Tema 3 Optimización lineal. Algoritmo del simplex

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3 Optimización lineal. Algoritmo del simplex"

Transcripción

1 Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid

2 Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo del simplex. Ejemplos. La tabla del simplex. Pivoteo. Método de las dos fases. Optimización lineal con R

3 Teorema fundamental de la programación lineal Por el teorema de representación, el problema lineal: minimizar s.a. c x Ax = b x 0 es equivalente a: minimizar s.a. [ k c i=1 λ ix i + ] l j=1 µ jd j k i=1 λ i = 1 λ i 0, i = 1,..., k µ j 0, j = 1,..., l, donde x 1,..., x k son los puntos extremos del conjunto factible y d 1,..., d l son sus direcciones extremas.

4 Teorema fundamental de la programación lineal Teorema: Consideremos un problema de optimización lineal en forma estándar. Sean x 1,..., x k los puntos extremos del conjunto factible y sean d 1,..., d l sus direcciones extremas. El problema tiene solución factible óptima si y solo si c d j 0, para todo j = 1,..., l. Si esta condición se cumple, existe un punto extremo que es solución factible óptima del problema. Interpretación de la condición de existencia de solución. Puede haber exactamente dos soluciones factibles óptimas? Para resolver un problema lineal se podría comprobar que tiene solución, evaluar c x i para todos los puntos extremos y elegir el mejor de ellos. En la práctica este método no es útil porque el número de puntos extremos puede ser muy grande.

5 El algoritmo del simplex Es un método sistemático para pasar de un punto extremo a otro de manera que siempre mejore el objetivo. En cada paso se puede detectar si ya hemos llegado al óptimo o aún tenemos que pasar a otro punto extremo. También se puede detectar si el problema no tiene solución óptima. Pasar de un punto extremo a otro corresponde a cambiar la base B por una base nueva ˆB. En el simplex ambas bases difieren en un único vector de modo que las operaciones del cambio de base son relativamente sencillas.

6 El algoritmo del simplex Solución factible básica inicial: ( B x = (x 1,..., x m, 0,..., 0) = ( x B, x N 1 ) b ) = := 0 b es el vector de coordenadas de b respecto a la base B. Valor objetivo inicial: z = c B B 1 b = c B b. ) ( b. 0 Valor objetivo en cualquier otro punto factible x = (x B, x N ) : z = c B ( b B 1 Nx N ) + c N x N = z (c B B 1 N c N )x N = z j N(z j c j )x j, donde z j = cb B 1 a j := cb y j. y j = B 1 a j a j = y 1j a y mj a m, es decir, y j es el vector de coordenadas de la columna no básica a j respecto a la base B.

7 El algoritmo del simplex z = z j N(z j c j )x j. Qué ocurre si z j c j 0, para todo j N? Supongamos que existe k N con z k c k > 0. Vamos a pasar de x a una nueva solución factible básica: ˆx = (ˆx 1,..., (r) 0,..., ˆx m, 0,..., (k) α,..., 0), α > 0. El nuevo valor objetivo es: ẑ = z (z k c k )α.

8 El algoritmo del simplex Criterio de entrada: Entra a la base la variable k tal que z k c k = max j N {z j c j : z j c j > 0}. Hay que aumentar α tanto como sea posible sin salirnos del conjunto factible: Aˆx = b es equivalente a ( ) yk ˆx = x + α, donde y k = B 1 a k. e k Qué ocurre si y k 0? Supongamos que y k 0.

9 El algoritmo del simplex Para que ˆx sea factible también hace falta ˆx 0: ˆx B 0 b αy k 0 α b i y ik, para todo i = 1,..., m tal que y ik > 0. El mayor valor posible de α es: { } b i α = min : y ik > 0 := b r y ik y rk Criterio de salida: sale de la base la variable r en la que se alcanza el mínimo anterior.

10 Ejemplo maximizar 3x 1 + x 2 + 2x 3 s.a. 2x 1 + x 2 + x 3 2 x 1 + 2x 2 + 3x 3 5 2x 1 + 2x 2 + x 3 6 x 1 0, x 2 0, x 3 0 Pasamos primero a la forma estándar: minimizar 3x 1 x 2 2x 3 s.a. 2x 1 + x 2 + x 3 + x 4 = 2 x 1 + 2x 2 + 3x 3 + x 5 = 5 2x 1 + 2x 2 + x 3 + x 6 = 6 x i 0, i = 1,..., 6.

11 Ejemplo Solución factible básica inicial: x = (0, 0, 0, 2, 5, 6), para la que el objetivo es z = 0. Escribe los valores de: B, b, c B, y j y z j c j, para todo j N. Es x la solución factible óptima del problema? Qué variable k entra en la base? Qué y k le corresponde? Qué variable r sale de la base?

12 Pivoteo Necesitamos expresar los vectores a j y b respecto a la nueva base ˆB = {a 1, a 5, a 6 }. A esta operación se le llama pivoteo. El pivote es el coeficiente y rk correspondiente a la fila de la variable que sale y la columna de la que entra. Cuál es el pivote en el ejemplo? 2x 1 + x 2 + x 3 + x 4 = 2 x 1 + 2x 2 + 3x 3 + x 5 = 5 2x 1 + 2x 2 + x 3 + x 6 = 6

13 Pivoteo 2x 1 + x 2 + x 3 + x 4 = 2 x 1 + 2x 2 + 3x 3 + x 5 = 5 2x 1 + 2x 2 + x 3 + x 6 = 6 La fila r se divide por el pivote para que el coeficiente de x k sea 1. Al resto de filas se les resta la fila r multiplicada por el valor adecuado para que x k ya no aparezca en esa fila. x 1 + x 2 /2 + x 3 /2 + x 4 /2 = 1 3x 2 /2 + 5x 3 /2 x 4 /2 + x 5 = 4

14 Ejemplo Solución factible básica actual: ˆx = (1, 0, 0, 0, 4, 4), para la que el objetivo es ẑ = 3. Escribe los valores de: c B, y j y z j c j, para todo j N. Es x la solución factible óptima del problema? Qué variable k entra en la base? Qué y k le corresponde? Qué variable r sale de la base?

15 Convergencia Si en cada paso encontramos b = B 1 b > 0, entonces x y ˆx son puntos extremos distintos. Como hay un número finito de puntos extremos, el algoritmo converge en un número finito de iteraciones. Si en algún paso b r = 0, entonces α = 0. Cambia la base, pero el punto extremo es el mismo. Esto podría ocurrir infinitas veces y entonces el algoritmo del simplex no converge (se dice que ha ocurrido un ciclo). Hay criterios de entrada y salida para evitar los ciclos: regla de Bland

16 Tabla simplex Los elementos para efectuar cada iteración se suelen disponer ordenadamente en forma de tabla: c c B c N Variables x B x N x B = b I m m B 1 N z c 0 c B B 1 N c N Las columnas corresponden a variables básicas y no básicas. Las filas corresponden a las variables básicas.

17 Aplica los criterios de entrada y salida a la base. Ejemplo minimizar 4x 1 3x 2 s.a. x 1 + x 2 + x 3 = 2 x 1 + 2x 2 + x 4 = 6 2x 1 + x 2 + x 5 = 6 x i 0, i = 1,..., 5. Tabla inicial: B = (a 3, a 4, a 5 ) = I 3 3 c Variables x 1 x 2 x 3 x 4 x 5 x 3 = x 4 = x 5 = z j c j

18 Ejemplo (primera iteración) c Variables x 1 x 2 x 3 x 4 x 5 x 3 = x 4 = x 5 = z j c j c Variables x 1 x 2 x 3 x 4 x 5 x 3 = 5 0 3/ /2 x 4 = 3 0 3/ /2 x 1 = 3 1 1/ /2 z j c j

