibrio fenómenos de transporte. Qué se transporta? Transporte de masa. Transporte de cantidad de movimiento. Transporte de energía interna. Cómo se transporta? Transporte por difusión Asociado a los gradientes de las variables fluidas (concentración, velocidad y temperatura) Transporte por convección: Asociado a la velocidad local del fluido Transporte por radiación Aeronaves y Vehículos Espaciales 12

13 Aeronaves y Vehículos Espaciales 13 Fenómenos del Transporte - II Transporte Difusivo: Manifestación macroscópica de procesos que tienen lugar a escala molecular, asociados al movimiento de agitación de las moléculas y a las fuerzas de interacción entre ellas. Se manifiestan microscópicamente a través de la superficie que separa dos porciones adyacentes cualesquiera de fluido si entre ellas existe un gradiente (diferencia) de las variables fluidas. Difusión de masa: mezcla de fluidos con diferentes concentraciones tienden a igualar las concentraciones Conducción de calor: el transporte de energía interna del fluido tiende a ir de la zona donde la temperatura es mayor a la zona donde es menor Fricción: fluidos con diferentes velocidades medias, cuando entran en contacto, el fluido con menor velocidad media tiende a frenar el fluido del otro lado con mayor velocidad y viceversa. Disipación de energía. VARIABLES FLUIDAS - Masa - Cantidad de movimiento - Energía

14 Aeronaves y Vehículos Espaciales 14 Partículas Fluidas - I Fluido macroscópicamente -> partícula fluida Partícula fluida es aquella que en cada punto (x) y en cada instante (t) se considera una masa elemental de fluido, dm = ρ (x, t) dω, centrada en x, que se mueve con velocidad V (x, t) y tiene una energía interna ρ (x, t) e(x, t) dω La especificación de las variables fluidas no está ligada a las partículas fluidas, sino a los puntos del espacio ocupado por el fluido: el valor de una variable fluida en un punto x y en un instante t es el de la partícula fluida que se encuentra es ese punto en ese instante VARIABLES FLUIDAS - Masa - Cantidad de movimiento - Energía Trayectoria Ley que da la posición de una partícula fluida como función de t y de su posición inicial. Si se supone conocido el campo de velocidades las ecuaciones que determinan la trayectoria Senda Curva recorrida por una partícula fluida en su movimiento. Las ecuaciones de la trayectoria proporcionan también la senda, ya que dichas ecuaciones son también las de la senda en forma paramétrica, cuando se utiliza el tiempo como parámetro.

15 Aeronaves y Vehículos Espaciales 15 Fuerzas Macroscópicas - I Las fuerzas macroscópicas son las interacciones mecánicas entre la porción de volumen cuyo movimiento se desea analizar y la materia que la rodea: Fuerzas de volumen o másicas: son fuerzas que penetran en el interior del fluido y actúan sobre todas las partículas fluidas (largo alcance). fuerzas debidas a campos de fuerza externos al fluido, como por ejemplo el campo gravitatorio terrestre, fuerzas de inercia asociadas movimiento de sistemas de referencia no inerciales. fuerza por unidad de masa fuerza por unidad de volumen Fuerzas de superficie: Fuerzas que tienen su origen en la agitación molecular y en la interacción entre moléculas (corto alcance) Desde el punto de vista macroscópico, son fuerzas que ejerce una porción de fluido sobre otra porción adyacente, a través de la superficie que las separa, siendo proporcionales al área de dicha superficie En cada punto del fluido la fuerza por unidad de área, o esfuerzo, varía con la orientación de la superficie. Fuerzas de presión Fuerzas de fricción

16 Fricción Fluidos Newtonianos - I La fricción se produce en un fluido cuando hay gradientes de velocidad, de forma que haya movimiento relativo entre distintas partes del mismo (ejemplo: manifestación). Puede demostrarse que está asociado a velocidades de deformación Fluidos newtonianios la relación entre los esfuerzos y las velocidades de deformación es lineal Mayoría de gases y muchos líquidos (agua) Fluidos no newtonianos Relación lineal no valida líquidos de estructura molecular compleja, emulsiones y mezclas (ketchup, sangre, pintura). El coeficiente de proporcionalidad (μ) se denomina coeficiente de viscosidad del fluido: depende del estado termodinámico local depende fundamentalmente de la temperatura. Viscosidad Se aplica una fuerza tangencial sobre un material sólido (ej: goma de borrar) el cual opone una resistencia a la fuerza aplicada, pero se deforma (b), tanto más cuanto menor sea su resistencia. Imaginamos que la goma de borrar está formada por delgadas capas unas sobre otras, el resultado de la deformación es el desplazamiento relativo de unas capas respecto de las adyacentes (c). En los líquidos, el pequeño rozamiento existente entre capas adyacentes se denomina viscosidad. Aeronaves y Vehículos Espaciales 16

