AIRE HUMEDO AIRE HUMEDO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "AIRE HUMEDO AIRE HUMEDO"

Transcripción

1 AIRE HUMEDO AIRE HUMEDO El air húmdo una mzcla d air co y vapor d agua. El air co una mzcla d ga, cuya compoición química : Nitrogno 78,08% Oxigno 20,95% Argón 0,93% CO2, CO, O2, O3,... 0,03% Otro 0,01%

2 AIRE HUMEDO El Po Molar dl air húmdo calcula: PMa.. = 0, , , ,9 + 0, ,01 Pma..= kg/kmol. El vapor d agua a prion muy baja (<0,1 bar) comporta prácticamnt como un ga idal. Dicha condicion corrpondn con la prion rcial a la qu ncuntra dl vapor d agua n l air húmdo, por lo qu aumirmo u omportaminto como ga idal, con un po molcular d 18 kg/kmol. AIRE HUMEDO Mzcla d air co y agua n tado d vapor. Grado d librtad: Z = C +2 F C: Cantidad d componnt = 2 F: nº d fa = 1 Z = 3 dbn fijar 3 propidad ra dfinir l tado d quilibrio.

3 PREIONE PARCIALE Air húmdo una mzcla d 2 ga: Air: ocu un volumn jrc una prión Pa Vapor d agua: ocu un volumn jrc una prión Pv La prión total a la cual tá omtida a mzcla: Ptotal = Pa + Pv Pa: prión rcial dl air Pv: prión rcial dl vapor La prión total a la cual tá omtida l air húmdo la Prión Atmoférica. Cada una d a Prion Parcial jrcida por cada uno d lo componnt proporcional a la Maa d air y d Vapor d Agua. Prión d vapor aturado ( Pv) E la prión qu jrc la máxima cantidad d vapor d agua qu pud contnr l Air Húmdo n dtrminada condicion d Tmpratura y Prión Total.

4 Ptotal = Pa + Pv Rlación Prion air húmdo Tmp Prión aturación Prión air co Prión atmoférica C kpa kpa kpa Rprntación dl tado dl vapor d agua n l air T Prion aturacion P Pv P v t air 1 Tmpratura t rocío Rocio 2

5 PREIÓN DE VAPOR DE AGUA EN ATURACIÓN bar = 100 kpa P (bar) T (ºC) AIRE HUMEDO Mzcla d air co y agua n tado d vapor. Grado d librtad: Z = C +2 F C: Cantidad d componnt = 2 F: nº d fa = 1 Z = 3 dbn fijar 3 propidad ra dfinir l tado d quilibrio.

6 ECUACION PARA GAE IDEALE P * V = m * R * T Dond: V: Volumn P: Prión m: Maa R: Contant Particular d lo Ga T: Tmpratura [ºK} La contant rticular: R air co R a = 28,40 Kgm /kg ºK R air húmdo Rah = 29,27 Kgm /kg ºK VOLUMEN EPECIFICO DEL AIRE HUMEDO m3 d air húmdo por maa d air co. pud calcular aplicando la cuación d lo ga prfcto, calculando l po molcular mdio dl air húmdo. Air: Pair * V = m air * R air * T Vapor d agua : P vap * V = m vap * R vap * T umando: (Pair + P vap) * V = (m air * R air +m vap * R vap) * T P total = Pair + P vapor Vah = (Rair + X * R vap )* T / P m3 / Kg a Vair = Rair * T / P m3 / Kg a

7 DENIDAD DEL AIRE HUMEDO air húmdo Vah = (Rair + X * Ragua )* T / P air co Vair = Rair * T / P Vol. air húmdo > Vol. dl air co dnidad air húmdo < dnidad dl air co El air a mdida qu va cargando d humdad acind HUMEDAD ABOLUTA (X) Humdad aboluta o implmnt humdad, la maa d agua qu xit por cada 1 kg d air co. rprntará por X. X = Mv Ma [ kg d agua] [ kg d air co] Air: Pair * V = M air co R air * T Vapor d agua : Pvap * V = M vapor agua R vap* T

8 HUMEDAD ABOLUTA (X) Mv P vapor * R vap P vapor X = = = Ma P air * R air P air P total = P air + P vapor Pair = P - P vapor P vapor X = = P - P vapor Pv P - Pv Air: R vapor = KJ Kg * K R air = KJ Kg * K Po Molar : PM vap = 18 Kg Kmol PM air = Kg Kmol HUMEDAD DE ATURACIÓN (X) Un air tá aturado cuando la prión rcial dl vapor d agua qu contin igual a la prión d vapor dl agua pura a la mima tmpratura dl air. En otra labra la Máxima cantidad d agua qu pud contnr l Air Húmdo n dtrminada condicion d Prión y Tmpratura. La humdad aboluta ra: P vapor X = = P - P vapor Pv P - Pv Rmplazando la Prión d vapor por la Prión d aturacion, la humdad d aturación rá: P vapor at X = = P - P vapor at P v P - P v

9 HUMEDAD RELATIVA Rlación ntr l vapor d agua contnido n una dtrminada cantidad d air y l qu ét contndría i tuvi aturado a una dtrminada tmpratura. Pv HR o Φ = Pv Pv: Pv: Prión rcial dl vapor d agua xitnt n l air húmdo Prión d aturación a la mima tmpratura HUMEDAD RELATIVA La dtrminación d la humdad rlativa d la atmófra hac mdiant lo picrómtro y lo higrómtro. HIGROMETRO PICROMETRICO

