27 de octubre de 2010

Tamaño: px
Comenzar la demostración a partir de la página:

Download "27 de octubre de 2010"

Transcripción

1 Pontificia Universidad Católica de Chile Facultad de Física FIZ 11 Mecánica Clásica Profesor: Andrés Jordán Ayudantes: Eduardo Bañados T. Ariel Norambuena Torque, Momento Angular y Momento de Inercia 7 de octubre de 1 Problema 1. a) Calcule el momento de inercia del cable con forma de S que se muestra en la figura con respecto a un eje que pasa por A perpendicular al plano del papel. EL cable tiene masa M y el radio de curvatura de cada mitad es R. b) Siete monedas se ordenan como se muestra en la figura. Cada monedas es un disco uniforme de masa m y radio r. Cuál es el momento de inercia del sistema de las 7 monedas con respecto a un eje que pasa a través del centro de la moneda central y que es normal al plano de las monedas. (a) (b) Recordemos la definición de momento de inercia: Z I = r dm (1) Donde r es la distancia al eje de giro del elemento con masa dm. a) Para calcular el momento de inercia lo que nos interesa es el cuadrado de la distancia, luego este cable en forma de S para efectos de momento de inercia se puede pensar como un anillo que gira en torno al punto A En clases se vio que el momento de inercia de un anillo con respecto a un eje que pasa por su centro de masa es I CM = MR. Para calcular nuestro problema usaremos el teorema de los ejes paralelos: Donde d es la distancia del centro de masa al eje de giro. Por lo tanto, b) El momento de una moneda o disco con respecto a su centro de masa es I = I CM + Md () I = MR + MR = MR (3) I CM = 1 mr (4) 1

2 El momento de inercia para las monedas que están en la parte exterior la calculamos por el teorema de los ejes paralelos: Donde d = r. Luego, el momento de inercia total para el sistema viene dado por I = I CM + md = 9 mr (5) I = 1 mr mr = 55 mr (6) Problema. Una barra uniforme de largo 1 m y masa kg es balanceada con un pivote. Una masa de 4 kg se encuentra en un extremo de la barra, mientras que en el extremo opuesto hay una masa de kg, como se muestra en la figura. A qué distancia está el pivote del centro de la barra para que el sistema esté en equilibrio? Como el sistema está en equilibrio sabemos que se tiene que cumplir X τ = (7) Si llamamos x a la distancia entre el pivote y el centro de masa de la barra (su centro), tenemos que la distancia de la masa de kg al pivote es x + 5, mientras que para la masa de 4 kg es 5 x. Luego podemos escribir (7) como Despejando x obtenemos (x + 5)g + xg 4(5 x)g = (8) x = 1,5 m (9)

3 Problema 3. Una delgada tabla de masa M y largo l está pivoteada en un extremo (ver figura de abajo). La tabla es soltada desde un ángulo θ respecto a la vertical. Cuál es la magnitud y dirección de la fuerza sobre el pivote cuando la tabla está en la posición horizontal?. Inicialmente la energía de la tabla es E i = mg l cos(θ) que es la energía potencial gravitatoria del centro de masa (el nivel cero de potencial se ha tomado en la posición horizontal que pasa por el pivote). Cuando la barra pasa por la posición horizontal la energía es E f = 1 I θ que es puramente energía rotacional, donde θ es la velocidad angular e I es el momento de inercia respecto al pivote. El momento de inercia lo calculamos a continuación, si σ = M/lw es la densidad de masa superficial de la tabla (w ancho de la tabla, del alto despreciable, pues la tabla es muy delgada), entonces I = Z L Z w σx dydx = M lw Z w dy Z l x dx = 1 3 Ml acá la variable x recorre el largo de la tabla y representa la distancia perpendicular respecto al eje de rotación e y recorre el ancho de la tabla. Luego por conservación de energía mg l cos(θ) = 1 6 Ml θ θ = 3g cos(θ) l que es la velocidad angular de la tabla en la posición horizontal. El torque que siente la tabla es puramente debido a la gravedad, siendo τ = Mg l sin(θ) donde θ es un ángulo arbitrario medido respecto a la vertical (note que este torque actúa sobre el centro de masa de la tabla). Sabemos que τ = I α, siendo α ( α = θ) el vector aceleración angular, cuyo dirección y sentido está dado por la regla de la mano derecha (perpendicular al plano de movimeinto) y cuyo módulo es la aceleración angular θ que aparece en coordenadas polares. No confundir con el vector θ en coordenadas polares, cuya dirección está contenida en el plano de movimiento. Luego como τ = I α = I θ Mg l sin(θ) = 1 3 Ml θ y para θ = π/ (que es la posición que queremos analizar) tenemos θ = 3g l 3

4 como concemos la velocidad y aceleración angular de la tabla para θ = π/ (posición horizontal), usando la segunda Ley de Newton, dado que las fuerzas que actúan sobre la table son: la gravedad M g y la fuerza que ejerce el pivote sobre la tabla F P/T, entonces M g + F P/T = M a = Ml θ ˆr + θˆθ donde a es la aceleración del centro de masa, luego para θ = π/, si ˆx denota la dirección vertical hacia arriba y ŷ la dirección horizontal derecha, nos queda F P/T = Mgˆx + Ml 3g cos(θ) ŷ 3g «l l ˆx = 1 4 Mgˆx 3 Mg cos(θ)ŷ y como lo que nos piden es la fuerza que ejerce la tabla sobre el pivote, es decir F P/T, obtenemos el módulo es F P/T = 1 4 Mgˆx + 3 Mg cos(θ)ŷ F P/T = Mg r cos (θ ) y cuyas componentes están diriguidas hacia abajo (-ˆx) y derecha (ŷ). 4

5 Problema 4. Un alambre (de masa despreciable) de largo L se dobla al centro de manera que forma un ángulo α. En cada extremo el alambre tiene una masa m. Este dispositivo se cuelga de un eje tal como se muestra en la figura adjunta. Calcule el periodo de oscilación del sistema para pequeñas oscilaciones en torno a su posición de equilibrio estable. Verifique que la expresión general, en los casos límites α = y α = π, da los resultados esperados. Sea ɛ una pequeño ángulo medido respecto a su posición de equilibrio, ver figura. Podemos ver que el momentum angular del sistema es L = r 1 m v 1 + r m v = L(mL ɛ)ˆx + L(mL ɛˆx) = ml ɛˆx donde r 1 = L(cos(α/ ɛ)ẑ + sin(α/ ɛ)ŷ) (masa de la izquierda), r = L(cos(α/ + ɛ)ẑ sin(α/ + ɛ)ŷ) (masa de la derecha), en donde se sebe resolver r 1 m v 1 = ml(cos(α/ ɛ)ẑ + sin(α/ ɛ)ŷ) ( L ɛ(sin(α/ ɛ)ẑ cos(α/ ɛ)ŷ)) = ml ɛ `cos (α/ ɛ)ˆx + sin (α/ ɛ)ˆx = ml ɛˆx y análogamente para r m v, siendo v = r en ambos casos. Ahora bien, sabemos que torque y momentun angular se relacionan mediante d L/dt = τ, pero el torque de la fuerza gravitatoria se puede evaluar directamente τ = r 1 F 1 + r F = mgl sin(α/ ɛ)ˆx mgl sin(α/ + ɛ)ˆx = mgl cos(α/) sin(ɛ)ˆx entonces usando esto en la relación dl/dt = τ, se obtiene mgl cos(α/) sin(ɛ) = ml ɛ 5

6 o sea para pequeñas oscilaciones sin(ɛ) ɛ, por lo cual g ɛ + L cos(α/) ɛ = es decir, la varaible ɛ describe la ecuación de un oscilador armónico simple con frecuencia angular de oscilación q` ω = g cos(α/), cuyo periodo es simplemente L s L 1 T = π g cos(α/) para α = se obtiene el periodo de un péndulo simple para pequeñas oscilaciones, tal como era de esperar, puesto que si α = la barra se transforma literalmente en un péndulo simple. Si α = π se tiene que la ecuación diferencial nos queda como ɛ =, lo cual tiene por solución ɛ(t) = At + B, es decir el ángulo crece linealmente en el tiempo y no realiza un movimiento armónico simple, lo cual era de esperar, ya que si α = π, la barra está en una posición de equilibrio inestable y sabemos que sólo en el caso de perturbar levemente en torno a una posición de equilibrio estable aparecerá como primera corrección un M.A.S, este no es el caso. Por otra parte, si reemplazamos α = π directamente en el período hallado, notamos que T, es decir, la barra nunca vuelve a us posición original (le toma un tiempo infinito), o en otras palabras, no oscila, porque el equilibrio es inestable. 6

La última igualdad se deduce del hecho que los vectores d r/dt = v y p son paralelos. Usando (8.2) en (8.1) se obtiene

La última igualdad se deduce del hecho que los vectores d r/dt = v y p son paralelos. Usando (8.2) en (8.1) se obtiene Capítulo 8 Momento angular 8.1. Momento angular de una partícula Consideremos una partícula de masa m y cuya posición (respecto a algún sistema de referencia inercial) viene dada por el vector r. Sea F

Más detalles

Módulo 1: Mecánica Sólido rígido. Rotación (II)

Módulo 1: Mecánica Sólido rígido. Rotación (II) Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

Dinámica en dos o tres dimensiones

Dinámica en dos o tres dimensiones 7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el

Más detalles

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN OBJETIVOS Determinar la constante de torsión de un péndulo. Estudiar la dependencia del período de oscilación con el momento de inercia. Determinar experimentalmente

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

Solución de Examen Final Física I

Solución de Examen Final Física I Solución de Examen Final Física I Temario A Departamento de Física Escuela de Ciencias Facultad de Ingeniería Universidad de San Carlos de Guatemala 28 de mayo de 2013 Un disco estacionario se encuentra

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

Física: Momento de Inercia y Aceleración Angular

Física: Momento de Inercia y Aceleración Angular Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

I1 FIS Advertencia: La sanción por copiar es un 1,1 final en el ramo + informe a Secretaría General.

I1 FIS Advertencia: La sanción por copiar es un 1,1 final en el ramo + informe a Secretaría General. 1 FS 1533 1 2013 Apellido, Nombre: Número en la lista: Advertencia: a sanción por copiar es un 1,1 final en el ramo + informe a Secretaría General. TEMPO: 2 horas No puede usar apuntes ni calculadora ni

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Campo Eléctrico. Es el portador de la fuerza eléctrica. q 2. q 1

Campo Eléctrico. Es el portador de la fuerza eléctrica. q 2. q 1 Campo Eléctrico Es el portador de la fuerza eléctrica. q 1 q 2 E1 E2 Por qué se usa el campo eléctrico? Porque es útil simplificar el problema separándolo en partes. Porque nos permite pensar en una situación

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

Guía de Materia Movimiento circular

Guía de Materia Movimiento circular Física Guía de Materia Movimiento circular Módulo Electivo III Medio www.puntajenacional.cl Nicolás Melgarejo, Verónica Saldaña Licenciados en Ciencias Exactas, U. de Chile Estudiantes de Licenciatura

Más detalles

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

9.2. Ejercicios de dinámica

9.2. Ejercicios de dinámica 9.2 Ejercicios de dinámica 9.2. Ejercicios de dinámica 281 Ejercicio 9.8 Un disco de masa M y radio R se apoya sobre un plano horizontal áspero de modo que puede rodar si resbalar con su plano vertical.

Más detalles

Mecánica del Cuerpo Rígido

Mecánica del Cuerpo Rígido Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011 Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Práctica 1. Momento de inercia. Implementos Soporte universal, nueces, varilla delgada (eje de rotación), barra rígida (regla de

Más detalles

MEDIDA DE g. EL PÉNDULO FÍSICO

MEDIDA DE g. EL PÉNDULO FÍSICO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

Movimiento Relativo. Velocidad relativa constante

Movimiento Relativo. Velocidad relativa constante Movimiento Relativo Consideremos un sistema inercial S. El vector posición de una partícula respecto a S es. Queremos describir el movimiento de la partícula relativo a un sistema S que se mueve respecto

Más detalles

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten presente la distinción entre velocidad angular ω Z y velocidad ordinaria v X. Si un objeto tiene una velocidad v X el objeto en

Más detalles

Ayudantía 5 - Soluciones Ley de Gauss

Ayudantía 5 - Soluciones Ley de Gauss Ponticia Universidad Católica de Chile Facultad de Física Electricidad y Magnetismo: Fis 153-1; Fiz 1-1 Ayudantía 5 - Soluciones Ley de Gauss Profesor: Ricardo Ramirez (rramirez@puc.cl) Ayudante: Daniel

Más detalles

Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía

Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía P. Universidad Católica de Chile Facultad de Física Estática y Dinámica Profesor Rafael Benguria Ayudantía 4 Ignacio Reyes (iareyes@uc.cl). Prob. 2/I--200 Dinámica, Trabajo y Energía Una partícula de masa

Más detalles

2DA PRÁCTICA CALIFICADA

2DA PRÁCTICA CALIFICADA 2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA

Más detalles

Unidad 4C: Torque y momento angular Preparada por Rodrigo Soto

Unidad 4C: Torque y momento angular Preparada por Rodrigo Soto FI1A2 - SISTEMAS NEWTONIANOS Semestre 2008-1 Profesores: Hugo Arellano, Diego Mardones y Nicolás Mujica Departamento de Física Facultad de Ciencias Físicas y Matemáticas Universidad de Chile Unidad 4C:

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (9) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 Ejemplo 1 El espectrógrafo de masa fué inventado por Francis

Más detalles

de donde y finalmente Sol.:

de donde y finalmente Sol.: 1. Dado el vector determinar la longitud de su proección sobre la recta definida por los puntos (2, -2, -3) (3, 0, -1). La proección del vector sobre la recta r definida por los puntos (2, -2, -3) (3,

Más detalles

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016 Universidad de Sonora Departamento de Física Mecánica II Dr. Roberto Pedro Duarte Zamorano 2016 Temario 1. Cinemática rotacional. 2. Dinámica rotacional. 3. Las leyes de Newton en sistemas de referencia

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 INDUCCION DE FARADAY Al cambiar el flujo magnético enlazado

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

Mm R 2 v= mv 2 R 24 5,98 10

Mm R 2 v= mv 2 R 24 5,98 10 POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. Conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación

Más detalles

CONDICIONES DE EQUILIBRIO ESTATICO

CONDICIONES DE EQUILIBRIO ESTATICO 1 CONDICIONES DE EQUILIBRIO ESTATICO Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física Objetivos específicos Analizar gráficamente y comprender las relaciones: a). El momento

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física. Giróscopo

Pontificia Universidad Católica de Chile Facultad de Física. Giróscopo Pontificia Universidad Católica de Chile Facultad de Física Giróscopo A un giróscopo inicialmente balanceado en posición horizontal, ϴ = π/2, se le aplica un torque al colgar una masa m en el extremo de

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 1. Un avión en vuelo está sujeto a una fuerza de resistencia del aire proporcional al cuadrado de su rapidez. Sin embargo hay una fuerza de resistencia

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

LABORATORIO DE MECANICA INERCIA ROTACIONAL

LABORATORIO DE MECANICA INERCIA ROTACIONAL No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos. Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles

La Hoja de Cálculo en la resolución de problemas de Física.

La Hoja de Cálculo en la resolución de problemas de Física. a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de Albacete.jesusruiz@sociedadelainformacion.com

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Movimiento armónico. Péndulos físico y de torsión.

Movimiento armónico. Péndulos físico y de torsión. Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante

Más detalles

Dinámica de Rotación del Sólido Rígido

Dinámica de Rotación del Sólido Rígido Dinámica de Rotación del Sólido Rígido 1. Movimientos del sólido rígido.. Momento angular de un sólido rígido. Momento de Inercia. a) Cálculo del momento de inercia de un sólido rígido. b) Momentos de

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad de Sevilla Índice Campo de velocidades de

Más detalles

ACELERÓMETRO DEL CELULAR

ACELERÓMETRO DEL CELULAR UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES CURSO: ENSEÑANZA DE LA FÍSICA MECÁNICA- ACELERÓMETRO DEL

Más detalles

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

PROBLEMAS PROPUESTOS DE ROTACIÓN

PROBLEMAS PROPUESTOS DE ROTACIÓN PROBLEMAS PROPUESTOS DE ROTACIÓN 1. Una bicicleta de masa 14 kg lleva ruedas de 1,2 m de diámetro, cada una de masa 3 kg. La masa del ciclista es 38 kg. Estimar la fracción de la energía cinética total

Más detalles

PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL

PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL 1. La distancia entre los centros de dos esferas es 3 m. La fuerza entre ellas es.75 x10-1 N. Cuál es la masa de cada esfera, si la masa de una

Más detalles

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula:

Más detalles

PROGRAMA DE FÍSICA I TEORÍA

PROGRAMA DE FÍSICA I TEORÍA Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

Prácticas de Electromagnetismo

Prácticas de Electromagnetismo Prácticas de Electromagnetismo Curso 2015/16 Dpto. de Física Aplicada ETSII UPM Guión práctica 2.- Medida del campo magnético terrestre. Coordinador: Profesores: Dª Sara Lauzurica Santiago D. Miguel Castro

Más detalles