17 Fricción Fluidos Newtonianos - II Fricción fluidos gradientes velocidad entre distintas partes del fluido El esfuerzo de fricción viene dado por fuerzas superficie tensor Tensor de esfuerzos de fricción Velocidad de deformación Coeficiente de viscosidad La falta de uniformidad en la distribución de velocidades fuerzas de superficie en el fluido. Fuerza neta debido al esfuerzo de fricción tangencial sobre el fluido dxdydz La fuerza neta por unidad de volumen U(y) Campo de velocidades (y) dy τ dx dz Aeronaves y Vehículos Espaciales 17

18 Aeronaves y Vehículos Espaciales 18 Fluidos Perfectos y Fluidos Ideales Un líquido se dice que es perfecto cuando su densidad es constante, y se dice que es caloríficamente perfecto si además su calor específico c es constante (es decir, no depende de la temperatura). El calor específico o capacidad calorífica específica, c, de una sustancia es la cantidad de calor necesaria para aumentar su temperatura en una unidad por unidad de masa, sin cambio de estado. El agua líquido caloríficamente perfecto de ρ = 1000 kg/m3 y c = 4180 J/(kgK) Los gases perfectos están caracterizados por una ecuación de estado: p - presión del gas T - temperaturas del gas ρ - densidad del gas R g constante del gas. Un gas se llama caloríficamente perfecto si además los calores específicos a presión constante (c p ) y a volumen constante (c v ) no dependen de la temperatura. Aire se comporta como un gas perfecto: R g = 287 J/(kgK), c p =1004 J/(kgK) γ=1.40. En ciertos tipos de movimiento, los efectos de la viscosidad y de la conducción de calor son despreciables. Un fluido que verifica estas condiciones se denomina fluido ideal, y su estudio teórico se simplifica enormemente. Esta simplificación es válida en el estudio de muchos flujos aerodinámicos

19 Aeronaves y Vehículos Espaciales 19 Flujos Incompresibles - I El movimiento de un fluido se dice que es incompresible si las variaciones de presión que se producen no dan lugar a variaciones significativas de densidad. Dos posibles situaciones: La compresibilidad del fluido sea muy pequeña, por lo que, aunque las variaciones de presión sean grandes, las variaciones de densidad que producen son pequeñas: líquidos. Las variaciones de presión sean lo suficientemente pequeñas para que, aun si la compresibilidad no es pequeña, las variaciones de densidad sí lo sean: gases en movimiento a baja velocidad Medida de compresibilidad La velocidad del sonido es una propiedad termodinámica que define la velocidad a la que se propagan pequeñas perturbaciones (ondas) en el fluido en reposo El Número Mach es una medida de velocidad relativa que se define como el cociente entre la velocidad de un objeto y la velocidad del sonido en el medio en que se mueve dicho objeto Se considera que un flujo es incompresible si:

20 Aeronaves y Vehículos Espaciales 20 Ecuaciones de la Mecánica de Fluidos - I La resolución del problema fluidomecánico consiste en determinar las variables fluidas cómo función de la posición y del tiempo: Principio de la conservación de la masa: La masa de un volumen fluido no cambia con el tiempo. Principio de la conservación de la cantidad de movimiento: La variación en la unidad de tiempo de la cantidad de movimiento de un volumen fluido es igual a la resultante de las fuerzas exteriores que actúan sobre él (fuerzas másicas y de superficie). Principio de la conservación de la cantidad de energía: la variación en la unidad de tiempo de la energía total de un volumen fluido es igual al trabajo realizado en la unidad de tiempo por las fuerzas exteriores que actúan sobre el volumen fluido, más el calor recibido del exterior por el volumen fluido en la unidad de tiempo. Para cerrar el problema (tener el mismo número de incógnitas y ecuaciones), es necesario definir dos ecuaciones de estado: T=T(ρ,e) p=p(ρ,e) VARIABLES FLUIDAS -Masa - Cantidad de movimiento -Energía

21 Ecuaciones de la Mecánica de Fluidos - II Incógnitas: densidad velocidad energía interna presión temperatura Sistema de ecuaciones muy complejas, el cual se suelen introducir simplificaciones: Propiedades del fluido (densidad constante, viscosidad pequeña, etc.) Propiedades del fluido (bidimensional, estacionarios etc.) Simplificaciones en este curso: Movimiento incompresible (ρ constante) Viscosidad constante Despreciar los efectos disipativos (viscosos y de conducción) en la ecuación de la cantidad de movimiento Teoría de la capa límite Aeronaves y Vehículos Espaciales 21

22 Número de Reynolds El número de Reynolds es un número adimensional utilizado en mecánica de fluidos, para comparar la importancia relativa entre las fuerzas de inercia y las viscosidad de un determinado flujo. Fuerzas de inercia convectiva Fuerzas de viscosidad El número de Reynolds es utilizado en mecánica de fluidos, diseño de reactores y fenómenos de transporte para caracterizar el movimiento de un fluido. Re >> 1 fuerzas de inercia son dominantes, por lo que los efectos viscosos pueden ser despreciados. Problemas aerodinámicos (el aire ρ 1kg/m 3 y μ ~ 10 5 kg/(ms) Re ~ 10 7 >>1. Re << 1 fuerzas viscosas son dominantes, y las fuerzas de inercia convectiva pueden ser despreciadas. lubricación fluidomecánica y los aerosoles. Se trata de un parámetro fundamental en los ensayos en túnel de viento Aeronaves y Vehículos Espaciales 22

23 Aeronaves y Vehículos Espaciales 23 Ecuación de Bernoulli - I Simplificaciones en este curso: Movimiento incompresible (ρ constante) Viscosidad constante Despreciar los efectos disipativos (viscosos y de conducción) en la ecuación de la cantidad de movimiento Teoría de la capa límite Despreciar los efectos viscosos Se considera el flujo unidimensional en un conducto de sección variable A(x) conocida, flujo en el que las variables fluidas son uniformes en cada sección, dependiendo sólo de la variable longitudinal x. Las variables fluidas son ρ (conocida), p(x) y V (x). Reducción de la complejidad Ecuación de la continuidad flujo volumétrico Ecuación de la cantidad de movimiento

24 Aeronaves y Vehículos Espaciales 24 Ecuación de Bernoulli - II Presión estática Presión dinámica Presión de remanso

25 Ecuación de Bernoulli - III Una aplicación muy importante de la ecuación de Bernoulli es la medida de la velocidad del aire (en flujos incompresibles). Tubo de Pitot-estática mide la presión estática (p) y la presión de remanso (p 0 ) y mediante la ecuación de Bernoulli se calcula la velocidad del fluido. Sólo válido para flujos incompresibles. Presión estática Presión dinámica Presión de remanso Aeronaves y Vehículos Espaciales 25

26 Aeronaves y Vehículos Espaciales 26 Atmósfera Estándar Internacional - I Internation Standard Atmosphere (ISA) es la necesidad de establecer una atmósfera tipo en problemas de diseño y operaciones de aeronaves. Hipótesis: La atmósfera está en reposo respecto a tierra. El aire es un gas perfecto. La presión y temperatura al nivel del mar: p 0 = N/m 2 T 0 = K ρ 0 =1.225 kg/m 3 La aceleración debida a la fuerza de la gravedad es constante: g= m/s 2 La variación de la temperatura con la altura viene dada por observación experimental

27 Atmósfera Estándar Internacional - II El aire está en reposo, por lo que es posible formular el equilibrio estático de un elemento diferencial de aire sobre el que sólo actúan las fuerzas de volumen gravitatorias y las fuerzas superficiales de presión La temperatura solo depende de la altura T(z) La presión solo depende de la altura p(z) y se obtiene integrando la 3ª ecuación La variación de la densidad Aeronaves y Vehículos Espaciales 27

28 Aeronaves y Vehículos Espaciales 28 Atmósfera Estándar Internacional - III Desde el punto de vista aeronáutico, los dos tramos más importantes son la troposfera (hasta 11 km) y la baja estratosfera (hasta 20 km) Troposfera p0= N/m2 T0= K ρ0=1.225 kg/m3 Criterio de estabilidad: la densidad debe disminuir con la altura (de lo contrario se generarían fuerzas de flotación) Estratosfera Esta capa se caracteriza por una gran estabilidad atmosférica, el aire permanece estratificado, sin apenas mezcla de unas capas con otras (ésta se produce casi exclusivamente por difusión)

29 Bibliografía [And00] J.D. Anderson. Introduction to flight. McGraw Hill, [Riv07] Damián Rivas. Aeronaves y Vehículos Espaciales, Febrero de Aeronaves y Vehículos Espaciales 29

Introducción a la Ing. Aeroespacial

Introducción a la Ing. Aeroespacial Introducción a la Ing. Aeroespacial Tema 3 El Campo Fluido Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Técnica Superior de Ingeniería

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

TEMA 1 Técnicas básicas del análisis de los flujos

TEMA 1 Técnicas básicas del análisis de los flujos TEMA 1 Técnicas básicas del análisis de los flujos 1.1. Introducción: definición y magnitudes características FLUIDO: - no tienen forma definida - líquidos (volumen fijo) - gases (sin volumen definido,

Más detalles

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura:

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura: Preguntas de teoría 1. La Organización de Aviación Civil Internacional (OACI) se crea a) en 1944 a raíz de la firma del Convenio de la Haya. b) en 1944 a raíz de la firma del Convenio de Chicago. c) en

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

INTRODUCCIÓN. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

INTRODUCCIÓN. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA INTRODUCCIÓN Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA 1. DEFINICIÓN DE FLUIDO (1) 1. DEFINICIÓN DE FLUIDO (2)

Más detalles

Transferencia de Momentum

Transferencia de Momentum Transferencia de Momentum 1740-2 2014-02-06 3ª. Contenido Aspectos básicos de fluidos Esfuerzo cortante (Stress); Diferencia entre fluido y sólido; Definición de fluido; Ley de la viscosidad de Newton;

Más detalles

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional INDICE Capítulo 1. Mediciones 1 1.1. Las cantidades físicas, patrones y unidades 1 1.2. El sistema internacional de unidades 2 1.3. Patrón de tiempo 3 1.4. Patrón de masa 7 1.6. Precisión y cifras significativas

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento DINÁMICA 1. Fuerza 2. Ley de Hooke 3. Impulso. 4. Momento lineal o cantidad de movimiento. Teorema del impulso. Principio de conservación de la cantidad de movimiento. 5. Leyes del movimiento. Definición

Más detalles

Dinámica de fluidos: Fundamentos

Dinámica de fluidos: Fundamentos Capítulo 2 Dinámica de fluidos: Fundamentos Los fluidos, como genéricamente llamamos a los líquidos y los gases, nos envuelven formando parte esencial de nuestro medio ambiente. El agua y el aire son los

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

Flujo estacionario laminar

Flujo estacionario laminar HIDRODINÁMICA Hidrodinámica Es una disciplina parte de la física cuyo objetivo es explicar el comportamiento de los fluidos en movimiento, para lo cual se hace necesario definir algunos conceptos importantes:

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.5 Viscosidad Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

TEMA II.4. Propiedad de los Fluidos. Dr. Juan Pablo Torres-Papaqui

TEMA II.4. Propiedad de los Fluidos. Dr. Juan Pablo Torres-Papaqui TEMA II.4 Propiedad de los Fluidos Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

TRANSFERENCIA DE MOMENTUM. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9

TRANSFERENCIA DE MOMENTUM. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9 TRANSFERENCIA DE MOMENTUM MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9 Flujo de Fluidos Viscosos Para fluidos con bajo peso molecular, la propiedad física

Más detalles

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO Clasificación de los fluidos Un fluido es una sustancia o medio continuo que se deforma continuamente en el tiempo ante la aplicación de una solicitación o tensión

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

Calculo diferencial e integral, ecuaciones diferenciales y fisicoquímica I.

Calculo diferencial e integral, ecuaciones diferenciales y fisicoquímica I. 372 FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA CARRERA DE INGENIERÍA QUÍMICA ÁREA PROGRAMA DE ESTUDIO 1. Datos de identificación del programa. Nombre de la asignatura: Ciclo escolar al que pertenece: Cuarto

Más detalles

1. Fuerza. Leyes de Newton (Gianc )

1. Fuerza. Leyes de Newton (Gianc ) Tema 1: Mecánica 1. Fuerza. Leyes de Newton. 2. Movimiento sobreamortiguado. 3. Trabajo y energía. 4. Diagramas de energía. 5. Hidrostática: presión. 6. Principio de Arquímedes. 7. Hidrodinámica: ecuación

Más detalles

UNIDAD 2: Bases físicas de la Circulación y Respiración

UNIDAD 2: Bases físicas de la Circulación y Respiración PROGRAMA ANALÍTICO Y BIBLIOGRAFIA ESPECÍFICA DEL CURSO: FÍSICA E INTRODUCCIÓN A LA BIOFÍSICA NOTA: ESTE CURSO INTEGRADO SE DICTA ENTRE LA CATEDRA DE FISICA Y BIOFISICA (CBC) Y LA CÁTEDRA DE BIOFÍSICA DE

Más detalles

Conceptos Básicos Termodinámica

Conceptos Básicos Termodinámica Conceptos Básicos Termodinámica Los sistemas físicos que encontramos en la Naturaleza consisten en un agregado de un número muy grande de átomos. La materia está en uno de los tres estados: sólido, líquido

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN TRANSFERENCIA DE CALOR POR CONVECCIÓN Nos hemos concentrado en la transferencia de calor por conducción y hemos considerado la convección solo hasta el punto en que proporciona una posible condición de

Más detalles

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7 Resumen Cap. 7 7.1 Formas de energía: La primera ley de la termodinámica La energía total de un sistema consta de: Energía cinética: debida al movimiento traslacional del sistema como un todo en relación

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI INTRODUCCIÓN La dinámica de fluidos analiza los gases y líquidos en movimiento. Además, es una de las ramas más complejas de la mecánica. La conservación

Más detalles

Código: Titulación: INGENIERO INDUSTRIAL Curso: 2º

Código: Titulación: INGENIERO INDUSTRIAL Curso: 2º ASIGNATURA: MECÁNICA DE FLUIDOS GENERAL Código: 141212008 Titulación: INGENIERO INDUSTRIAL Curso: 2º Profesores responsables: ANTONIO VIEDMA ROBLES MANUEL ANTONIO BURGOS OLMOS Departamento: INGENIERÍA

Más detalles

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales BALANCE DE ENERGÍA Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales Los objetivos del balance de Energía son: Determinar la cantidad energía necesaria para

Más detalles

Introducción a la termodinámica

Introducción a la termodinámica Introducción a la termodinámica Prof. Jesús Hernández Trujillo Fac. Química, UNAM 31 de enero de 2017 Fisicoquímica La termodinámica es una rama de la Fisicoquímica Fisicoquímica: El estudio de los principios

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Transferencia de Calor Cap. 6. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 6. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 6 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Introducción a la convección la conducción: mecanismo de transferencia de calor a través de un sólido o fluido en reposo. la

Más detalles

TEMA 2 La materia y sus propiedades QUÉ ES LA MATERIA? ESTADOS DE LA MATERIA CAMBIOS DE ESTADO MODELO CINÉTICO-MOLECULAR

TEMA 2 La materia y sus propiedades QUÉ ES LA MATERIA? ESTADOS DE LA MATERIA CAMBIOS DE ESTADO MODELO CINÉTICO-MOLECULAR TEMA 2 La materia y sus propiedades QUÉ ES LA MATERIA? ESTADOS DE LA MATERIA CAMBIOS DE ESTADO MODELO CINÉTICO-MOLECULAR 1. QUÉ ES LA MATERIA? El universo que conocemos, puede definirse en términos de

Más detalles

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES 2.1 Transferencia de Calor La transferencia de calor es la ciencia que busca predecir la transferencia de energía que puede tener lugar entre dos

Más detalles

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA Tema 12 Gases Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA 2.1 2.1 Variables que determinan el estado de agregación Tipo de material o materia Temperatura Presión 2.2 Elementos que

Más detalles

D i v i s i ó n d e I n g e n i e r í a s C a m p u s I r a p u a t o S a l a m a n c a

D i v i s i ó n d e I n g e n i e r í a s C a m p u s I r a p u a t o S a l a m a n c a D i v i s i ó n d e I n g e n i e r í a s C a m p u s I r a p u a t o S a l a m a n c a PROGRAMA DEL CURSO I I L I 0 6 0 8 3 M E C Á N I C A D E F L U I D O S COMPETENCIA DE LA UNIDAD DE APRENDIZAJE Al

Más detalles

DINÁMICA DE LOS FLUIDOS

DINÁMICA DE LOS FLUIDOS DINÁMICA DE LOS FLUIDOS Principios fundamentales La dinámica de los fluidos es simple pero en Sedimentología hay que considerar el efecto que producen los sólidos en las propiedades de la fase fluida pura.

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA

PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA Unidades Programáticas 1. Magnitudes Físicas 2. Vectores 3. Cinemática Escalar 4. Dinámica 5. Mecánica de Fluidos 6. Termometría y Calorimetría. Desarrollo

Más detalles

PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.

PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2. PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.5 Perú. Permisos que vayan más allá de lo cubierto por

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO

UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO Mecánica de Fluidos I Examen 6 04 2013 La figura representa dos depósitos cilíndricos de radio H que contienen agua de

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS I

LABORATORIO DE OPERACIONES UNITARIAS I UNIVERSIDD DEL ZULI FCULTD DE INGENIERÍ ESCUEL DE INGENIERÍ QUÍMIC DEPRTMENTO DE INGENIERÍ QUÍMIC BÁSIC LORTORIO DE OPERCIONES UNITRIS I DIFUSION BINRI EN FSE GSEOS Profesora: Marianela Fernández Objetivo

Más detalles

TEMA 5: CINÉTICA HETEROGÉNEA. TRANSFERENCIA DE MATERIA CQA-5/1

TEMA 5: CINÉTICA HETEROGÉNEA. TRANSFERENCIA DE MATERIA CQA-5/1 TEMA 5: CINÉTICA HETEROGÉNEA. TRANSFERENCIA DE MATERIA CQA-5/1 CARACTERÍSTICAS DE LAS REACCIONES HETEROGÉNEAS! Se requiere más de una fase para que la reacción transcurra del modo que lo hace.! Reacción

Más detalles

Transferencia de Calor ING Roxsana Romero Enero 2013

Transferencia de Calor ING Roxsana Romero Enero 2013 Transferencia de Calor ING Roxsana Romero Enero 2013 ING Roxsana Romero 1 PLAN DE EVALUACIÓN Tema Tipo de Eval % Puntos Referencias 1.- Conducción unidimensional en estado estable Examen Escrito Taller

Más detalles

FENOMENOS DE TRANSPORTE

FENOMENOS DE TRANSPORTE Programa de: Hoja 1 de 6. UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE CIENCIAS EXACTAS F. Y N. REPÚBLICA ARGENTINA FENOMENOS DE TRANSPORTE Código: Carrera: Ingeniería Química Plan:2004 V05 Puntos: 4 Escuela:

Más detalles

XII. LAS LEYES DE LA DINÁMICA

XII. LAS LEYES DE LA DINÁMICA Índice 1. La masa y el momento lineal. 2. Las leyes de Newton 3. Conservación de momento lineal 4. Impulso y cantidad de movimiento 5. Relatividad y tercera ley 2 1 La masa y el momento lineal Es lo mismo

Más detalles

CAPITULO 4 FLUIDIZACIÓN AL VACÍO. La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta

CAPITULO 4 FLUIDIZACIÓN AL VACÍO. La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta CAPITULO 4 FLUIDIZACIÓN AL VACÍO 4.1 FLUIDIZACIÓN AL VACÍO La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta definición al tema de esta tesis se podría decir que se refiere

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

3. PROPIEDADES Y ESTADOS

3. PROPIEDADES Y ESTADOS 3. PROPIEDADES Y ESTADOS 3.1 LOS CONCEPTOS DE PROPIEDAD Y ESTADO La propiedad es cualquier característica o atributo que se puede evaluar cuantitativamente El volumen La masa La energía La temperatura

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

Un sistema de referencia son unos ejes de coordenadas localizados en un punto y cuya elección es totalmente arbitraria.

Un sistema de referencia son unos ejes de coordenadas localizados en un punto y cuya elección es totalmente arbitraria. 1. SISTEMA DE REFERENCIA Un sistema de referencia son unos ejes de coordenadas localizados en un punto y cuya elección es totalmente arbitraria. Posición es el lugar que ocupa un cuerpo respecto a un Sistema

Más detalles

Propiedades de la materia. Características de sólidos, líquidos y gases

Propiedades de la materia. Características de sólidos, líquidos y gases Propiedades de la materia Características de sólidos, líquidos y gases Fluidos Líquidos Ej: H 2 O Estados de la materia Gases Ej: O 2 Amorfos Ej: caucho Cristalinos Ej: sal, azúcar Sólidos Metálicos Enlace

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 017 SEMANA 11 : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe 1 OBJETIVO GENERAL Al término

Más detalles

Ecuaciones de Navier-Stokes. Fenómenos Turbulentos.

Ecuaciones de Navier-Stokes. Fenómenos Turbulentos. Capítulo 3 Ecuaciones de Navier-Stokes. Fenómenos Turbulentos. 3.1. Ecuaciones de Navier-Stokes. 3.1.1. ntroducción. Antes de obtener las ecuaciones fundamentales que gobiernan el comportamiento de los

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

TEMA II.1. Definición de los Fluidos. Dr. Juan Pablo Torres-Papaqui

TEMA II.1. Definición de los Fluidos. Dr. Juan Pablo Torres-Papaqui TEMA II.1 Definición de los Fluidos Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

MECÁNICA DE FLUIDOS CURSO (1) TEMA 1 CONCEPTOS INTRODUCTORIOS

MECÁNICA DE FLUIDOS CURSO (1) TEMA 1 CONCEPTOS INTRODUCTORIOS MECÁNICA DE FLUIDOS CURSO 2007-2008 (1) TEMA 1 CONCEPTOS INTRODUCTORIOS MECÁNICA DE FLUIDOS CURSO 2007-2008 (2) INDICE TEMA 1 1 CONCEPTOS INTRODUCTORIOS 1.1 Prólogo 1.2 La Hipótesis del Continuo 1.2.1

Más detalles

Introducción. 1.1 Sistema de Unidades

Introducción. 1.1 Sistema de Unidades 1 Capítulo 1 Introducción La Mecánica de Fluidos es la disciplina que estudia el comportamiento estático y dinámico de un fluido. Entenderemos como fluido cualquier substancia (líquida o gaseosa) que se

Más detalles

Cuestionario sobre las Leyes de Newton

Cuestionario sobre las Leyes de Newton Cuestionario sobre las Leyes de Newton 1. Enuncie las leyes de Newton y represente gráficamente o por medio de una ilustración Primera Ley: La primera ley de Newton, conocida también como Ley de inercia,

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles

Cuarta Lección. Principios de la física aplicados al vuelo.

Cuarta Lección. Principios de la física aplicados al vuelo. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. 2. Cinemática de fluidos.

DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. 2. Cinemática de fluidos. DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. Concepto de fluido. Fluido ideal. Fluidos reales. Viscosidad Tensión superficial. Capilaridad Estática. Presión en un punto. Ecuación general de la estática.

Más detalles

Hidráulica básica y dinámica de fluidos aplicados a la formación y transporte de gotas

Hidráulica básica y dinámica de fluidos aplicados a la formación y transporte de gotas Hidráulica básica y dinámica de fluidos aplicados a la formación y transporte de gotas Jornadas de actualización en tecnologías de aplicación en cultivos extensivos Contenido 1. Formación de gotas 2. Transporte

Más detalles

Programa de Asignatura > 1/2014> DISEÑO

Programa de Asignatura > 1/2014> DISEÑO Programa de Asignatura > 1/2014> DISEÑO Nombre FISICA GENERAL CÓDIGO DIH-207-1 AREA FORMACIÓN BÁSICA CARACTER OBLIGATORIO PROFESOR FERNANDO PIZARRO REGIMEN DIURNO AYUDANTE HORAS Doc. Directa 3 CREDITOS

Más detalles

PÉRDIDAS DE CARGA FRICCIONALES

PÉRDIDAS DE CARGA FRICCIONALES PÉRDIDAS DE CARGA FRICCIONALES La pérdida de carga friccional que tiene lugar en una conducción representa la pérdida de energía de un flujo hidráulico a lo largo de la misma por efecto del rozamiento.

Más detalles

Aproximación a la Mecánica de Fluidos (La conservación de la energía en los fluidos: hidrodinámica, hidrostática y termodinámica)

Aproximación a la Mecánica de Fluidos (La conservación de la energía en los fluidos: hidrodinámica, hidrostática y termodinámica) Aproximación a la Mecánica de Fluidos (La conservación de la energía en los fluidos: hidrodinámica, hidrostática y termodinámica) Conceptos e hipótesis básicas Una de las grandes disciplinas clásicas olvidadas

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Química General Departamento de Química Cap. 3: Gases Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Propiedades de los Gases: Presión del Gas Presión del gas Fuerza (N) P (Pa)

Más detalles

Mecánica del Vuelo del Avión

Mecánica del Vuelo del Avión Mecánica del Vuelo del Avión Parte II: Estabilidad y Control Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros

Más detalles

Mecánica del Vuelo del Avión

Mecánica del Vuelo del Avión Mecánica del Vuelo del Avión Parte II: Estabilidad y Control Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingeniería

Más detalles

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS Manual para el diseño de una red hidráulica de climatización 3 A ntes de comenzar a estudiar cualquier problema de flujo, es necesario conocer algunas características y propiedades físicas de los fluidos,

Más detalles

DE SÓLIDOS I UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA

DE SÓLIDOS I UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS I PROFESOR: ING. JORGE A. MONTAÑO PISFIL I. MECÁNICA

Más detalles

Tema 4: Dinámica del punto I

Tema 4: Dinámica del punto I Tema 4: Dinámica del punto I FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Leyes de Newton Fuerzas activas y de reacción

Más detalles

ECUACION DEL MOVIMIENTO EN LA ATMOSFERA

ECUACION DEL MOVIMIENTO EN LA ATMOSFERA BOLILLA 7 Atmósfera en Movimiento ECUACION DEL MOVIMIENTO EN LA ATMOSFERA Las parcelas de aire se mueven en la horizontal y en la vertical, con rapidez variable. El viento se asocia con la componente horizontal.

Más detalles

Mecánica de fluidos. Edinson Murillo Mosquera

Mecánica de fluidos. Edinson Murillo Mosquera Mecánica de fluidos Edinson Murillo Mosquera LA NATURALEZA DE LOS FLUIDOS Y EL ESTUDIO DE SU MECÁNICA Definición de Fluido: Sustancia que se deforma constantemente cuando se somete a un esfuerzo cortante

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

Objetivo: Aplicar la ecuación Hagen- Poiseuille en el viscosímetro de de OSTWALD-FENSKE para líquidos transparentes, el flujo es por gravedad.

Objetivo: Aplicar la ecuación Hagen- Poiseuille en el viscosímetro de de OSTWALD-FENSKE para líquidos transparentes, el flujo es por gravedad. Objetivo: Aplicar la ecuación Hagen- Poiseuille en el viscosímetro de de OSTWALD-FENSKE para líquidos transparentes, el flujo es por gravedad.. La Ecuación de Hagen- Poiseuille describe la relación entre

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL "RAFAEL MARÍA BARALT" PROGRAMA INGENIERÍA Y TECNOLOGÍA

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL RAFAEL MARÍA BARALT PROGRAMA INGENIERÍA Y TECNOLOGÍA Emisión: II-1997 Revisión: 23/06/2009 PRELACIONES Horas Teóricas 3 MENCIÓN MECÁNICA Modificación: Código I-2011 42603 Revisado por: I-2011 Horas Prácticas 1 DINÁMICA DE LOS FLUIDOS Horas Laboratorio 1

Más detalles

TEMA 5: INTRODUCCIÓN A LOS REACTORES QUÍMICOS. IngQui-5 [1]

TEMA 5: INTRODUCCIÓN A LOS REACTORES QUÍMICOS. IngQui-5 [1] TEMA 5: INTRODUCCIÓN A LOS REACTORES QUÍMICOS IngQui-5 [1] OBJETIVOS! Definir la etapa de reacción química como base del diseño de reactores, destacando la importancia de la cinética química, tanto en

Más detalles

RESUMEN DE FÍSICA TEMA 3: DINÁMICA. Definiciones: Una interacción entre 2 cuerpos. Una acción sobre un cuerpo hace que éste cambie su velocidad.

RESUMEN DE FÍSICA TEMA 3: DINÁMICA. Definiciones: Una interacción entre 2 cuerpos. Una acción sobre un cuerpo hace que éste cambie su velocidad. TEMA 3: DINÁMICA FUERZA: Definiciones: Una interacción entre 2 cuerpos. Una acción sobre un cuerpo hace que éste cambie su velocidad. Unidades: Newton (N). Nota: Hay otra unidad de fuerza llamada kilopondio=9.8n

Más detalles

Tema 1. Mecánica de sólidos y fluidos. John Stanley

Tema 1. Mecánica de sólidos y fluidos. John Stanley Tema 1 Mecánica de sólidos y fluidos John Stanley Tema 1: Mecánica de sólidos y fluidos 1. Sólidos, líquidos y gases: densidad 2. Elasticidad en sólidos: tensión y deformación Elasticidad en fluidos: presión

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

FÍSICA Y QUÍMICA 4º ESO. MCU. Características. Magnitudes angulares. Ley del movimiento.

FÍSICA Y QUÍMICA 4º ESO. MCU. Características. Magnitudes angulares. Ley del movimiento. FÍSICA Y QUÍMICA 4º ESO Unidad 1. El movimiento Sistema de referencia. o Carácter relativo del movimiento. Conceptos básicos para describir el movimiento. o Trayectoria, posición, desplazamiento. o Clasificación

Más detalles

TEMA 7: CINÉTICA HETEROGÉNEA FLUIDO - SÓLIDO CQA-7/1

TEMA 7: CINÉTICA HETEROGÉNEA FLUIDO - SÓLIDO CQA-7/1 TEMA 7: CINÉTICA HETEROGÉNEA FLUIDO - SÓLIDO CQA-7/1 PLANTEAMIENTO DEL MODELO CINÉTICO Reacciones heterogéneas fluido-sólido: numerosas y de gran importancia industrial: Se ponen en contacto un gas o un

Más detalles

Quinta Lección. Mirando el vuelo de las aves a la luz de la física..

Quinta Lección. Mirando el vuelo de las aves a la luz de la física.. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Quinta Lección. Mirando el vuelo de las aves a la luz

Más detalles

PLAN GLOBAL FÍSICA BÁSICA II

PLAN GLOBAL FÍSICA BÁSICA II UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL FÍSICA BÁSICA II I. IDENTIFICACIÓN. ASIGNATURA: Física Básica II SIGLA: FIS 102 COD_SIS: 2006019 NIVEL(AÑO/SEMESTRE): Segundo

Más detalles

PROGRAMA ANALÍTICO. FISICA BASICA II - Geología Sigla: FIS 102 Dr. Marcelo Ramírez Ávila Semestre: I/2016

PROGRAMA ANALÍTICO. FISICA BASICA II - Geología Sigla: FIS 102 Dr. Marcelo Ramírez Ávila Semestre: I/2016 PROGRAMA ANALÍTICO Asignatura: FISICA BASICA II - Geología Sigla: FIS 102 Docente: Dr. Marcelo Ramírez Ávila Semestre: I/2016 Área Curricular: Mecánica Modalidad: Semestral Nivel semestral: Primer semestre,

Más detalles

Nombre de la materia Introducción al Estudio de los Fluidos Departamento Ingenierías. Academia

Nombre de la materia Introducción al Estudio de los Fluidos Departamento Ingenierías. Academia Nombre de la materia Introducción al Estudio de los Fluidos Departamento Ingenierías Energía Academia Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos 40 20 60 6 Nivel Carrera Tipo Prerrequisitos

Más detalles

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la

Más detalles

Estimación de la viscosidad de un líquido

Estimación de la viscosidad de un líquido Estimación de la viscosidad de un líquido Objetivos de la práctica! Estudiar la variación de la altura de un líquido viscoso con el tiempo en el interior de un tanque que descarga a través de un tubo.!

Más detalles