10 0.6GRADO DE ATURACIÒN E la rlación xitnt ntr la humdad aboluta dl air X, y la humdad aboluta corrpondint al air aturado a la mima tmpratura. X G o φ = X X: humdad aboluta n l air húmdo X: humdad aboluta d aturación n l air húmdo RELACIÓN ENTRE GRADO DE ATURACIÒN Y HUMEDAD RELATIVA XPPP vv= X= P= P* vppvp P2*vv( v) ( )vppgpor r Pv y Pv << P : 0.622*PGHR XP= X= P*vvG [ 1 ] = HR La Humdad Rlativa prácticamnt igual al Grado d aturación ra la condicion atmoférica

11 PUNTO DE ROCIO En l air húmdo l vapor d agua pud ncontrar n forma d: Vapor obrcalntado (fa vapor) Vapor n Equilibrio con l Líquido (fa vapor líquido) Air húmdo ncuntra a: T Ambint P Atmoférica aturación humidificación a Tmpratura contant nfriaminto a humdad aboluta contant Tmpratura d rocío: E la Tmpratura a la cual arcn la primra gota d agua líquida cuando diminuy la tmpratura dl air húmdo mantnindo la humdad aboluta contant.. i continúa l nfriaminto, igu la condnación dl vapor d agua, rándo dl air húmdo. Rprntación dl tado dl vapor d agua n l air T Prion aturacion P Pv P v t air 1 Tmpratura t rocío Rocio 2

12 ENTALPÍA DEL AIRE HÚMEDO La ntalpía d una mzcla d air y vapor d agua la uma d la ntalpía dl air co y la dl vapor d agua. conidra como tado d rfrncia: agua líquida y air co a 0 ºC y 1 atm Una mzcla d air-vapor, con x kg d agua, a una tmpratura d t ºC y 1 atm, la ntalpía pud calcular como: H ah = H air + H vapor [kj] h ah = Cp air * T + X * (ro + Cp vapor * T) [kj / kg d air co] Pudn acptar como valor mdio contant: Cp air : calor pcífico dl air Cp vapor: calor pcífico dl vapor ro: calor latnt d vaporización n condicion tándar = 0.24 kcal/(kgºc) o 1 kj/(kgºc) = 0.46 kcal/(kgºc) o 1.92 kj/(kgºc), = 2479 kj/kg o 595 kcal/kg ENTALPÍA DEL AIRE HÚMEDO ATURADO h ah = Cp air * T + X * (ro + Cp vapor * T) [kj / kg d air co] dond: T : Tmpratura d aturación X: humdad aboluta d aturación ENTALPÍA DEL AIRE HÚMEDO EN ETADO DE NIEBLA h ah = C * T + X * (ro + C * T) + (X-X) * Cp liq * T dond: Cp liq : Calor pcífico dl agua n tado líquido X- X : cantidad d agua n tado líquido

13 ATURACIÓN ADIABATICA upon un proco n l qu, por jmplo, aumnta la humdad dl air, haciéndol atravar una cámara ailada térmicamnt n cuyo intrior hay agua n forma d lluvia (gran uprfici d contacto). AIRE ECO CALIENTE AGUA LIQUIDA AIRE HUMEDO FRIO Al ar l air obr la lluvia d agua, rt d lla vapora producindo una diminución d la tmpratura dl air y un incrmnto d la humdad. Et proco conidra qu adiabático (no hay pérdida d calor hacia l xtrior dl itma). Cuando la nrgía térmica cdida por l air al agua a igual a la qu éta ncita ra vaporizar, habrá alcanzado l quilibrio térmico. PROCEO DE ATURACIÓN ADIABATICA h nt X nt t* h at X at h w Tw

14 ATURACIÓN ADIABATICA H + H = nt w H at H m a + H m w a = H m a dond: h + h = h = C * T + X * + h = C * T + X * + w h ( r C * T ) ( r C * T ) KJ Kg air co Entalpia d ntrada Entalpia d alida h w = ( X X )* C * T p liq. Entalpia dl agua ATURACIÓN ADIABATICA h + h = w h ( r + C * T ) + ( X X ) * C * T = C * T + X * ( r C * T ) C * T + X * + ( C + X * C ) = T * ( C + X * C ) + ( X - X ) * r - ( X - X ) C * T T * * p liq. [ C + X * C ( X - X ) * C ] T * + X = X + ( X X ) ( C + X * C ) + T ( X - X ) * C T * * ( C + X * C ) = T * ( C + X * C ) + ( X - X ) * ( r T * C - T * C ) T * + ( T - T )* ( C + X * C ) = ( X - X ) * ( r + T * C - T * C ) p liq p liq p liq

15 ATURACIÓN ADIABATICA ( T - T )* ( C + X * C ) = ( X - X ) * ( r + T * C - T * C ) p liq [ r + T * C ]- [ T * C ] p liq Entalpia vapor agua hvapor hagua = r ( T - T )* ( C + X * C ) ( X - X ) * r = T = T + ( X - X ) * r ( C + X * C ) ( C >>> X * C ) ( C X * C ) C T = T r C * ( X - X ) TEMPERATURA DE BULBO HUMEDO dq vap = r * dw Calor rqurido por la vaporación dl agua Agua vaporada dw = σ * * X - X dτ σ = contant = uprfici τ = timpo [] h proporcion alidad intrcambi o ño Kcal K = Tranmitan cia m2 *º C Kg m2 * h m2 Rmplazando: dq vap = r * σ * * X - X dτ dq cond = K * * T - Tbh dτ Calor tranfrido por conductividad n l ño húmdo dq vap = dq cond Equilibrio térmico

16 TEMPERATURA DE BULBO HUMEDO dq vap = dq cond Equilibrio térmico K * * T - Tbh dτ = r * σ * * X - X dτ dpjando: T = T bh + r * σ K * ( X - X ) Para la tmpratura tbh Tmpratura d bulbo húmdo T bh = T r * σ K * ( X - X ) COMPARACION ENTRE LA Tbh Y LA Tat adiab. Tmpratura d bulbo húmdo T bh = T r * σ K * ( X - X ) Tmpratura d aturación adiabática T = T r C * ( X - X ) Lwi dmotró la iguint igualdad ra l air húmdo: C * σ K = 1 σ 1 = K C dpjando: T T bh

17 DIAGRAMA PICROMETRICO Entalpía pcífica kj/kg T bulbo co ºC Humdad rlativa Volumn pc ífico m 3 /kg air co Tª bulbo húmdo ºC X Humdad w aboluta kg kg/kg / air co 60

18 Equma Diagrama Picromtrico PROPIEDADE AIRE HUMEDO A PREION ATMOFERICA Tmpratura Humdad Prión Tmpratura volumn pcífico Entalpía dl air Entalpía vapor aturado aturación pcífica aturación aturación t W va va v ha ha h hf hfg hg p t C kgv/kga m3/kg m3/kg m3/kg kj/kg kj/kg kj/kg (kj/kg) (kj/kg) (kj/kg) kpa C , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

19 PROPIEDADE AIRE HUMEDO A PREION ATMOFERICA Tmpratura Humdad Prión Tmpratura volumn pcífico Entalpía dl air Entalpía vapor aturado aturación pcífica aturación aturación t W va va v ha ha h hf hfg hg p t C kgv/kga m3/kg m3/kg m3/kg kj/kg kj/kg kj/kg (kj/kg) (kj/kg) (kj/kg) kpa C , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Diagrama Iontalpico (Mollir) VARIABLE INDEPENDIENTE: h y W

20 Diagrama Iontalpico (Mollir) Mzcla d corrint

21 Mzcla d corrint Balanc d maa Por la ly d la conrvación d la maa db cumplir qu la maa d agua contnida n la corrint d ntrada db mantnr a la alida (mzcla). M I x I + M II x II = M m x m kg a / hora * kg agua / kg a indo: M I M II M m x I x II gato d air co n ( I ), ( II ) y mzcla agua por kg d air co n ( I ), ( II ) y mzcla x m Mzcla d corrint Balanc d nrgía Por la ly d la conrvación d la nrgía db cumplir qu la nrgía n la corrint d ntrada db mantnr a la alida (mzcla). M I h I + M II h II = M m h m kg a / hora * KJ / kg a indo: M I M II M m h I h II gato d air co n ( I ), ( II ) y mzcla KJ por kg d air co n ( I ), ( II ) y mzcla h m

22 Mzcla d corrint Balanc d maa M I * x I + M M II m * x II = x m kg agua / hora * kg a Balanc d nrgía M I * h I + M M II m * h II = h m KJ / hora * kg a Entalpía d la mzcla Mzcla d corrint hm = C p * Tm + xm (Cv * Tm + r) KJ / hora * kg a Kcal / hora * kg a hm = 0.24 Tm + xm (0.47 Tm + r) Kcal / hora * kg a Tmpratura d la mzcla T m = C h m p r * x + x m * m Cv ºC

23 Diagrama Iontalpico (Mollir) Mzcla d corrint Mzcla d 2 caudal d air humdo h B X h A B X B M Mb A Mm X A T B T A Ma T B

24 MEZCLA DE AIRE HUMEDO Corrint A: Corrint B: Corrint M: Ma [kg air] x Xa [kg agua / kg air co] Mb [kg air] x Xb [kg agua / kg air co] Corrint A + Corrint B Mm [kg air] x Xm [kg agua / kg air co] B Ma * Xa + Mb * Xb Xm = Mm A M Mb Mm = Mb + Ma Mm AM Mb = AB = AM + MB Ma BM Ma

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h INERCAMBIO DE CALOR ENRE DOS FLUIDOS El calor tranfrido d un fluido a otro a travé d la pard d un tubo : πl( - ln( r / r + + hr k h r ( Eta cuación la ba dl diño d intrcambiador d calor tubular. Si dfin

Más detalles

TRABAJO PRACTICO Nº 1 RELACIONES DE PESOS Y VOLUMENES

TRABAJO PRACTICO Nº 1 RELACIONES DE PESOS Y VOLUMENES Ejrcicio Rulto TRABAJO PRACTICO Nº 1 RELACIONES DE PESOS Y VOLUMENES 1.- S dtrminaron la caractrítica mcánica d un trato d arna ncontrándo qu, al obtnr una mutra rprntativa, u volumn ra d 420 cm 3 y u