19 La solución factible óptima es (2, 2, 2, 0, 0) y el valor objetivo Ejemplo (segunda iteración) c Variables x 1 x 2 x 3 x 4 x 5 x 3 = 5 0 3/ /2 x 4 = 3 0 3/ /2 x 1 = 3 1 1/ /2 z j c j c Variables x 1 x 2 x 3 x 4 x 5 x 3 = x 2 = /3-1/3 x 1 = /3 2/3 z j c j /3-5/3

20 Actualización de la tabla Columna de la izquierda ˆx i = b i αy ik = b i b r y rk y ik ˆx k = α = b r y rk. Valores y ij a k = y 1k a y rk a r + + y mk a m a r = y 1k a a k y mk a m y rk y rk y ( rk a j = y 1j y ) 1k y rj a y ( rj a k + + y mj y ) mk y rj a m y rk y rk y rk

21 Actualización de la tabla Valores y ij Última fila: ŷ ij = y ij y rj y rk y ik, si i r, ŷ rj = y rj y rk ẑ j ĉ j = = m r i=1 m i=1 c i ŷ ij + c k ŷ rj c j = c i y ij c j y rj y rk m i=1 m i=1 ( c i y ij y ) rj y rj y ik + c k c j y rk y rk c i y ik + c k y rj y rk = (z j c j ) y rj y rk (z k c k )

22 Actualización de la tabla En resumen: La fila del pivote (fila r) se divide por el pivote (y rk ). Así se consigue que ŷ rk = 1. A la fila i se les resta la fila r actualizada y multiplicada por y ik. Así se consigue que ŷ ik = 0. A la última fila se le resta la fila r actualizada y multiplicada por z k c k. Así se consigue que ẑ k ĉ k = 0

23 Método de las dos fases Es un método útil para: Encontrar una solución factible básica inicial. Detectar si el conjunto factible es vacío. Detectar si hay restricciones redundantes. Fase 1: Se introducen variables artificiales y se minimiza su suma. Fase 2: Si la suma óptima no es cero entonces el problema original no es factible. En caso contrario las variables artificiales habrán abandonado la base y dispondremos de una base inicial de variables legítimas.

24 Fase 1 Si e = (1,..., 1), se resuelve el problema: minimizar s.a. e x a Ax + Ix a = b x 0, x a 0 Variables artificiales son diferentes a variables de holgura. Este problema tiene una solución factible básica obvia en la que las variables básicas son las artificiales. Sea ( x, x a ) el óptimo al final de la fase 1.

25 Fase 2 Caso 1: x a 0, el problema original no es factible ( por qué?). Caso 2: x a = 0, pueden ocurrir a su vez dos casos Ninguna variable artificial es básica. En este caso se eliminan de la tabla las columnas de las variables artificiales. Se calculan los valores z j c j y se continúa como en el método simplex habitual. Hay alguna variable artificial en la base al nivel 0 (degeneración). Se busca en la fila un pivote para poder sustituirla por una variable legítima. Se calculan los valores z j c j y se continúa como en el método simplex habitual.

26 Ejemplo Problema original: minimizar 4x 1 + x 2 + x 3 s.a. 2x 1 + x 2 + 2x 3 = 4 3x 1 + 3x 2 + x 3 = 3 x 1 0, x 2 0, x 3 0 Problema a resolver en la fase 1: minimizar x a 1 + x a 2 s.a. 2x 1 + x 2 + 2x 3 + x a 1 = 4 3x 1 + 3x 2 + x 3 + x a 2 = 3 x i 0, x a i 0

27 Fase 1 c Variables x 1 x 2 x 3 x1 a x2 a x1 a = x a 2 = z j c j c Variables x 1 x 2 x 3 x1 a x2 a = /3 1-2/3 x a 1 x 1 = /3 0 1/3 z j c j 0-1 4/3 0-5/3 c Variables x 1 x 2 x 3 x1 a x2 a x 3 = 3/2 0-3/4 1 3/4-1/2

28 Fase 2 Partimos de la solución factible básica en la última tabla de la fase 1. Se eliminan las variables artificiales. Se actualizan la primera y la última fila de la tabla. c Variables x 1 x 2 x 3 x 1 = 1/2 1 5/4 0 x 3 = 3/2 0-3/4 1 z j c j 0 13/4 0 Para las variables básicas z j c j = 0. Además, ( ) 5/4 z 2 c 2 = (4, 1) 1 = 13/4. 3/4

29 Fase 2 c Variables x 1 x 2 x 3 x 2 = 2/5 4/5 1 0 x 3 = 9/5 3/5 0 1 z j c j -13/5 0 0 La solución factible óptima del problema viene dada por x 1 = 0, x 2 = 2/5 y x 3 = 9/5 y el valor objetivo óptimo es z = 11/5.

30 Ejemplo Aplica el método de las dos fases para resolver: minimizar x 1 + 2x 2 3x 3 s.a. x 1 + x 2 + x 3 = 6 x 1 + x 2 + 2x 3 = 4 2x 2 + 3x 3 = 10 x 3 2 x i 0

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

Forma estándar de un PPL con m restricciones y n variables. (b 0)

Forma estándar de un PPL con m restricciones y n variables. (b 0) Forma estándar de un PPL con m restricciones y n variables Maximizar (minimizar) Z = c 1 x 1 + c 2 x 2 +... + c n x n a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +a 22 x 2 +... + a 2n x n = b 2...

Más detalles

Tema V: Optimización Lineal

Tema V: Optimización Lineal Tema V: Optimización Lineal Omar J. Casas López Diciembre 2003 1 Algoritmo Simplex El objetivo del Algoritmo Simplex consiste en que partiendo de una Solución Factible Básica inicial, encontrar otra que

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

Algebra lineal y conjuntos convexos 1

Algebra lineal y conjuntos convexos 1 Algebra lineal y conjuntos convexos Solución de sistemas. Espacios vectoriales. 3 Conjuntos convexos. 4 Soluciones básicas puntos extremos. Rango de una matriz A R m n. Reducir A a una matriz escalonada

Más detalles

Dualidad y postoptimización

Dualidad y postoptimización Dualidad y postoptimización José María Ferrer Caja Universidad Pontificia Comillas Definición A cada problema de optimización lineal le corresponde otro que se denomina problema dual En forma canónica

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex UNIDAD 3 MÉTODO SIMPLEX Fundamentos del método simplex Teoría Este método busca la solución, en cada paso, de forma mejorada hasta que no pueda seguir mejorando dicha solución. Al comienzo el vértice principal

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL Algoritmo del método simplex que mejora la eficiencia de los cálculos, se realizan los mismos pasos del método simplex visto, sólo se diferencia en la manera de

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja. Dado el PL: Maximizar x + x x s.a x + x + x x x x x, x, x Calcula la solución del problema aplicando el algoritmo del Simplex. Existe más de una solución óptima?

Más detalles

Coeficiente objetivo de la variable artificial = +M, para minimización

Coeficiente objetivo de la variable artificial = +M, para minimización 3.4 SOLUCIÓN ARTIFICIAL DE INICIO Como se demostró en el ejemplo 3.3-1, los programas lineales en los que todas las restricciones son ( ) con lados derechos no negativos ofrecen una cómoda solución factible

Más detalles

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 2: Optimización lineal Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario El modelo de programación lineal Formulación de modelos Método gráfico

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30 1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds PROBLEMA Una empresa dedicada a la fabricación de diferentes artículos, ante la inminente llegada de la estación invernal se plantea establecer su política de fabricación almacenae de estufas de gas para

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

Sensibilidad y Dualidad

Sensibilidad y Dualidad Sensibilidad y Dualidad MLG521 Profesor: Cristóbal Rojas Departamento de Ciencias de de la Ingeniería Departamento de Ingeniería Matemática Universidad Andrés Bello Curso dictado en conjunto con Pamela

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

Capítulo 4 Método Algebraico

Capítulo 4 Método Algebraico Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

Programación Lineal III. Análisis Post-Optimal

Programación Lineal III. Análisis Post-Optimal Programación Lineal III. Análisis Post-Optimal P.M. Mateo y David Lahoz 7 de mayo de 009 En este tema se estudia al análisis post-optimal, qué ocurre en un problema de programación lineal que ya hemos

Más detalles

0. En la solución inicial estos ratios son 30; 155

0. En la solución inicial estos ratios son 30; 155 PASO 7. Regla de entrada. Se introduce en la base la variable con mayor coste reducido, en este caso, la variable. PASO 8. Regla de salida. A continuación debemos determinar qué variable sale de la base.

Más detalles

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29 Optimización lineal Diego A. Patino Pontificia Universidad Javeriana 2 de septiembre de 2016 1/ 29 Introducción Formulación del problema Herramientes del análisis convexo Formas de las restricciones 2/

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES Ignacio López Torres. Reservados todos los derechos. Prohibida la reproducción total o parcial de esta obra, por cualquier medio electrónico

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid Tema 1 Introducción José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Información de contacto José Ramón Berrendero Díaz Correo electrónico: joser.berrendero@uam.es Teléfono:

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio Formato para prácticas de laboratorio CARRERA INGENIERIA INDUSTRIAL PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE 2007-1 9013 NOMBRE DE LA UNIDAD DE APRENDIZAJE METODOLOGIA PARA LA RESOLUCION DE PROBLEMAS

Más detalles

MATE Método Simplex maximización estándar

MATE Método Simplex maximización estándar MATE 3012 Método Simplex maximización estándar Problema de maximización estándar Un problema de maximización de programación lineal está en la forma estándar, si la función objetiva w = c 1 x 1 + c 2 x

Más detalles

Análisis de Sensibilidad de los Resultados

Análisis de Sensibilidad de los Resultados Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 22 Análisis de Sensibilidad de los Resultados ICS 02 Optimización Profesor : Claudio Seebach

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Ejercicios Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución

Más detalles

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización Contenidos Motivación y Representación de Poliedros IN3701, Optimización 22 de abril de 2009 Contenidos Motivación y Representación de Poliedros Contenidos 1 Motivación 2 y Representación de Poliedros

Más detalles

Parcial. Martes 12 de marzo de (sin textos)

Parcial. Martes 12 de marzo de (sin textos) 5.53 Parcial Martes 2 de marzo de 2 (sin textos). Responda a todas las preguntas en los cuadernillos de examen. 2. Controle el tiempo. Si un problema (o uno de sus apartados) le lleva mucho tiempo, le

Más detalles

Método de las dos fases

Método de las dos fases Método de las dos fases Max X 0 = 3x 1 + 5x 2 Sujeta a 4 x 1 + x 2 4 - x 1 + 2x 2 2 x 2 3 x 1, x 2 0 1. Se obtiene el problema aumentado con variables artificiales. Max X 0 = 3x 1 + 5x 2 + 0x 3 + 0x 4

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY 25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación

Más detalles

INVESTIGACION DE OPERACIONES:

INVESTIGACION DE OPERACIONES: METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX Prof. MSc. Julio Rito Vargas ================================================================================ Resolver por el método Simplex,

Más detalles

Resolución de sistemas de ecuaciones lineales

Resolución de sistemas de ecuaciones lineales Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa.

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. UNIDAD 5 MÉTODO SÍMPLEX maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. minimización (con restricciones de la forma mayor que). tenga

Más detalles

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización.

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización. Tema El método simplex Los modelos lineales con dos o tres variables se pueden resolver gráficamente. En el Tema hemos visto la solución gráfica de modelos lineales de dos variables. Sin embargo, este

Más detalles

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/ CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Octubre 2008 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el

Más detalles

Contenido. 1 Resolución mediante planos de corte. Resolución mediante planos de corte

Contenido. 1 Resolución mediante planos de corte. Resolución mediante planos de corte Contenido 1 Resolución mediante planos de corte para LP para IP Facultad de Ingeniería. UdelaR Fundamentos de Programación Entera 1/20 para LP para IP Resolución mediante planos de corte La metodología

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN)

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN) UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Ing. Julio Rito Vargas Avilés (SOLUCIÓN) I. Representar gráficamente la región determinada

Más detalles

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

Estrategias de pivoteo

Estrategias de pivoteo Estrategias de pivoteo Objetivos. Resolver sistemas de ecuaciones lineales aplicando varias técnicas de pivoteo; programar estos algoritmos. Requisitos. Operaciones elementales, experiencia de resolver

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No.5 Nombre: El método simplex. Segunda parte. Objetivo Al finalizar la sesión, el alumno será capaz de identificar las herramientas que permiten resolver problemas de

Más detalles

Programación Lineal Pedro Sánchez

Programación Lineal Pedro Sánchez Pedro Sánchez Contents 1. Solución gráfica 2. Sensibilidades gráficas 3. Método Simplex 4. Metodología Simplex 5. Dualidad 6. Análisis de sensibilidad 7. Método simplex dual 2 1 Solución gráfica Sensibilidades

Más detalles

Control 2 IN mayo 2009

Control 2 IN mayo 2009 Profs: Auxs: Daniel Espinoza Gonzalo Romero Víctor Bucarey Nelson Devia Jocelyn González Daniel Lillo Fernando Solari Control 2 IN3701 28 mayo 2009 Pregunta 1 La empresa de pigmentos LILLO & Co. debe decidir

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulos 10 y 11

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Capítulo 1 Programación lineal

Capítulo 1 Programación lineal Capítulo Programación lineal Introducción En general, un problema de programación lineal consiste en maximizar o minimizar el valor de una función lineal cx c x + + c n x n a la que llamaremos el funcional

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

Tema 4: Teoría de dualidad. Algoritmo Dual del Simplex 1

Tema 4: Teoría de dualidad. Algoritmo Dual del Simplex 1 Tema 4: Teoría de dualidad. Algoritmo Dual del Simplex 1 4.1 Introducción 4.2 Definición del Problema Dual 4.3 Relaciones Primal-Dual 4.4 Condiciones de Holgura Complementaria 4.5 Interpretación Económica

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Programación Lineal I

Programación Lineal I Programación Lineal I P.M. Mateo y D. Lahoz 27 de mayo de 2009 En este tema se realiza la introducción de los modelos de programación lineal y de los elementos necesarios para concluir con el algorítmo

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este

Más detalles

PAIEP. Sistemas de Ecuaciones Lineales

PAIEP. Sistemas de Ecuaciones Lineales Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Sistemas de Ecuaciones Lineales Consideremos el sistema lineal de dos ecuaciones y dos incógnitas x + y = 2 2x

Más detalles

Tema 5: Análisis de Sensibilidad y Paramétrico

Tema 5: Análisis de Sensibilidad y Paramétrico Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el

Más detalles

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Métodos Numéricos: Resumen y ejemplos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de

Más detalles

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d Cálculo Numérico - CO32 Ejercicios Decida cuáles de las siguientes proposiciones son verdaderas y cuáles son falsas Si una proposición es verdadera, demuéstrela, y si es falsa dé un contraejemplo: a Sea

Más detalles

Optimización lineal con R José R. Berrendero

Optimización lineal con R José R. Berrendero Optimización lineal con R José R. Berrendero Introducción Veamos cómo se pueden resolver problemas de optimización lineal con R a través de algunos ejemplos sencillos. La mayor parte de las funciones necesarias

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Una matriz es un arreglo rectangular de números reales en m filas y n a 11 a 1n columnas

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO

Más detalles

Investigación de Operaciones Método Simplex

Investigación de Operaciones Método Simplex FACULTA DE INGENIERIA DE SISTEMAS E INFORMATICA Investigación de Operaciones Método Simplex Integrantes Mayta Chiclote, Ricardo Toledo Fabian, Jimmy Yarleque Esqueche, Jimmy Daniel Método Simplex Página

Más detalles

SEL - Métodos Directos

SEL - Métodos Directos Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Métodos Directos Generalidades sobre Métodos Directos Eliminación Gaussiana Pivoteo Factorización LU Generalidades

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles