Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1"

Transcripción

1 Análisis financiero

2 ANÁLISIS FINANCIERO 1 Lectura No. 7 Nombre: Métodos de Análisis Contextualización Los diferentes métodos de análisis que se pueden utilizar para evaluar y, en su defecto, emitir un diagnostico de una empresa cambian gradualmente dependiendo del grado de análisis y de las variables que se integren a los modelos. En el caso de los métodos estadísticos es importante enfatizar que al trabajar con valores muestrales se obtienen resultados que representan aproximaciones de la realidad, y no son valores exactos.

3 ANÁLISIS FINANCIERO 2 Introducción al Tema Es importante analizar los valores que integran un modelo de regresión lineal y analizara su aplicación en el análisis financiero. Los modelos de regresión son métodos estadísticos que modelan la relación entre una variable dependiente o endógena (Y), que es considerada nuestra variable en la investigación, y una serie de variables independientes, explicativas o exógenas (Xi), que son elementos manipulables que permiten observar como incide sobre la expresión de la variable dependiente. Dentro de estos modelos se adiciona un término aleatorio (ε), que se asocia con el error que se ocasiona por no considerar en su totalidad todos los factores que pueden influir directamente en la variable dependiente de la regresión.

4 ANÁLISIS FINANCIERO 3 Explicación II.2 Modelos estadísticos II.2.1 Modelos de regresión Un modelo de regresión lineal básico se ejemplifica mediante la siguiente ecuación explicita en Y: Y = β0 + β1 X1 + β2 X2 + + βn Xn + ε Donde la β0 es la intersección o termino constante, es decir, corta al eje explicativo, mostrando el valor exacto de la variable explicita con un valor de Xi de cero. El análisis de regresión es la forma de encontrar si dos o más variables están relacionadas entre sí, considerando que vamos a obtener resultados estadísticos para Y, con específicos para X. Por lo tanto, podemos decir que la variable dependiente es estocástica o aleatoria y la variable independiente es no estocástica. Ejemplifiquemos este modelo mediante la siguiente ecuación: Y = X Ahora, que pasaría con el valor de Y, si X cambiara a 12.5 unidades. Suponiendo que el primer valor de X fuera de 10 unidades. Caso 1 Y = (10) Y = Caso 2 Y = (22.5) Y =

5 ANÁLISIS FINANCIERO 4 Se puede concluir que al incrementar X en 12.5, la variable dependiente disminuye, es decir, existe una relación inversa entre ambas variables. El análisis de regresión lineal es útil para encontrar la ecuación que mejor se ajusta a una dispersión de datos. Es importante resaltar que la dispersión se presenta porque existen más factores que influyen en el modelo especificado y además, hay que considerar que siempre existirá dispersión ya que son rectas de regresión muestral y no poblacionales. El resultado de la regresión no es matemáticamente exacto o puntual debido a que son resultados estadísticos o aproximaciones a la realidad; donde la recta puede mostrarnos un valor y en la realidad pudo haber sido otro. Existe dentro del modelo de regresión el Error o Perturbación (ε) que lo podemos definir como la distancia que existe entre los datos de la regresión lineal y el dato observado en la realidad.

6 ANÁLISIS FINANCIERO 5 La gráfica nos muestra un ejemplo de una recta de regresión muestral que explica mejor los datos, ajustándose a los que presentan menores diferencias o errores. Para poder obtener las ecuaciones de regresión se pueden emplear diversas metodologías: 1) Mínimos cuadrados ordinarios (MCO); 2) Máxima Verosimilitud (MV); o bien, 3) Método de los momentos. La metodología mas empleada es la de Mínimos Cuadrados Ordinarios (MCO), la cual consiste en encontrar las menores distancias entre la recta y los puntos.1 Explicado de otra forma, busca los menores errores o diferencias. Los estimadores de MCO están expresados en términos de las variables independientes y dependientes, siendo estimadores puntuales. Al final, los resultados obtenidos nos van a mostrar que tanto los indicadores muestrales se parecen a la poblacional y, por otro lado, se debe especificar correctamente el modelo, con la finalidad de disminuir el sesgo de especificación ocasionado por la causalidad..

7 ANÁLISIS FINANCIERO 6 Conclusión Los modelos estadísticos son expresiones simbólicas representadas en forma de igualdades a manera de diseño experimental y con supuestos claramente especificados que permiten identificar las restricciones que existen entre las variables, en el caso concreto de la regresión nos indica los diferentes factores que modifican a la variable de respuesta. La regresión en sí misma, no define causalidad, es decir, no te dice quien es causa y quien efecto, por eso es importante desarrollar supuestos previos que sustenten el modelo de la regresión. Es de igual manera importante aclarar que no es lo mismo el termino de correlación y regresión, ya que el primero nos dice que tan fuerte es la relación entre las variables, y el segundo si existe alguna relación entre ellas.

8 ANÁLISIS FINANCIERO 7 Para aprender más Elementos que intervienen en el modelo de regresión Para poder comprender todos los elementos que intervienen en la especificación de un modelo de regresión y al mismo tiempo vislumbrar la utilidad de este en el análisis financiero de una empresa, supongamos la resolución del siguiente caso. La empresa El Cisne presenta los siguientes datos históricos de gastos de publicidad y ventas Lo que realmente quiere conocer la empresa es la relación que existe entre ambas variables y, al mismo tiempo, encontrar el modelo que explica dicha relación. Existen actualmente distintos paquetes informaticos que permiten obtener estos valores como el Statistical Package for the Social Sciences (spss), el cual tiene la capacidad de trabajar con bases de datos grandes. También se puede utilizar Excel para obtener dichos datos, los pasos a seguir son:

9 ANÁLISIS FINANCIERO 8 Ingresar la tabla de información en una hoja de Excel nueva: Posteriormente se debe habilitar el comando de Análisis de datos, para esto se deben realizar los siguientes pasos: 1. Hacer clic en el botón de Microsoft Office y, a continuación, hacer clic en Opciones de Excel. 2. Hacer clic en Complementos y, en el cuadro Administrar, seleccionar Complementos de Excel. 3. Hacer clic en Ir. 4. En el cuadro Complementos disponibles, activar la casilla de verificación Herramientas para análisis y, a continuación, hacer clic en Aceptar. Una vez habilitado el comando, dar clic sobre la opción de regresión:

10 ANÁLISIS FINANCIERO 9 Se habilitara la pantalla para que se especifiquen los valores de la variable explicativa, que en este caso son los Gastos de Publicidad y de la variable dependiente, que serian las Ventas. De igual forma, se tienen que habilitar todas las casillas que se planean analizar. En este caso son: rótulos, nivel de confianza, residuos y curva de regresión ajustada.

11 ANÁLISIS FINANCIERO 10 Una vez realizado este paso, se anexarán las tablas con la información que se especifico en la función de regresión. Con base en esta información se podrá construir la ecuación de regresión para este modelo:

12 ANÁLISIS FINANCIERO 11 Y = β0 + β1 X1 Y = -83, , X La relación entre ambas variables es directa, por lo tanto, si los Gastos de Publicidad aumentan en una unidad, las ventas aumentaran en 9, Una vez que se cuenta con la ecuación de la regresión, se pueden realizar estimaciones suponiendo diversos escenarios, por ejemplo, que pasaría si la empresa decidiera gastar en publicidad el próximo ano 65 (millones): Y = -83, , (65) Y = 531, La empresa estaría esperando obtener por el gasto en publicidad unas ventas de 531, Un dato relevante de analizar es el R2, que es el coeficiente de determinación, el cual nos indica el porcentaje de variación de la dependiente que es explicado por la independiente. En este caso el 98,10% de variación de las ventas son explicados por las variaciones de los Gastos de Publicidad, para el modelo especificado. Se puede sugerir que siempre que R2 sea igual o mayor a 0,8 es aceptable.

13 ANÁLISIS FINANCIERO 12 Actividad de Aprendizaje Instrucciones: Con la intención de reforzar lo aprendido en la sesión, realiza una actividad en la cual a través de un resumen extraigas el tema de esta que es el modelo de regresión. Puedes realizarlo en cualquier programa, al final tendrás que guardarlo como PDF con la finalidad de que no existan modificaciones y así subirlo a la plataforma de la asignatura.

14 ANÁLISIS FINANCIERO 13 Referencias Exeberria, J. (1999). Regresión múltiple. Madrid: La Muralla. Gujarati, D. (2003). Econometría. México: McGraw-Hill.