Más detalles

Tema Nro. 4 2º Ley de la Termodinámica

Tema Nro. 4 2º Ley de la Termodinámica PET 206 P1 TERMODINAMICA Tma Nro. 4 2º Ly d a Trmodinámica Ing. Ocar Varga Antzana 1. TRODUCCIÓN La 2º Ly d a Trmodinámica: baa n principio d a conrvación d a nrgía, utiiza para abr o prdcir a dircción

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

PSICROMETRIA aire seco y vapor de agua

PSICROMETRIA aire seco y vapor de agua PSICROMETRIA La Psicrometría trata la sustancia aire como una mezcla de dos gases que no reaccionan entre sí y se comportan casi como dos gases ideales: aire seco y vapor de agua COMPOSICION DEL AIRE PROPIEDADES

Más detalles

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue Método del polo de operación (I) - Destilación Problemas PROBLEMA 1*. Cierta cantidad de una mezcla de vapor de alcohol etílico y agua, 50 % molar, a una temperatura de 190 ºF, se enfría hasta su punto

Más detalles

BALANCE TÉRMICO EN CALDERAS

BALANCE TÉRMICO EN CALDERAS BALANCE TÉRMICO EN CALDERAS 1. Definición: Es el registro de la distribución de energía en un equipo. Puede registrarse en forma de tablas o gráficos, lo que permite una mejor visualización de la situación.

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen

Más detalles

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I)

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) Soluciones DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) 1. Demuestre que 1 mol de cualquier gas a presión atmosférica de 101 kpa y temperatura de 0ºC ocupa un volumen de 22,4 L. n =

Más detalles

Universidad de Navarra

Universidad de Navarra Aignatura / Gaia Curo / Kurtoa ERMODINÁMICA IEMPO: 45 minuto. Utilice la última cara como borrador. EORÍA 1 (20 punto) Lea la 20 cuetione y ecriba dentro de la cailla al pie: V i conidera que la afirmación

Más detalles

Propiedades de sustancias

Propiedades de sustancias Propiedades de sustancias Objetivos Entender conceptos clave... como fase y sustancia pura, principio de estado para sistemas simples compresibles, superfice p-v-t, temperatura de saturación y presión

Más detalles

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). Gases - Primera ley de la Termodinámica Ley Cero. 1. Se mantiene

Más detalles

UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA

UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA MEZCLA DE GAS VAPOR UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA AIRE SECO Y ATMOSFÉRICO: El aire es una mezcla de Nitrógeno, Oxígeno y pequeñas cantidades de otros gases. Aire Atmosférico:

Más detalles

TRANSFERENCIA DE MASA II CURVA DE SECADO

TRANSFERENCIA DE MASA II CURVA DE SECADO TANFEENIA DE MAA II UVA DE EADO EJEMPLO DE UVA DE EADO Para determinar la factibilidad de secar cierto producto alimenticio, se obtuvieron datos de secado con un secador de bandejas y flujo de aire sobre

Más detalles

CÁLCULOS DE COMBUSTIÓN DE UN PRODUCTO COMBUSTIBLE CUANDO SE DESCONOCE SU COMPOSICIÓN DIAGRAMAS

CÁLCULOS DE COMBUSTIÓN DE UN PRODUCTO COMBUSTIBLE CUANDO SE DESCONOCE SU COMPOSICIÓN DIAGRAMAS CALCULO RELATIVO A LA COMBUSTIÓN INTRODUCCIÓN PODER CALORÍFICO AIRE DE COMBUSTIÓN GASES DE LA COMBUSTIÓN CALOR Y PESO ESPECÍFICO DE LOS GASES DE LA COMBUSTIÓN CÁLCULOS DE COMBUSTIÓN DE UN PRODUCTO COMBUSTIBLE

Más detalles

CURSO IPAP AIRE ACONDICIONADO Y VENTILACION Transmision del calor Ver Pag. 11 Manual de Aire Acondicionado de Pedro Quadri.

CURSO IPAP AIRE ACONDICIONADO Y VENTILACION Transmision del calor Ver Pag. 11 Manual de Aire Acondicionado de Pedro Quadri. CURSO IPAP AIRE ACONDICIONADO Y VENTILACION Transmision del calor Ver Pag. 11 Manual de Aire Acondicionado de Pedro Quadri. El calor se transmite por: 1. Conduccion (por contacto directo, por conductividad

Más detalles

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA Problema nº 31) [04-03] Considérese una turbina de vapor que funciona con vapor de agua que incide sobre la misma con una velocidad de 60 m/s, a una presión

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

ciclos de vapor Ciclos Termodinámicos p. 1/2

ciclos de vapor Ciclos Termodinámicos p. 1/2 Ciclo ermodinámico p. / ciclo de vapor ciclo de Carnot Ciclo Rankine imple con obrecalentamiento con recalentamiento con regeneración combinado pérdida ciclo de refrigeración por compreión de vapor Ciclo

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot

Más detalles

Propiedades del agua saturada (l «Ώquido-vapor): Tabla de presiones

Propiedades del agua saturada (l «Ώquido-vapor): Tabla de presiones Propiedades del agua saturada (l «Ώquido-vapor): abla de presiones Volumen especifico Energ «Ώa interna Entalp «Ώa Entrop «Ώa m 3 / kg kj / kg kj / kg kj / kg K Liquido Vapor Liquido Vapor Liquido Vapor

Más detalles

Tema 12 Termoquímica. Desprende o absorbe calor? Cuánto calor? Criterio de espontaneidad En qué dirección se produce? Reacciones Químicas

Tema 12 Termoquímica. Desprende o absorbe calor? Cuánto calor? Criterio de espontaneidad En qué dirección se produce? Reacciones Químicas Tema 1 Estequiometría Cuánto se produce? Cuánto reacciona? Tema 15 Equilibrio Cuándo se alcanza? Cómo modificarlo? Tema 12 Termoquímica Desprende o absorbe calor? Cuánto calor? Criterio de espontaneidad

Más detalles

Tecnología Frigorífica

Tecnología Frigorífica T2.- PSICROETRI Tecnología Frigorífica EN L REFRIGERCION (I.I. T2.- Psicrometría en la Refrigeración Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la

Más detalles

Introducción a las Ciencias de la Atmósfera Unidad 3, Parte 1: Humedad

Introducción a las Ciencias de la Atmósfera Unidad 3, Parte 1: Humedad Cátra Introucción a la Cincia la Atmófra Introucción a la Cincia la Atmófra Unia 3, Part 1: Huma Ecuación tao ga ial La rlación ntr la prión, la nia y la tmpratura in aa por la cuación tao. En l cao lo

Más detalles

Aire Acondicionado Mezcla de Gases

Aire Acondicionado Mezcla de Gases Termodinámica para ingenieros PUCP Cap. 16 Aire Acondicionado Mezcla de Gases Psicrometria INTRODUCCIÓN El clima en todos los lugares del mundo es cambiante y diferente, existen sitios secos y húmedos,

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS Facultad de Ciencia Curo 00-0 SOLUCIONES PROBLEMAS FÍSICA. TEMA : MECÁNICA DE SÓLIDOS Y FLUIDOS. Una gota eférica de mercurio de radio,0 mm e diide en do gota iguale. Calcula a) el radio de la gota reultante

Más detalles

HUMEDAD ATMOSFÉRICA

HUMEDAD ATMOSFÉRICA www.uwm.edu/~vlarson/research.htm HUMEDAD ATMOSFÉRICA Cantidad de vapor de agua que contiene el aire; es la fuente de precipitaciones; influye en los procesos de evapotranspiración y derretimiento de nieves.

Más detalles

Determinación de Humedad en la Atmósfera

Determinación de Humedad en la Atmósfera Determinación de Humedad en la Atmósfera Desarrollado por Carolina Meruane y René Garreaud DGF U de Chile Abril 2006 1. Humedad en la atmósfera El aire en la atmósfera se considera normalmente como una

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

67.20 TURBOMAQUINAS. TRABAJO PRACTICO No 1 1 era. parte

67.20 TURBOMAQUINAS. TRABAJO PRACTICO No 1 1 era. parte 67.20 TURBOMAQUINAS Hoja 1 / 2 TRABAJO PRACTICO No 1 1 era. parte Apellido y nombre: Número de padrón:. Consideraremos una turbina de gas de servicio pesado que funciona según un ciclo de BRAYTON real,

Más detalles

En las siguientes gráficas se muestra la humedad relativa a diferentes temperaturas en grados Celsius y Fahrenheit: En grados Fahreinheit:

En las siguientes gráficas se muestra la humedad relativa a diferentes temperaturas en grados Celsius y Fahrenheit: En grados Fahreinheit: Get your brand new Wikispaces Classroom now (http://www.wikispaces.com/t/y/classroom switch/banner/3/) and do "back to school" Carta Psicrométrica (/Carta+Psicrom%C3%A9trica) in style. Editar 0 (/Carta+Psicrom%C3%A9trica#discussion)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción A Reserva 1, Ejercicio 6, Opción B Reserva, Ejercicio 5, Opción

Más detalles

Tablas y Diagramas TERMODINÁMICOS

Tablas y Diagramas TERMODINÁMICOS 1 Tablas y Diagramas TERMODINÁMICOS 2 TABLA: Constantes de GASES Sustancia Fórmula Masa Molar (kg/kmol) R (kj/kgk) T c (K) P c (kpa) Cp (kj/kgk) Cv (kj/kgk) g Aire 28,97 0,287 133 3,95 1,005 0,718 1,4

Más detalles

Otros métodos de separación de componentes de una solución:

Otros métodos de separación de componentes de una solución: Industrias II Destilación Filmina 1 DESTILACION Definición Método para separar componentes de una solución líquida (binaria, ternaria, etc.) Vaporización parcial Distribución de sustancias en una fase

Más detalles

Psicrometría - Propiedades del aire húmedo

Psicrometría - Propiedades del aire húmedo Psicrometría Propiedades del aire húmedo Autor Jesús Soto lunes, 25 de febrero de 2008 S.LOW ENERGY PSICROMETRÍA. PROPIEDADES DEL AIRE HÚMEDO Índice de propiedades z Altura sobre el nivel del mar Lv Calor

Más detalles

INGENIERO. JOSMERY SÁNCHEZ UNIDAD CURRICULAR: TERMODINÁMICA APLICADA

INGENIERO. JOSMERY SÁNCHEZ UNIDAD CURRICULAR: TERMODINÁMICA APLICADA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" AREA DE TECNOLOGÍA PROGRAMA DE INGENIERÍA MECÁNICA INGENIERO. JOSMERY SÁNCHEZ UNIDAD CURRICULAR: TERMODINÁMICA APLICADA

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

Ejercicios relacionados con líquidos y sólidos

Ejercicios relacionados con líquidos y sólidos Ejercicios relacionados con líquidos y sólidos. La presión de vapor del etanol es de 35,3 mmhg a 40 o C y 542,5 mmhg a 70 o C. Calcular el calor molar de vaporización y la presión del etanol a 50 o C.

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

PISCINA CUBIERTA. ÍNDICE 1.-Introducción 2.-Condiciones de proyecto. 04/06/2004 Pedro Giner Editorial, S.L. 1

PISCINA CUBIERTA. ÍNDICE 1.-Introducción 2.-Condiciones de proyecto. 04/06/2004 Pedro Giner Editorial, S.L. 1 PISCINA CUBIERTA ÍNDICE 1.-Introducción 2.-Condiciones de proyecto 04/06/2004 Pedro Giner Editorial, S.L. 1 A. C. S. 1.-INTRODUCCIÓN Por qué hay que calentar el Agua.Porque se enfría debido a la: EVAPORACIÓN.

Más detalles

Operaciones Básicas de Transferencia de Materia Problemas Tema 6

Operaciones Básicas de Transferencia de Materia Problemas Tema 6 1º.- En una torre de relleno, se va a absorber acetona de una corriente de aire. La sección de la torre es de 0.186 m 2, la temperatura de trabajo es 293 K y la presión total es de 101.32 kpa. La corriente

Más detalles

Tema 2. Amplificadores Operacionales

Tema 2. Amplificadores Operacionales Tma. mplificador Opracional Joaquín aquro Lópz Elctrónica, 007 Joaquín aquro Lópz mplificador Opracional (O): Índic.) Introducción a lo O.) Modlo implificado. Modlo Idal.3) Circuito Linal con O.4.) mplificador

Más detalles

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie..

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. Ricardo Muñoz C. Ingeniero Agrónomo M.S. Sicrometría, en términos

Más detalles

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS.

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA: ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA DE TRABAJO: ES LA PORCIÓN DE MATERIA QUE ACTUANDO EN UN SISTEMA ES CAPAZ DE ABSORBER O CEDER ENERGÍA. EN ESE PROCESO

Más detalles

FISICOQUIMICA CAPÍTULO II. SISTEMAS IDEALES

FISICOQUIMICA CAPÍTULO II. SISTEMAS IDEALES Ing. Federico G. Salazar fisicoquimica@fsalazar.bizland.com FISICOQUIMICA CAPÍULO II. SISEMAS IDEALES Contenido. EQUILIBRIO DE FASES PARA SUSANCIAS PURAS. ECUACIÓN DE CLAUSIUS-CLAPEYRON.2 REGLA DE ROUON.

Más detalles

Análisis esquemático simplificado de una torre de enfriamiento.

Análisis esquemático simplificado de una torre de enfriamiento. Análisis esquemático simplificado de una torre de enfriamiento. En el diagrama el aire con una humedad Y 2 y temperatura t 2 entra por el fondo de la torre y la abandona por la parte superior con una humedad

Más detalles

Termodinámica I: Calores específicos

Termodinámica I: Calores específicos Termodinámica I: Calores específicos I Semestre 2012 CALORES ESPECÍFICOS Se requieren distintas cantidades de energía para elevar un grado la temperatura de masas idénticas de diferentes sustancias. Es

Más detalles

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: GASES Nitrógeno 78% Oxígeno 21% Otros gases 1% La atmósfera también almacena otros gases Vapor

Más detalles

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO AHORRO DE ENERÍA EN UNA CALDERA UTILIZANDO ECONOMIZADORES Javier Armijo C., ilberto Salas C. Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos Resumen En el presente trabajo

Más detalles

Facultad de Ciencias Fisicomatemáticas e Ingeniería VAPOR - EXERGÍA

Facultad de Ciencias Fisicomatemáticas e Ingeniería VAPOR - EXERGÍA Cátedra: Termodinámica - Ing. Civil e Ing. Ambiental Docente/s: Ing. José Contento / Ing. Jorge Rosasco Guía de trabajos prácticos Nº 6 VAPOR - EXERGÍA.- En un recipiente de paredes rígidas y adiabáticas,

Más detalles

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS 1. Una Cámara de refrigeración para almacenamiento de Kiwi tiene las siguientes dimensiones: 3,6 m x 8 m x 28 m. Fue diseñado para operar

Más detalles

FASES Y ESTADOS DE LA MATERIA. Estados de la materia CAMBIOS DE FASE Y DIAGRAMAS DE FASE. Fase: CAMBIOS DE FASE FASE Y ESTADOS DE LA MATERIA

FASES Y ESTADOS DE LA MATERIA. Estados de la materia CAMBIOS DE FASE Y DIAGRAMAS DE FASE. Fase: CAMBIOS DE FASE FASE Y ESTADOS DE LA MATERIA FASES Y ESTADOS DE LA MATERIA CAMBIOS DE FASE Y DIAGRAMAS DE FASE Estados de la materia Bibliografía: Química la Ciencia Central - T.Brown, H.Lemay y B. Bursten. Quimica General - R. Petruci, W.S. Harwood

Más detalles

PRODUCTO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELTOS

PRODUCTO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELTOS UNIVERSIDAD NACIONAL EXPERIMENAL FRANCISCO DE MIRANDA ÁREA DE ECNOLOGÍA COMPLEJO ACADÉMICO EL SABINO DEPARAMENO DE ENERGÉICA PRODUCO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELOS Periodo: III-2012 Por:

Más detalles

7. EQUILIBRIO DE FASES EN SUSTANCIAS PURAS

7. EQUILIBRIO DE FASES EN SUSTANCIAS PURAS - 130-7. EQUILIBRIO DE FASES EN SUSTANCIAS PURAS Una sustancia pura puede tener una sola fase (sólida, líquida o gaseosa) o dos o tres fases en equilibrio, dependiendo de las condiciones de presión y temperatura.

