Tema 3 Optimización lineal. Algoritmo del simplex

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3 Optimización lineal. Algoritmo del simplex"

Transcripción

1 Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid

2 Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo del simplex. Ejemplos. La tabla del simplex. Pivoteo. Método de las dos fases. Optimización lineal con R

3 Teorema fundamental de la programación lineal Por el teorema de representación, el problema lineal: minimizar s.a. c x Ax = b x 0 es equivalente a: minimizar s.a. [ k c i=1 λ ix i + ] l j=1 µ jd j k i=1 λ i = 1 λ i 0, i = 1,..., k µ j 0, j = 1,..., l, donde x 1,..., x k son los puntos extremos del conjunto factible y d 1,..., d l son sus direcciones extremas.

4 Teorema fundamental de la programación lineal Teorema: Consideremos un problema de optimización lineal en forma estándar. Sean x 1,..., x k los puntos extremos del conjunto factible y sean d 1,..., d l sus direcciones extremas. El problema tiene solución factible óptima si y solo si c d j 0, para todo j = 1,..., l. Si esta condición se cumple, existe un punto extremo que es solución factible óptima del problema. Interpretación de la condición de existencia de solución. Puede haber exactamente dos soluciones factibles óptimas? Para resolver un problema lineal se podría comprobar que tiene solución, evaluar c x i para todos los puntos extremos y elegir el mejor de ellos. En la práctica este método no es útil porque el número de puntos extremos puede ser muy grande.

5 El algoritmo del simplex Es un método sistemático para pasar de un punto extremo a otro de manera que siempre mejore el objetivo. En cada paso se puede detectar si ya hemos llegado al óptimo o aún tenemos que pasar a otro punto extremo. También se puede detectar si el problema no tiene solución óptima. Pasar de un punto extremo a otro corresponde a cambiar la base B por una base nueva ˆB. En el simplex ambas bases difieren en un único vector de modo que las operaciones del cambio de base son relativamente sencillas.

6 El algoritmo del simplex Solución factible básica inicial: ( B x = (x 1,..., x m, 0,..., 0) = ( x B, x N 1 ) b ) = := 0 b es el vector de coordenadas de b respecto a la base B. Valor objetivo inicial: z = c B B 1 b = c B b. ) ( b. 0 Valor objetivo en cualquier otro punto factible x = (x B, x N ) : z = c B ( b B 1 Nx N ) + c N x N = z (c B B 1 N c N )x N = z j N(z j c j )x j, donde z j = cb B 1 a j := cb y j. y j = B 1 a j a j = y 1j a y mj a m, es decir, y j es el vector de coordenadas de la columna no básica a j respecto a la base B.

7 El algoritmo del simplex z = z j N(z j c j )x j. Qué ocurre si z j c j 0, para todo j N? Supongamos que existe k N con z k c k > 0. Vamos a pasar de x a una nueva solución factible básica: ˆx = (ˆx 1,..., (r) 0,..., ˆx m, 0,..., (k) α,..., 0), α > 0. El nuevo valor objetivo es: ẑ = z (z k c k )α.

8 El algoritmo del simplex Criterio de entrada: Entra a la base la variable k tal que z k c k = max j N {z j c j : z j c j > 0}. Hay que aumentar α tanto como sea posible sin salirnos del conjunto factible: Aˆx = b es equivalente a ( ) yk ˆx = x + α, donde y k = B 1 a k. e k Qué ocurre si y k 0? Supongamos que y k 0.

9 El algoritmo del simplex Para que ˆx sea factible también hace falta ˆx 0: ˆx B 0 b αy k 0 α b i y ik, para todo i = 1,..., m tal que y ik > 0. El mayor valor posible de α es: { } b i α = min : y ik > 0 := b r y ik y rk Criterio de salida: sale de la base la variable r en la que se alcanza el mínimo anterior.

10 Ejemplo maximizar 3x 1 + x 2 + 2x 3 s.a. 2x 1 + x 2 + x 3 2 x 1 + 2x 2 + 3x 3 5 2x 1 + 2x 2 + x 3 6 x 1 0, x 2 0, x 3 0 Pasamos primero a la forma estándar: minimizar 3x 1 x 2 2x 3 s.a. 2x 1 + x 2 + x 3 + x 4 = 2 x 1 + 2x 2 + 3x 3 + x 5 = 5 2x 1 + 2x 2 + x 3 + x 6 = 6 x i 0, i = 1,..., 6.

11 Ejemplo Solución factible básica inicial: x = (0, 0, 0, 2, 5, 6), para la que el objetivo es z = 0. Escribe los valores de: B, b, c B, y j y z j c j, para todo j N. Es x la solución factible óptima del problema? Qué variable k entra en la base? Qué y k le corresponde? Qué variable r sale de la base?

12 Pivoteo Necesitamos expresar los vectores a j y b respecto a la nueva base ˆB = {a 1, a 5, a 6 }. A esta operación se le llama pivoteo. El pivote es el coeficiente y rk correspondiente a la fila de la variable que sale y la columna de la que entra. Cuál es el pivote en el ejemplo? 2x 1 + x 2 + x 3 + x 4 = 2 x 1 + 2x 2 + 3x 3 + x 5 = 5 2x 1 + 2x 2 + x 3 + x 6 = 6

13 Pivoteo 2x 1 + x 2 + x 3 + x 4 = 2 x 1 + 2x 2 + 3x 3 + x 5 = 5 2x 1 + 2x 2 + x 3 + x 6 = 6 La fila r se divide por el pivote para que el coeficiente de x k sea 1. Al resto de filas se les resta la fila r multiplicada por el valor adecuado para que x k ya no aparezca en esa fila. x 1 + x 2 /2 + x 3 /2 + x 4 /2 = 1 3x 2 /2 + 5x 3 /2 x 4 /2 + x 5 = 4

14 Ejemplo Solución factible básica actual: ˆx = (1, 0, 0, 0, 4, 4), para la que el objetivo es ẑ = 3. Escribe los valores de: c B, y j y z j c j, para todo j N. Es x la solución factible óptima del problema? Qué variable k entra en la base? Qué y k le corresponde? Qué variable r sale de la base?

15 Convergencia Si en cada paso encontramos b = B 1 b > 0, entonces x y ˆx son puntos extremos distintos. Como hay un número finito de puntos extremos, el algoritmo converge en un número finito de iteraciones. Si en algún paso b r = 0, entonces α = 0. Cambia la base, pero el punto extremo es el mismo. Esto podría ocurrir infinitas veces y entonces el algoritmo del simplex no converge (se dice que ha ocurrido un ciclo). Hay criterios de entrada y salida para evitar los ciclos: regla de Bland

16 Tabla simplex Los elementos para efectuar cada iteración se suelen disponer ordenadamente en forma de tabla: c c B c N Variables x B x N x B = b I m m B 1 N z c 0 c B B 1 N c N Las columnas corresponden a variables básicas y no básicas. Las filas corresponden a las variables básicas.

17 Aplica los criterios de entrada y salida a la base. Ejemplo minimizar 4x 1 3x 2 s.a. x 1 + x 2 + x 3 = 2 x 1 + 2x 2 + x 4 = 6 2x 1 + x 2 + x 5 = 6 x i 0, i = 1,..., 5. Tabla inicial: B = (a 3, a 4, a 5 ) = I 3 3 c Variables x 1 x 2 x 3 x 4 x 5 x 3 = x 4 = x 5 = z j c j

18 Ejemplo (primera iteración) c Variables x 1 x 2 x 3 x 4 x 5 x 3 = x 4 = x 5 = z j c j c Variables x 1 x 2 x 3 x 4 x 5 x 3 = 5 0 3/ /2 x 4 = 3 0 3/ /2 x 1 = 3 1 1/ /2 z j c j

19 La solución factible óptima es (2, 2, 2, 0, 0) y el valor objetivo Ejemplo (segunda iteración) c Variables x 1 x 2 x 3 x 4 x 5 x 3 = 5 0 3/ /2 x 4 = 3 0 3/ /2 x 1 = 3 1 1/ /2 z j c j c Variables x 1 x 2 x 3 x 4 x 5 x 3 = x 2 = /3-1/3 x 1 = /3 2/3 z j c j /3-5/3

20 Actualización de la tabla Columna de la izquierda ˆx i = b i αy ik = b i b r y rk y ik ˆx k = α = b r y rk. Valores y ij a k = y 1k a y rk a r + + y mk a m a r = y 1k a a k y mk a m y rk y rk y ( rk a j = y 1j y ) 1k y rj a y ( rj a k + + y mj y ) mk y rj a m y rk y rk y rk

21 Actualización de la tabla Valores y ij Última fila: ŷ ij = y ij y rj y rk y ik, si i r, ŷ rj = y rj y rk ẑ j ĉ j = = m r i=1 m i=1 c i ŷ ij + c k ŷ rj c j = c i y ij c j y rj y rk m i=1 m i=1 ( c i y ij y ) rj y rj y ik + c k c j y rk y rk c i y ik + c k y rj y rk = (z j c j ) y rj y rk (z k c k )

22 Actualización de la tabla En resumen: La fila del pivote (fila r) se divide por el pivote (y rk ). Así se consigue que ŷ rk = 1. A la fila i se les resta la fila r actualizada y multiplicada por y ik. Así se consigue que ŷ ik = 0. A la última fila se le resta la fila r actualizada y multiplicada por z k c k. Así se consigue que ẑ k ĉ k = 0

23 Método de las dos fases Es un método útil para: Encontrar una solución factible básica inicial. Detectar si el conjunto factible es vacío. Detectar si hay restricciones redundantes. Fase 1: Se introducen variables artificiales y se minimiza su suma. Fase 2: Si la suma óptima no es cero entonces el problema original no es factible. En caso contrario las variables artificiales habrán abandonado la base y dispondremos de una base inicial de variables legítimas.

24 Fase 1 Si e = (1,..., 1), se resuelve el problema: minimizar s.a. e x a Ax + Ix a = b x 0, x a 0 Variables artificiales son diferentes a variables de holgura. Este problema tiene una solución factible básica obvia en la que las variables básicas son las artificiales. Sea ( x, x a ) el óptimo al final de la fase 1.

25 Fase 2 Caso 1: x a 0, el problema original no es factible ( por qué?). Caso 2: x a = 0, pueden ocurrir a su vez dos casos Ninguna variable artificial es básica. En este caso se eliminan de la tabla las columnas de las variables artificiales. Se calculan los valores z j c j y se continúa como en el método simplex habitual. Hay alguna variable artificial en la base al nivel 0 (degeneración). Se busca en la fila un pivote para poder sustituirla por una variable legítima. Se calculan los valores z j c j y se continúa como en el método simplex habitual.

26 Ejemplo Problema original: minimizar 4x 1 + x 2 + x 3 s.a. 2x 1 + x 2 + 2x 3 = 4 3x 1 + 3x 2 + x 3 = 3 x 1 0, x 2 0, x 3 0 Problema a resolver en la fase 1: minimizar x a 1 + x a 2 s.a. 2x 1 + x 2 + 2x 3 + x a 1 = 4 3x 1 + 3x 2 + x 3 + x a 2 = 3 x i 0, x a i 0

27 Fase 1 c Variables x 1 x 2 x 3 x1 a x2 a x1 a = x a 2 = z j c j c Variables x 1 x 2 x 3 x1 a x2 a = /3 1-2/3 x a 1 x 1 = /3 0 1/3 z j c j 0-1 4/3 0-5/3 c Variables x 1 x 2 x 3 x1 a x2 a x 3 = 3/2 0-3/4 1 3/4-1/2

28 Fase 2 Partimos de la solución factible básica en la última tabla de la fase 1. Se eliminan las variables artificiales. Se actualizan la primera y la última fila de la tabla. c Variables x 1 x 2 x 3 x 1 = 1/2 1 5/4 0 x 3 = 3/2 0-3/4 1 z j c j 0 13/4 0 Para las variables básicas z j c j = 0. Además, ( ) 5/4 z 2 c 2 = (4, 1) 1 = 13/4. 3/4

29 Fase 2 c Variables x 1 x 2 x 3 x 2 = 2/5 4/5 1 0 x 3 = 9/5 3/5 0 1 z j c j -13/5 0 0 La solución factible óptima del problema viene dada por x 1 = 0, x 2 = 2/5 y x 3 = 9/5 y el valor objetivo óptimo es z = 11/5.

30 Ejemplo Aplica el método de las dos fases para resolver: minimizar x 1 + 2x 2 3x 3 s.a. x 1 + x 2 + x 3 = 6 x 1 + x 2 + 2x 3 = 4 2x 2 + 3x 3 = 10 x 3 2 x i 0

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Tema V: Optimización Lineal

Tema V: Optimización Lineal Tema V: Optimización Lineal Omar J. Casas López Diciembre 2003 1 Algoritmo Simplex El objetivo del Algoritmo Simplex consiste en que partiendo de una Solución Factible Básica inicial, encontrar otra que

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30 1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria

Más detalles

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 2: Optimización lineal Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario El modelo de programación lineal Formulación de modelos Método gráfico

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

Capítulo 4 Método Algebraico

Capítulo 4 Método Algebraico Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,

Más detalles

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES Ignacio López Torres. Reservados todos los derechos. Prohibida la reproducción total o parcial de esta obra, por cualquier medio electrónico

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

Análisis de Sensibilidad de los Resultados

Análisis de Sensibilidad de los Resultados Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 22 Análisis de Sensibilidad de los Resultados ICS 02 Optimización Profesor : Claudio Seebach

Más detalles

Programación Lineal III. Análisis Post-Optimal

Programación Lineal III. Análisis Post-Optimal Programación Lineal III. Análisis Post-Optimal P.M. Mateo y David Lahoz 7 de mayo de 009 En este tema se estudia al análisis post-optimal, qué ocurre en un problema de programación lineal que ya hemos

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY 25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación

Más detalles

0. En la solución inicial estos ratios son 30; 155

0. En la solución inicial estos ratios son 30; 155 PASO 7. Regla de entrada. Se introduce en la base la variable con mayor coste reducido, en este caso, la variable. PASO 8. Regla de salida. A continuación debemos determinar qué variable sale de la base.

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

Parcial. Martes 12 de marzo de (sin textos)

Parcial. Martes 12 de marzo de (sin textos) 5.53 Parcial Martes 2 de marzo de 2 (sin textos). Responda a todas las preguntas en los cuadernillos de examen. 2. Controle el tiempo. Si un problema (o uno de sus apartados) le lleva mucho tiempo, le

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/ CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el

Más detalles

Método de las dos fases

Método de las dos fases Método de las dos fases Max X 0 = 3x 1 + 5x 2 Sujeta a 4 x 1 + x 2 4 - x 1 + 2x 2 2 x 2 3 x 1, x 2 0 1. Se obtiene el problema aumentado con variables artificiales. Max X 0 = 3x 1 + 5x 2 + 0x 3 + 0x 4

Más detalles

PAIEP. Sistemas de Ecuaciones Lineales

PAIEP. Sistemas de Ecuaciones Lineales Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Sistemas de Ecuaciones Lineales Consideremos el sistema lineal de dos ecuaciones y dos incógnitas x + y = 2 2x

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones

Más detalles

INVESTIGACION DE OPERACIONES:

INVESTIGACION DE OPERACIONES: METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización.

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización. Tema El método simplex Los modelos lineales con dos o tres variables se pueden resolver gráficamente. En el Tema hemos visto la solución gráfica de modelos lineales de dos variables. Sin embargo, este

Más detalles

Programación Lineal Pedro Sánchez

Programación Lineal Pedro Sánchez Pedro Sánchez Contents 1. Solución gráfica 2. Sensibilidades gráficas 3. Método Simplex 4. Metodología Simplex 5. Dualidad 6. Análisis de sensibilidad 7. Método simplex dual 2 1 Solución gráfica Sensibilidades

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO

Más detalles

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d Cálculo Numérico - CO32 Ejercicios Decida cuáles de las siguientes proposiciones son verdaderas y cuáles son falsas Si una proposición es verdadera, demuéstrela, y si es falsa dé un contraejemplo: a Sea

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Una matriz es un arreglo rectangular de números reales en m filas y n a 11 a 1n columnas

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Métodos Numéricos: Resumen y ejemplos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de

Más detalles

Programación Lineal I

Programación Lineal I Programación Lineal I P.M. Mateo y D. Lahoz 27 de mayo de 2009 En este tema se realiza la introducción de los modelos de programación lineal y de los elementos necesarios para concluir con el algorítmo

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

Tema 4: Teoría de dualidad. Algoritmo Dual del Simplex 1

Tema 4: Teoría de dualidad. Algoritmo Dual del Simplex 1 Tema 4: Teoría de dualidad. Algoritmo Dual del Simplex 1 4.1 Introducción 4.2 Definición del Problema Dual 4.3 Relaciones Primal-Dual 4.4 Condiciones de Holgura Complementaria 4.5 Interpretación Económica

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

Optimización lineal con R José R. Berrendero

Optimización lineal con R José R. Berrendero Optimización lineal con R José R. Berrendero Introducción Veamos cómo se pueden resolver problemas de optimización lineal con R a través de algunos ejemplos sencillos. La mayor parte de las funciones necesarias

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones. A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

Investigación de Operaciones Método Simplex

Investigación de Operaciones Método Simplex FACULTA DE INGENIERIA DE SISTEMAS E INFORMATICA Investigación de Operaciones Método Simplex Integrantes Mayta Chiclote, Ricardo Toledo Fabian, Jimmy Yarleque Esqueche, Jimmy Daniel Método Simplex Página

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Marcel Goic F.

Más detalles

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una función sujeta a un sistema

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Tema 5: Análisis de Sensibilidad y Paramétrico

Tema 5: Análisis de Sensibilidad y Paramétrico Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la

Más detalles

Programación Lineal II. Teoría de la dualidad

Programación Lineal II. Teoría de la dualidad Programación Lineal II. Teoría de la dualidad P.M. Mateo y David Lahoz 27 de mayo de 2009 Este tema continúa el desarrollo iniciado en el tema 1. En el se define el problema dual asociado a un problema

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones)

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones) TEMA 2.- SISTEMAS DE ECUACIONES 1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS La ecuación 2x 3 5 tiene un término en x (el término 2x), otro en y (el término -3y) y un término independiente (el 5) Este

Más detalles

Algoritmos de Planos de Corte

Algoritmos de Planos de Corte Algoritmos de Planos de Corte Problema: max {cx / x X} con X = {x / Ax b, x Z n + } Proposición: conv (X) es un poliedro que puede entonces escribirse como conv (X) = {x / Ax b, x 0} Lo mismo ocurre para

Más detalles