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo

Más detalles

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal Estadística Inferencial Sesión No. 9 Regresión y correlación lineal Contextualización En la administración, las decisiones suelen basarse en la relación entre dos o más variables. En esta sesión se estudia

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

GRADO : ADE ASIGNATURA: ECONOMETRÍA I. Curso: 2 Cuatrimestre: 2 Asignaturas que se recomienda tener superadas: Estadística I y II

GRADO : ADE ASIGNATURA: ECONOMETRÍA I. Curso: 2 Cuatrimestre: 2 Asignaturas que se recomienda tener superadas: Estadística I y II FICHA DESCRIPTIVA DE LA ASIGNATURA GUIA DOCENTE Curso Académico 2012/2013 GRADO : ADE ASIGNATURA: ECONOMETRÍA I Módulo Materia Ampliaciones de Métodos Cuantitativos Econometría Créditos 6 Ubicación Carácter

Más detalles

Lección 3. Análisis conjunto de dos variables

Lección 3. Análisis conjunto de dos variables Lección 3. Análisis conjunto de dos variables Estadística Descriptiva Parcialmente financiado a través del PIE13-04 (UMA) GARCÍA TEMA 3. ANÁLII CONJUNTO DE DO VARIABLE 3.1 COVARIANZA COEFICIENTE DE CORRELACIÓN

Más detalles

La econometría : una mirada de pájaro

La econometría : una mirada de pájaro La econometría : una mirada de pájaro Contenido Objetivo Definición de Econometría Modelos determinista y estocástico Metodología de la econometría Propiedades de un modelo econométrico Supuestos de un

Más detalles

Modelos linealizables.

Modelos linealizables. Modelos linealizables. 1.- Tras 10 años de funcionamiento, una empresa del sector de las telecomunicaciones, quiere estudiar el beneficio obtenido en dicho periodo en función al número de clientes que

Más detalles

(3620) ECONOMETRÍA (3620)

(3620) ECONOMETRÍA (3620) Programa de la asignatura Curso: 2013 / 2014 (3620) ECONOMETRÍA (3620) PROFESORADO Profesor/es: MARIA ISABEL LANDALUCE CALVO - correo-e: iland@ubu.es FICHA TÉCNICA Titulación: LICENCIATURA EN ADMINISTRACIÓN

Más detalles

Nivel Intermedio. A comprender de forma activa conceptos fundamentales de estadística. Crear bases de datos estadísticos.

Nivel Intermedio. A comprender de forma activa conceptos fundamentales de estadística. Crear bases de datos estadísticos. Análisis de datos mediante el SPSS A comprender de forma activa conceptos fundamentales de estadística. Crear bases de datos estadísticos. Procesar eficientemente información estadística. Analizar con

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.

Más detalles

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez.

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez. MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I Profesor: Noé Becerra Rodríguez Objetivo general: Introducir los aspectos fundamentales del proceso de construcción

Más detalles

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16 Regresión Lineal Rodrigo A. Alfaro 2009 Rodrigo A. Alfaro (BCCh) Regresión Lineal 2009 1 / 16 Contenidos 1 Regresiones Lineales Regresión Clásica Paquetes estadísticos 2 Estadísticos de Ajuste Global 3

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

Syllabus Asignatura : Estadística Aplicada al Marketing GRUPOS: A, B y C Programa en el que se imparte: Grado Oficial de Marketing

Syllabus Asignatura : Estadística Aplicada al Marketing GRUPOS: A, B y C Programa en el que se imparte: Grado Oficial de Marketing Syllabus Asignatura : Estadística Aplicada al Marketing GRUPOS: A, B y C Programa en el que se imparte: Grado Oficial de Marketing Curso 2012/2013 Profesor/es Gracia Serrano y Mariano Méndez Periodo de

Más detalles

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas GUIA DOCENTE Curso Académico 2012-2013 1. ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1.1. Datos de la asignatura Tipo de estudios Licenciatura Titulación Administración y Dirección de Empresas Nombre

Más detalles

Estimación de modelos multiecuacionales mediante el entorno de programación R

Estimación de modelos multiecuacionales mediante el entorno de programación R Estimación de modelos multiecuacionales mediante el entorno de programación R 1. Resumen En el presente documento vamos a abordar la estimación de modelos de ecuaciones simultáneas mediante el entorno

Más detalles

ESTADÍSTICA. Materia Básica Estadística. Formación Básica. Introducción a la Odontología 1º 1º 6

ESTADÍSTICA. Materia Básica Estadística. Formación Básica. Introducción a la Odontología 1º 1º 6 GUIA DOCENTE DE LA ASIGNATURA ESTADÍSTICA MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO Introducción a la Odontología Materia Básica Estadística 1º 1º 6 Formación Básica PROFESOR(ES) DIRECCIÓN COMPLETA DE

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal.

Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal. Excel: Regresión Lineal Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal. Como hacer la gráfica. Ejemplo Los datos de la tabla adjunta, x e y exacto, cumplen

Más detalles

Técnicas de planeación y control

Técnicas de planeación y control Técnicas de planeación y control TÉCNICAS DE PLANEACIÓN Y CONTROL 1 Sesión No. 5 Nombre: La planeación de utilidades y la relación costovolumen-utilidad Contextualización La semana anterior revisamos el

Más detalles

Auditoría administrativa

Auditoría administrativa Auditoría administrativa 1 Lectura No. 10 Nombre: Cédulas y Gráficas Contextualización Las cédulas y gráficas son herramientas que ayudan a la organización de la información recopilada, nos permiten ordenar

Más detalles

3 CAPÍTULO III TRABAJO EMPÍRICO. Para toda evaluación cuantitativa generalmente se tiene uno que basar en

3 CAPÍTULO III TRABAJO EMPÍRICO. Para toda evaluación cuantitativa generalmente se tiene uno que basar en 3 CAPÍTULO III TRABAJO EMPÍRICO. 3.1 Modelo Econométrico Para toda evaluación cuantitativa generalmente se tiene uno que basar en experiencias anteriores (Allard, 1980, p. 1). Las experiencias anteriores

Más detalles

Ejemplo 6.4. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejemplo 6.4. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejemplo 6.4 Predicción en el Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejemplo 6.4. Predicción

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

USO HERRAMIENTAS EXCEL PARA LA PREDICCION

USO HERRAMIENTAS EXCEL PARA LA PREDICCION USO HERRAMIENTAS EXCEL PARA LA PREDICCION Nassir Sapag Chain MÉTODO DE REGRESIÓN LINEAL SIMPLE El método de Regresión Lineal (o Mínimos cuadrados) busca determinar una recta, o más bien la ecuación de

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Econometría Aplicada

Econometría Aplicada Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas

Más detalles

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA GUÍA DOCENTE 2012-2013 ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1. Denominación de la asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA Titulación GRADO EN FINANZAS Y CONTABILIDAD Código 5592

Más detalles

5. Regresión Lineal Múltiple

5. Regresión Lineal Múltiple 1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Evaluación de Proyectos de Inversión

Evaluación de Proyectos de Inversión Evaluación de Proyectos de Inversión Tema No. 2 Sesión 4: Métodos de evaluación en proyectos de inversión. Parte II. 2017 2016 Objetivo de la sesión: Al finalizar la sesión, el alumno comprobará el valor

Más detalles

CORRELACION Y REGRESION

CORRELACION Y REGRESION CORRELACION Y REGRESION En el siguiente apartado se presenta como calcular diferentes índices de correlación, así como la forma de modelar relaciones lineales mediante los procedimientos de regresión simple

Más detalles

Elaboró: Luis Casas Vilchis

Elaboró: Luis Casas Vilchis Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con

Más detalles

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

Dr. Fidel Ulin Montejo M.C. Robert Jeffrey Flowers Jarvis Fecha de elaboración: Agosto 2004 Fecha de última actualización: Julio 2010

Dr. Fidel Ulin Montejo M.C. Robert Jeffrey Flowers Jarvis Fecha de elaboración: Agosto 2004 Fecha de última actualización: Julio 2010 PROGRAMA DE ESTUDIO Análisis de Regresión Programa Educativo: Licenciatura en Actuaría Área de Formación : Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Total de Horas: 5 Total de créditos:

Más detalles

Tema VII. La predicción de variables

Tema VII. La predicción de variables 7.1. La ecuación lineal de regresión: - Variable dependiente e independiente (fijas ó aleatorias):. Fijas (modelo I de regresión). Aleatorias (modelo II; más complejo) - Objetivo predictivo (básico en

Más detalles

El Modelo de Regresión Lineal

El Modelo de Regresión Lineal ECONOMETRÍA I El Modelo de Regresión Lineal Dante A. Urbina CONTENIDOS 1. Regresión Lineal Simple 2. Regresión Lineal Múltiple 3. Multicolinealidad 4. Heterocedasticidad 5. Autocorrelación 6. Variables

Más detalles

EJEMPLOS DE PRONÓSTICOS

EJEMPLOS DE PRONÓSTICOS PRONÓSTICO ES UNA TÉCNICA QUE PERMITE PREDECIR EL FUTURO, BASÁNDOSE EN: ACONTECIMIENTOS PASADOS. INFORMACIÓN ESTADÍSTICA RECABADA SOBRE EXPERIENCIAS SIMILARES. ESTIMACIONES BASADAS EN ESTUDIOS DE MERCADO

Más detalles

PROGRAMA DE ASIGNATURA Prosecución de estudios en Economía Segundo semestre de 2016

PROGRAMA DE ASIGNATURA Prosecución de estudios en Economía Segundo semestre de 2016 PROGRAMA DE ASIGNATURA Prosecución de estudios en Economía Segundo semestre de 2016 ECONOMETRIA I Asignatura Carrera Ingeniería Comercial Código 351472 Créditos 7 SCT Tbjo. Directo: 6 hrs. pedag. Tbjo.

Más detalles

FACTORES INFLUYENTES EN EL EMPLEO. Econometría II GECO Marina Calvillo Fuentes Rocío Crespo Roldán

FACTORES INFLUYENTES EN EL EMPLEO. Econometría II GECO Marina Calvillo Fuentes Rocío Crespo Roldán FACTORES INFLUYENTES EN EL EMPLEO Econometría II GECO Marina Calvillo Fuentes Rocío Crespo Roldán 2 ÍNDICE: 1. INTRODUCCIÓN 2. PLANTEAMIENTO DEL PROBLEMA 3. GRÁFICOS DE LOS DATOS 4. ESTIMACIÓN DEL MODELO

Más detalles

TEMA 5: Especificación y Predicción en el MRL

TEMA 5: Especificación y Predicción en el MRL EMA 5: Especificación y Predicción en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) ema 5: Especificación y Predicción Curso

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Tema 6. Multicolinealidad. Contenido Multicolinealidad perfecta Multicolinealidad de grado alto

Tema 6. Multicolinealidad. Contenido Multicolinealidad perfecta Multicolinealidad de grado alto Tema 6 Multicolinealidad Contenido 6.1. Multicolinealidad perfecta...................... 108 6.. Multicolinealidad de grado alto................... 110 108 Tema 6. Multicolinealidad A la hora de estimar

Más detalles

SOLVER PARA WINDOWS. 1 Es necesario instalarlo previamente desde el paquete de Microsoft Office.

SOLVER PARA WINDOWS. 1 Es necesario instalarlo previamente desde el paquete de Microsoft Office. SOLVER PARA WINDOWS El comando SOLVER del EXCEL es una poderosa herramienta de optimización, permitiendo obtener el valor óptimo para una celda, denominada celda objetivo, que podrá ser un máximo, un mínimo

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Lucila Finkel Temario

Lucila Finkel Temario Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía ECONOMETRÍA I Tema 2: El Modelo de Regresión Lineal Simple Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 42 Modelo de Regresión

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 3.1 Colinealidad Exacta 3.2 Los efectos de la multicolinealidad Del

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Lectura No. 10. Contextualización. Nombre: Análisis de la empresa ANÁLISIS FINANCIERO 1

Lectura No. 10. Contextualización. Nombre: Análisis de la empresa ANÁLISIS FINANCIERO 1 Análisis financiero ANÁLISIS FINANCIERO 1 Lectura No. 10 Nombre: Análisis de la empresa Contextualización La rentabilidad es el término que utilizamos para medir las ganancias, las utilidades de una actividad

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

RELACION, ELONGACION-PESO DE UN RESORTE

RELACION, ELONGACION-PESO DE UN RESORTE RELACION, ELONGACION-PESO DE UN RESORTE Tatiana Ortiz 1, Natalie Díaz 2, Silvia Alvarado 3, Juan Felipe Mateus 4 Estudiante Microbiología Industrial- lady.ortiz@javeriana.edu.co Estudiante Biología natalie.diaz@javeriana.edu.co

Más detalles

Comportamiento organizacional

Comportamiento organizacional Comportamiento organizacional COMPORTAMIENTO ORGANIZACIONAL 1 Sesión No. 1 Nombre: Introducción al comportamiento organizacional Contextualización Todos somos parte de una sociedad organizada, desde que

Más detalles

ESTADÍSTICA II Código: 8314

ESTADÍSTICA II Código: 8314 ESTADÍSTICA II Código: 8314 Departamento : Metodología Especialidad : Ciclo Básico Prelación : 8219 Tipo de Asignatura : Obligatoria Teórica y Práctica Número de Créditos : 3 Número de horas semanales

Más detalles

Metodología de la Investigación: Validez y Confiabilidad. Prof. Reinaldo Mayol Arnao

Metodología de la Investigación: Validez y Confiabilidad. Prof. Reinaldo Mayol Arnao Metodología de la Investigación: Validez y Confiabilidad Prof. Reinaldo Mayol Arnao Validez en varios momentos En esta presentación hablaremos sobre la medición de la validez en dos pasos críticos de la

Más detalles

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA LICENCIATURA: ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS CURSO: CUARTO

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Al hacer clic en el vínculo al simulador, en tu navegador se abre la hoja del programa, con una interface como la de la figura siguiente:

Al hacer clic en el vínculo al simulador, en tu navegador se abre la hoja del programa, con una interface como la de la figura siguiente: Taller de Modelado de Cinética Enzimática Emplearas el programa de simulación de cinética enzimática que se encuentra en el sitio: (htpp://www.kscience.co.uk/-animations/model.swf) para realiza los ejercicios

Más detalles

peso edad grasas Regresión lineal simple Los datos

peso edad grasas Regresión lineal simple Los datos Regresión lineal simple Los datos Los datos del fichero EdadPesoGrasas.txt corresponden a tres variables medidas en 25 individuos: edad, peso y cantidad de grasas en sangre. Para leer el fichero de datos

Más detalles

Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados.

Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados. Bases de Estadística Licenciatura en Ciencias Ambientales Curso 2oo3/2oo4 Introducción al SPSS/PC Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados.

Más detalles

Ejercicio 5. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejercicio 5. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejercicio 5 Estimación del Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejercicio 5 Estimación

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

Formulación y Evaluación de Proyectos de Inversión

Formulación y Evaluación de Proyectos de Inversión Formulación y Evaluación de Proyectos de Inversión FORMULACIÓN Y EVALUACIÓN DE PROYECTOS DE INVERSIÓN 1 Sesión No. 11 Nombre: Evaluación de proyecto. Primera parte. Contextualización La evaluación económica

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

Obligatoria Optativa Extracurricular Curso Seminario Taller. Clave seriación 45 Laboratorio. Horas prácticas de campo

Obligatoria Optativa Extracurricular Curso Seminario Taller. Clave seriación 45 Laboratorio. Horas prácticas de campo Carta descriptiva Datos de identificación Programa Nombre de la asignatura Tipo de Asignatura Maestría en Economía Aplicada Econometría I Ciclo Primer semestre Obligatoria Optativa Extracurricular Curso

Más detalles

Julio Deride Silva. 4 de junio de 2010

Julio Deride Silva. 4 de junio de 2010 Curvas ROC y Regresión Lineal Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 4 de junio de 2010 Tabla de Contenidos Curvas ROC y Regresión Lineal

Más detalles

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Brindar al alumno los conocimientos de los métodos econométricos fundamentales y de los conceptos estadísticos que éstos requieren,

Más detalles

Formulación y Evaluación de Proyectos de Inversión

Formulación y Evaluación de Proyectos de Inversión Formulación y Evaluación de Proyectos de Inversión FORMULACIÓN Y EVALUACIÓN DE PROYECTOS DE INVERSIÓN 1 Sesión No. 12 Nombre: Evaluación de proyecto. Segunda parte. Contextualización En la última sesión

Más detalles

4. Regresión Lineal Simple

4. Regresión Lineal Simple 1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para

Más detalles

PROPIEDADES DEL ESTIMADOR MCO

PROPIEDADES DEL ESTIMADOR MCO TEMA 3 PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos

Más detalles

PRUEBA CHI-CUADRADO. Para realizar un contraste Chi-cuadrado la secuencia es:

PRUEBA CHI-CUADRADO. Para realizar un contraste Chi-cuadrado la secuencia es: PRUEBA CHI-CUADRADO Esta prueba puede utilizarse incluso con datos medibles en una escala nominal. La hipótesis nula de la prueba Chi-cuadrado postula una distribución de probabilidad totalmente especificada

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

Taller: Aplicación e importancia del software SPSS en la investigación. Instructor: Mtro. Roberto Leonardo Sánchez Medina

Taller: Aplicación e importancia del software SPSS en la investigación. Instructor: Mtro. Roberto Leonardo Sánchez Medina Taller: Aplicación e importancia del software SPSS en la investigación Instructor: Mtro. Roberto Leonardo Sánchez Medina Contenido UNIDAD 1: Estadística descriptiva 1.1. Datos y variables 1.2. Escalas

Más detalles

ANÁLISIS DE INVERSIÓN

ANÁLISIS DE INVERSIÓN ANÁLISIS DE INVERSIÓN ANÁLISIS DE INVERSIÓN 1 Sesión No. 3 Nombre: Estudio de mercado. Segunda parte. Objetivo: Al finalizar la sesión, los estudiantes identificarán las estrategias de comercialización

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Estadística Inferencial. Sesión 2. Distribuciones muestrales

Estadística Inferencial. Sesión 2. Distribuciones muestrales Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral

Más detalles

Técnicas de Planeación y Control

Técnicas de Planeación y Control Técnicas de Planeación y Control 1 Sesión No. 5 Nombre: Métodos cuantitativos de pronóstico Contextualización Como vimos en la sesión anterior, el enfoque cualitativo nos sirve para efectuar pronósticos

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

Programa de Asignatura Estadística

Programa de Asignatura Estadística Programa de Asignatura Estadística 01 Carrera: Licenciatura en Tecnología Informática 02 Asignatura: Estadística 03 Año lectivo: 2013 04 Año de cursada: 2 05 Cuatrimestre: Segundo 06 Hs. Semanales: 5 07

Más detalles

Errores de especificación

Errores de especificación CAPíTULO 5 Errores de especificación Estrictamente hablando, un error de especificación es el incumplimiento de cualquiera de los supuestos básicos del modelo lineal general. En un sentido más laxo, esta

Más detalles

Econometría. Código: Créditos ECTS: 6. Titulación Tipo Curso Semestre Contabilidad y Finanzas OB 3 1.

Econometría. Código: Créditos ECTS: 6. Titulación Tipo Curso Semestre Contabilidad y Finanzas OB 3 1. Econometría 2016/2017 Código: 102105 Créditos ECTS: 6 Titulación Tipo Curso Semestre 2501231 Contabilidad y Finanzas OB 3 1 Contacto Nombre: Maria Teresa Cabeza Gutes Correo electrónico: Maite.Cabeza@uab.cat

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Doc. Juan Morales Romero

Doc. Juan Morales Romero Análisis de Correlación y Regresión Lineal ANALISIS DE CORRELACION Conjunto de técnicas estadísticas empleadas para medir la intensidad de la asociación entre dos variables DIAGRAMA DE DISPERSION Gráfica

Más detalles

CALIFICACION: - P C: precio medio de los productos sustitutivos existentes en el mercado en euros.

CALIFICACION: - P C: precio medio de los productos sustitutivos existentes en el mercado en euros. 6 + 10 + 3 = 19 CALIFICACION: Ventasgdt Una empresa que produce una marca de detergente líquido desea contar con un modelo para planificar su producción, estimar las necesidades de materias primas y de

Más detalles

PROGRAMA DE ESTUDIOS

PROGRAMA DE ESTUDIOS PROGRAMA DE ESTUDIOS Nombre: ESTADÍSTICA DESCRIPTIVA Carrera: Ingeniería Ambiental, Ecología y Biología Créditos: 6 Horas Teóricas a la semana: 2 Horas Prácticas a la semana: 2 PRESENTACION La necesidad

Más detalles