Más detalles

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa?

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa? C A P Í T U L O 2 Dada la importancia que tienen los procesos de combustión en la generación de contaminantes, en este capítulo se han incluido algunos ejercicios relacionados con la combustión estequiométrica.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 6, Opción A Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio 6, Opción B Reserva, Ejercicio

Más detalles

TEMA 12. PSICROMETRÍA

TEMA 12. PSICROMETRÍA Termodinámica Aplicada Ingeniería Química TEMA 12. PSICROMETRÍA TEMA 12: PSICROMETRÍA BLOQUE II. Análisis termodinámico de procesos industriales PROCESOS INDUSTRIALES ANÁLISIS PROCESOS CALOR TRABAJO POTENCIA

Más detalles

Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES

Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES 2.1. Calcula la presión que ejerce 1 mol de Cl 2 (g), de CO 2 (g) y de CO (g) cuando se encuentra ocupando un volumen

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

REACTORES QUÍMICOS - PROBLEMAS RCTA 36-46

REACTORES QUÍMICOS - PROBLEMAS RCTA 36-46 REACTORES QUÍMICOS - PROBLEMAS RCTA 6-46 Curso 011-01 6.- Para llevar a cabo la descomposición del acetaldehído en fase gas, una reacción irreversible y de segundo orden respecto a este compuesto, se emplea

Más detalles

PROBLEMAS BLOQUE 4. REFRIGERACIÓN

PROBLEMAS BLOQUE 4. REFRIGERACIÓN PROBLEMAS BLOQUE 4. REFRIGERACIÓN Problema 1 Calcular el COP de refrigeración y las condiciones de funcionamiento de un ciclo frigorífico ideal con régimen seco que funciona con amoniaco (NH3) entre 20

Más detalles

DEFINICIONES Y TÉRMINOS EMPLEADOS CORRIENTEMENTE EN AIRE ACONDICIONADO

DEFINICIONES Y TÉRMINOS EMPLEADOS CORRIENTEMENTE EN AIRE ACONDICIONADO INSTALACIONES 2 / 26 + TRABAJO PRACTICO Nº 11 INSTALACIONES TÉRMICAS Aire Acondicionado I: Definiciones y conceptos básicos. Preparado por: Arq. Jorge Czajkowski [Profesor Titular] Colaboración: Arq. Alejandro

Más detalles

Condiciones higroscópicas de los Materiales (Práctica 4)

Condiciones higroscópicas de los Materiales (Práctica 4) Condiciones higroscópicas de los Materiales (Práctica 4) 1. Conceptos básicos. 2. Conceptos aplicados a los materiales. 3. Condensaciones Superficiales Intersticiales 1. Estudio de condensación. 2. Solución

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

INDUSTRIAS I HORNO ROTATIVO

INDUSTRIAS I HORNO ROTATIVO INDUSTRIAS I HORNO ROTATIVO Ing. Bruno A. Celano Gomez Abril 2015 HORNO ROTATIVO Continuo Calentamiento Externo Llama libre Aplicaciones: cemento, cal, aluminio, etc. Horno Rotativo Diagrama Horno Rotativo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 4, Opción A Junio, Ejercicio 6, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio

Más detalles

PROBLEMAS DE PSICROMETRÍA

PROBLEMAS DE PSICROMETRÍA PROBLEMAS DE PSICROMETRÍA BLOQUE 4: Aire húmedo y procesos psicrométricos PROBLEMA En un proceso de acondicionamiento se necesita acondicionar 000 kgas/hora de aire hasta la temperatura de 18 ºC y humedad

Más detalles

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR:

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: ciclo doble / simple etapa ORC con un innovador motor rotativo termovolumetrico patentada de alta eficiencia 0.Resumen Se presentan algunos resultados

Más detalles

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?

Más detalles

XVIII- AIRE ACONDICIONADO pfernandezdiez.es

XVIII- AIRE ACONDICIONADO pfernandezdiez.es XVIII- AIRE ACONDICIONADO XV.1.- INTRODUCCION Para conseguir una sensación de bienestar hay que tener en cuenta la humedad del aire, su temperatura, velocidad, etc, así como la presencia de paredes frías,

Más detalles

LOS LOCALES DE LA MADURACIÓN

LOS LOCALES DE LA MADURACIÓN LOS LOCALES DE LA MADURACIÓN LOS LOCALES DE LA MADURACIÓN La regulación del ambiente de las cámaras de maduración Consecuencias sobre la estructura y la organización de los locales Las Buenas Prácticas

Más detalles

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal EJERCICIOS TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN Ejercicio 1: Calcula la energía, en KWh, que ha consumido una máquina que tiene 40 CV y ha estado funcionando durante 3 horas. Hay que pasar la potencia

Más detalles

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA CICLOS DE POTENCIAS DE

Más detalles

V 2 =P 1 -P 2 (U 2 ) P 2,X 2,

V 2 =P 1 -P 2 (U 2 ) P 2,X 2, UNIERIDD URL DE HILE INIUO DE IENI Y ENOLOGI DE LO LIMENO (IYL / IGNUR : Ingeniería de Procesos III (IL 4 PROEOR : Elton. Morales Blancas UNIDD 8:EPORION DE OLUIONE LIMENII GUI DE PROBLEM REUELO II: Evaporadores

Más detalles

Química 2º Bach. Recuperación 1ª Evaluación 13/01/05

Química 2º Bach. Recuperación 1ª Evaluación 13/01/05 Química º Bach. Recuperación 1ª Evaluación 13/1/5 DEPARTAMENT DE FÍSIA E QUÍMIA Nombre: 1. alcula a partir de qué temperatura será espontánea la reacción de descomposición del tetraóxido de dinitrógeno

Más detalles

CENTRALES TÉRMICAS. José Agüera Soriano 2011 1

CENTRALES TÉRMICAS. José Agüera Soriano 2011 1 CENTRALES TÉRMICAS José Agüera Soriano 0 José Agüera Soriano 0 José Agüera Soriano 0 3 José Agüera Soriano 0 José Agüera Soriano 0 5 Ciclos de máximo rendimiento T T Q Q '= Q 3' T ' Q 3' 3 A' A B' B s

Más detalles

TEMA 7: POROSIDAD Y ÁREA SUPERFICIAL

TEMA 7: POROSIDAD Y ÁREA SUPERFICIAL 1 TEMA 7: POROSIDAD Y ÁREA SUPERFICIAL 1.- Clasificación de los poros de acuerdo a su tamaño Los materiales porosos se clasifican como microporosos con un tamaño de poro de 0.3-2 nm, mesoporosos de 2-50

Más detalles

Ciclos de Potencia Curso 2007. Ejercicios

Ciclos de Potencia Curso 2007. Ejercicios Ejercicios Cuando no se indica otra cosa, los dispositivos y ciclos se asumen ideales. En todos los casos, bosqueje los ciclos y realice los diagramas apropiados. Se indican las respuestas para que controle

Más detalles

PROCESOS DE ACONDICIONAMIENTO DE AMBIENTES

PROCESOS DE ACONDICIONAMIENTO DE AMBIENTES UNEFM COMPLEJO ACADÉMICO EL SABINO AREA DE TECONOLOGÍA UNIDAD CURRICULAR: ELECTIVA III REFRIGERACIÓN DEPARTAMENTO: ENERGÉTICA PROGRAMA: ING MECÁNICA PROCESOS DE ACONDICIONAMIENTO DE AMBIENTES PUBLICADO

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

DESARROLLO DE UN PROGRAMA DE CÁLCULO PARA PROPIEDADES FÍSICAS DEL AIRE RELACIONADAS CON LA HUMEDAD

DESARROLLO DE UN PROGRAMA DE CÁLCULO PARA PROPIEDADES FÍSICAS DEL AIRE RELACIONADAS CON LA HUMEDAD DESARROLLO DE UN PROGRAMA DE CÁLCULO PARA PROPIEDADES FÍSICAS DEL AIRE RELACIONADAS CON LA HUMEDAD 1 Enrique Martines López, 2 Israel E. Alvarado Ramírez 1 Centro Nacional de Metrología, División de Termometría

Más detalles

3. SISTEMAS DE REFRIGERACIÓN Y BOMBA DE CALOR

3. SISTEMAS DE REFRIGERACIÓN Y BOMBA DE CALOR . SISEMAS DE REFRIGERACIÓN Y BOMBA DE CALOR INRODUCCIÓN La rfrigraión mpla para xtrar alor d un rinto, diipándolo n l mdio ambint. Como ta pud r también la dfiniión dl nfriaminto omún, priarmo un poo má:

Más detalles

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN Clasificación de Sistemas de Ventilación de Túneles Sistema de Ventilación n Longitudinal

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

FÍSICA II. Guía De Problemas Nº5: Transmisión del Calor

FÍSICA II. Guía De Problemas Nº5: Transmisión del Calor Unvrdad Naconal dl Nordt Facultad d Ingnría Dpartamnto d Fíco-uímca/Cátdra Fíca II FÍSICA II Guía D Problma Nº5: Tranmón dl Calor 1 PROBLEMAS RESUELTOS 1 - Una barra d cobr d cm d dámtro xtror tn n u ntror

Más detalles

Masa y composición isotópica de los elementos

Masa y composición isotópica de los elementos Masa y composición isotópica de los elementos www.vaxasoftware.com Z Sím A isótopo Abndancia natral Vida Prodcto 1 H 1 1,00782503207(10) 99,9885(70) 1,00794(7) estable D 2 2,0141017780(4) 0,0115(70) estable

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

Problemas resueltos de termoquímica.

Problemas resueltos de termoquímica. Problemas resueltos de termoquímica. 12 de noviembre de 2014 1. Variables termodinámicas. 1. Calcula el volumen molar en ml/mol del H 2 O a 1 atm y 100 C si su densidad es ρ = 0,958 gr/cm 3. V m = V/P

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 07. Combus.ón Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles